
Information 2010, 1, 3-12; doi:10.3390/info1010003

OPEN ACCESS

information
ISSN 2078-2489

www.mdpi.com/journal/information

Article

Using Information Theory to Study Efficiency and Capacity of
Computers and Similar Devices
Boris Ryabko

Institute of Computational Technology of Siberian Branch of Russian Academy of Science, Siberian
State University of Telecommunications and Informatics, Novosibirsk 630000, Russia

? Author to whom correspondence should be addressed; E-Mail: boris@ryabko.net;
Tel.: +7 383 2698204; Fax: +7 383 2698203.

Received: 6 July 2010; in revised form: 22 July 2010 / Accepted: 5 August 2010 /
Published: 12 August 2010

Abstract: We address the problem of estimating the efficiency and capacity of computers.
The main goal of our approach is to give a method for comparing the capacity of different
computers, which can have different sets of instructions, different kinds of memory, a
different number of cores (or processors), etc. We define efficiency and capacity of
computers and suggest a method for their estimation, which is based on the analysis of
processor instructions and their execution time. How the suggested method can be applied to
estimate the computer capacity is shown. In particular, this consideration gives a new look
at the organization of the memory of a computer. Obtained results can be of some interest
for practical applications.

Keywords: computer capacity; computer efficiency; information theory; Shannon entropy;
channel capacity

1. Introduction

Nowadays, computer science includes many natural approaches and models which give a possibility
to estimate the power of different computational models and the complexity of different computational
tasks. In particular, the field of computational complexity is concerned with studying the amount of
resources (such as running time, memory usage, or program length) required for solving computational

Information 2010, 1 4

tasks (such as decision problems, search problems, or optimization problems); see, e.g., [1] for a review.
The related field of algorithmic information theory is based on a model where the task complexity is
estimated by the length of a computer program [2,3].

Much less is known about how to compare the performance of real computers that can have different
clock rates, different sets of instructions, different kinds of memory, different number of cores (or
processors), etc. In fact, currently the performance of different computers (and supercomputers) is
estimated only experimentally by solving benchmark sets of different computational tasks and measuring
the total time of calculation.

In what follows we will consider models of real computers. One such computer is described in
details by D. Knuth [4]. (It is worth noting that this computer has been implemented after it was
described theoretically.)

We address the problem of what are the efficiency (or performance) and capacity of a computer and
how they can be estimated. The main goal of our approach is to give a method to compare the capacity
of computers. For this purpose we suggest definitions of the computer efficiency and capacity and
methods of their estimation. We will mainly consider computers, but our approach can be applied to all
devices which contain processors, memories and instructions. (Among those devices we mention mobile
telephones and routers.) Besides, we describe a method for estimating the computer capacity and apply it
to several examples which are of some theoretical and practical interest. In particular, this consideration
gives a new look at the organization of computer memory.

The suggested approach is based on the concept of Shannon entropy, the capacity of a discrete
noiseless channel and some other ideas of C. Shannon [5] that underly information theory.

2. The Efficiency and Capacity of Computers

2.1. The Basic Concepts and Definitions

In order to make the paper self-contained, we define a simple model of a real computer. A detailed
description can be found in [4]. A computer consists of a set of instructions I and an accessible memory
M . It is important to note that any instruction x ∈ I contains not only its name (say, JUMP), but memory
addresses and indexes of registers. For example, all instructions JUMP which deal with different memory
addresses are contained in I as different instructions.

We suppose that at the initial moment there is a program and data which can be considered as binary
words P and D, located in the memory of a computer M . In what follows we will call the pair P
and D a computer task. A computer task < P,D > determines a certain sequence of instructions
X(P,D) = x1x2x3..., xi ∈ I . (It is supposed that an instruction may contain an address of a memory
location, the index of a register, etc.) For example, if the program P contains a loop which will be
executed ten times, then the sequence X will contain the body of this loop repeated ten times. We say
that two computer tasks < P1, D1 > and < P2, D2 > are different, if the sequences X(P1, D1) and
X(P2, D2) are different.

It is important to note that we do not suppose that all possible sequences of instructions are allowable.
In principle, there can be sequences of instructions which are forbidden. For example, it is possible
that some pairs of instructions are forbidden, etc. In other words, it is possible that sequences of

Information 2010, 1 5

instructions should satisfy some limitations (or some rules). We define the set of all allowable sequences
of instructions by SC . So, any computer task can be presented as a sequence of instructions from
SC . Moreover, the opposite is also true: any sequence of instructions from SC can be considered as
a computer task. Indeed, using a so-called assembly language any sequence of instructions from SC can
be presented as a computer program, see, for example, [6]. (It is worth noting that some sequences can
be meaningless and two different sequences of instructions can be equal. This situation is typical for any
language when someone considers its capacity, because a language contains synonyms, etc.)

Let us denote the execution time of an instruction x by τ(x). For the sake of simplification, we
suppose that all execution times τ(x), x ∈ I, are integers and the greatest common divisor of τ(x), x ∈ I,
equals 1. (This assumption is valid for many computers if the time unit equals a so-called clock rate
and there are instructions whose executed time is one unit, i.e., τ(x) = 1; see [6].) In this paper this
assumption gives a possibility to use lim instead of lim sup, when the capacity will be defined.)

Naturally, the execution time τ(X) of a sequence of instructions X = x1x2x3...xt is given by

τ(X) =
t∑
i=1

τ(xi)

Denote the number of different problems, whose execution time equals T , by ν(T) and let N(T) be the
size of the set of all sequences of instructions, whose execution time equals T , i.e.,

N(T) = |{X : τ(X) = T}| (1)

The key observation is as follows:
ν(T) = N(T) (2)

Hence,
log ν(T) = logN(T) (3)

(Here and below T is an integer, log x ≡ log2 x and |Y | is the number of elements of Y if Y is a set, and
the length of Y if Y is a word.) In other words, the total number of computer tasks executed in time T is
equal to (1). Basing on this consideration we give the following definition.

Definition 1 Let there be a computer with a set of instructions I and let τ(x) be the execution time of
an instruction x ∈ I. The computer capacity C(I) is defined as follows:

C(I) = lim
T→∞

logN(T)

T
(4)

where N(T) is defined in (1).

Claim 1 The limit (4) exists if I is finite, execution times τ(x), x ∈ I are integers and the greatest
common divisor of τ(x), x ∈ I, equals 1.

Proof is given in Appendix.
The next question to be investigated is the definition of the efficiency of computer (or performance),

when a computer is used for solving problems of a certain kind. For example, one computer can be a
Web server, another can be used for solving differential equations, etc. Certainly, the computer efficiency

Information 2010, 1 6

depends on the problems the computer has to solve. In order to model this situation we suggest the
following approach: there is an information source which generates a sequence of computer tasks in
such a way, that the computer begins to solve each next task as soon as the previous task is finished.
We will not deal with a probability distribution on the sequences of the computer tasks, but consider
sequences of computer instructions, determined by sequences of the computer tasks, as a stochastic
processes. In what follows we will consider the model when this stochastic process is stationary and
ergodic, and we will define the computer efficiency for this case.

A natural question is the applicability of this model. The point is that modern computers are
commonly used for solving several computer tasks in parallel, which is why the sequence of executed
instructions is a mixture of quite a large number of subsequences. So, in some natural situations, this
sequence can be modeled by a stationary ergodic source.

The definition of efficiency will be based on results and ides of information theory, which we introduce
in what follows. Let there be a stationary and ergodic process z = z1, z2, ... generating letters from a
finite alphabet A (the definition of stationary ergodic process can be found, for example, in [7]). The
n−order Shannon entropy and the limit Shannon entropy are defined as follows:

hn(z) = − 1

n+ 1

∑
u∈An+1

Pz(u) logPz(u)

h∞(z) = lim
n→∞

hn(z) (5)

where n ≥ 0 , Pz(u) is the probability that z1z2...z|u| = u (this limit always exists, see [5,7]). We will
consider so-called i.i.d. sources. By definition, they generate independent and identically distributed
random variables from some set A. Now we can define the computer efficiency.

Definition 2 Let there be a computer with a set of instructions I and let τ(x) be the execution time of
an instruction x ∈ I. Let this computer be used for solving such a randomly generated sequence of
computer tasks, that the corresponding sequence of the instructions z = z1z2..., zi ∈ I , is a stationary
ergodic stochastic process. Then the efficiency is defined as follows:

c(I, z) = h∞(z)/
∑
x∈I

Pz(x)τ(x) (6)

where Pz(x) is the probability that z1 = x, x ∈ I .

Informally, the Shannon entropy is a quantity of information (per letter), which can be transmitted and
the denominator in (6) is the average execution time of an instruction.

More formally, if we take a large integer T and consider all T−letter sequences z1...zT , then, for
large T , the number of “typical” sequences will be approximately 2Th∞(z), whereas the total execution
time of the sequence will be approximately T

∑
x∈I Pz(x)τ(x). (By definition of a typical sequence,

the frequency of any word u in it is close to the probability Pz(u). The total probability of the set of
all typical sequences is close to 1.) So, the ratio of log(2Th∞(z)) and the average execution time will
be asymptotically equal to (6), if T → ∞. A rigorous proof can be obtained basing on methods of
information theory; see [7]. We do not give it, because definitions do not need to be proven, but mention
that there are many results about channels which transmit letters of unequal duration [8].

Information 2010, 1 7

2.2. Methods for Estimating the Computer Capacity

Now we consider the question of estimating the computer capacity and efficiency defined above. The
efficiency, in principle, can be estimated basing on statistical data, which can be obtained by observing
a computer which solves tasks of a certain kind.

The computer capacity C(I) can be estimated in different situations by different methods. In
particular, a stream of instructions generated by different computer tasks can be described as a sequence
of words created by a formal language, or the dependence between sequentially executed instructions
can be modeled by Markov chains, etc. Seemingly the most general approach is to define the set of
admissible sequences of instructions as a certain subset of all possible sequences. More precisely, the set
of admissible sequencesG is defined as a subsetG ⊂ A∞,whereA∞ is the set of one-side infinite words
over the alphabet A: A∞ = {x : x = x1x2...}, xi ∈ A, i = 1, 2, In this case the the capacity of G
is deeply connected with the topological entropy and Hausdorff dimension; for definitions and examples
see [9–12] and references therein. We do not consider this approach in details, because it seems to be
difficult to use it for solving applied problems which require a finite description of the channels.

The simplest estimate of computer capacity can be obtained if we suppose that all sequences of
the instructions are admissible. In other words, we consider the set of instructions I as an alphabet and
suppose that all sequences of letters (instructions) can be executed. In this case the method of calculation
of the lossless channel capacity, given by C. Shannon in [5], can be used. It is important to note that
this method can be used for upper-bounding the computer capacity for all other models, because for any
computer the set of admissible sequences of instructions is a subset of all words over the “alphabet” I .

Let, as before, there be a computer with a set of instructions I whose execution time is τ(x), x ∈ I,
and all sequences of instructions are allowed. In other words, if we consider the set I as an alphabet,
then all possible words over this alphabet can be considered as admissible sequences of instructions for
the computer. The question we consider now is how one can calculate (or estimate) the capacity (4) for
this case. The solution is suggested by C. Shannon [5] who showed that the capacity C(I) is equal to the
logarithm of the largest real solution X0 of the following equation:

X−τ(x1) +X−τ(x2) + ...+X−τ(xs) = 1 (7)

where I = {x1, ..., xs}. In other words, C(I) = logX0.

It is easy to see that the efficiency (6) is maximal, if the sequence of instructions x1x2..., xi ∈ I is
generated by an i.i.d. source with probabilities p∗(x) = X

−τ(x)
0 , where X0 is the largest real solution to

the Equation (7), x ∈ I . Indeed, having taken into account that h∞(z) = h0(z) for i.i.d. source [7] and
the definition of entropy (5), the direct calculation of c(I, p∗) in (6) shows that c(I, p∗) = logX0 and,
hence, c(I, p∗) = C(I).

It will be convenient to combine all the results about computer capacity and efficiency in the
following statement:

Theorem 1 Let there be a computer with a set of instructions I and let τ(x) be the execution time of
x ∈ I . Suppose that all sequences of instructions are admissible computer programs. Then the following
equalities are valid:

Information 2010, 1 8

i) The alphabet capacity C(I) (4) equals logX0, where X0 is the largest real solution to the
Equation (7).

ii) The efficiency (6) is maximal if the sequences of instructions are generated by an i.i.d. source with
probabilities p∗(x) = X

−τ(x)
0 , x ∈ I.

3. MIX and MMIX

As an example we briefly consider the MMIX and MIX computers suggested by D. Knuth [4,13].
The point is that those computers are described in details and MMIX can be considered as a model of a
modern computer, whereas MIX can be considered as a model of computers produced in the 1970th.
The purpose of this consideration is to investigate the given definitions and to look at how various
characteristics of a computer influence its capacity, therefore we give some details of the description
of MIX and MMIX.

We consider a binary version of MIX [13], whose instructions are represented by 31−bit words. Each
machine instruction occupies one word in the memory, and consists of 4 parts: the address (12 bits and
the sign of the word) in memory to read or write; an index specification (1 byte, describing which register
to use) to add to the address; a modification (1 byte) that specifies which parts of the register or memory
location will be read or altered; and the operation code (1 byte). So, almost all 31−bit words can be
considered as possible instructions and the upper bound of the number of the set of instructions I (and
letters of the “computer alphabet”) is 231. Each MIX instruction has an associated execution time, given
in arbitrary units. For example, the instruction JMP (jump) has the execution time 1 unit, the execution
times of MUL and DIV (multiplication and division) are 10 units and 12 units, correspondingly. There
are special instructions whose execution time is not constant. For example, the instruction MOV E is
intended to copy information from several cells of memory and the execution time equals 1+2F , where
F is the number of cells.

From the description of MIX instructions and Theorem 1 we obtain the following equation for
calculating the upper bound of the capacity of MIX:

228

X
+

226

X2
+

226

X10
+

225

X12
+

225∑
F=0

225

X1+2F
= 1 (8)

Here the first summand corresponds to operations with execution time 1, etc. It is easy to see that the
last sum can be estimated as follows:

∑225

F=0
225

X1+2F <
225

X
X2

X2−1 . Having taken into account this inequality
and (8), we can obtain by direct calculation that the MIX capacity is approximately 28 bits per time unit.

The MMIX computer has 256 general-purpose registers, 32 special-purpose ones and 264 bytes of
virtual memory [4]. The MMIX instructions are presented as 32-bit words and in this case the “computer
alphabet” consists of almost 232 words (almost, because some combinations of bits do not make sense).
In [4] the execution (or running) time is assigned to each instruction in such a way that each instruction
takes an integer number of υ, where υ is a unit that represents the clock cycle time. Besides, it is assumed
that the running time depends on the number of memory references (mems) that a program uses. For
example, it is assumed that the execution time of each of the LOAD instructions is υ + µ, where µ is
an average time of memory reference [4]. If we consider υ as the time unit and define µ̂ = µ/υ, we

Information 2010, 1 9

obtain from the description of MMIX [4] and (7) the following equation for finding an upper bound on
the MMIX capacity:

224 (
139

X
+

32

X2
+

5

X3
+

17

X4
+

3

X5
+

4

X10
+

2

X40
+

4

X60
)+

28 264(
46

X1+µ̂
+

2

X1+20µ̂
+

46

X2+2µ̂
) = 1 (9)

The value µ̂ depends on the realization of MMIX and is larger than 1 for modern computers [4]. Now
we can estimate the capacity for different µ̂ . For example, if µ̂ is small (say, µ̂ = 1), the capacity is
large (about 35 bits). If µ̂ is large (µ̂ = 5), the capacity is around 31.5 bits.

Those examples show that the Equation (7) can be used for estimation of the computer capacity and
the capacity of computers is mainly determined by the subsets of instructions whose execution time
is minimal.

Theorem 1 gives a possibility to estimate frequencies of the instructions, if the computer performance
efficiency is maximal (and equals its capacity). First, the frequencies of instructions with equal running
time have to be equal. In turn, it means that all memory cells should be used equally often. Second,
the frequency of instructions exponentially decreases as their running time increases. It is interesting
that in the modern computer MMIX the share of fast commands is larger than in the old computer MIX
and, hence, the efficiency of MMIX is larger. It is reached due to the usage of registers instead of
the (slow) memory.

4. Possible Applications

It is natural to use estimations of the computer capacity at the design stage. We consider examples of
such estimations that are intended to illustrate some possibilities of the suggested approach.

First we consider a computer, whose design is close to the MMIX computer. Suppose a designer
has decided to use the MMIX set of registers. Suppose further, that he/she has a possibility to use two
different kinds of memory, such that the time of one reference to the memory and the cost of one cell are
τ1, c1 and τ2, c2, correspondingly. It is natural to suppose that the total price of the memory is required
not to exceed a certain bound C. As in the example with MMIX we define µ̂1 = τ1/υ, µ̂2 = τ2/υ, where,
as before, υ is a unit that represents the clock cycle time.

As in the case of MMIX, we suppose that there are instructions for writing and reading information
from a register to a cell. The set of these instructions coincides with the corresponding set of the MMIX
computer. If we denote the number of the memory cells by S, then the number of the instructions which
can be used for reading and writing, is proportional to S. Having taken into account that MMIX has 28

registers and the Equation (9) , we can see that the designer should consider two following equations

(224 (
139

X
+

32

X2
+

5

X3
+

17

X4
+

3

X5
+

4

X10
+

2

X40
+

4

X60
))+

28 Si (
46

X1+µ̂i
+

2

X1+20µ̂i
+

46

X2+2µ̂i
)) = 1 (10)

for i = 1, 2, where Si = C/ci, i.e., Si is the number of cells of the i−th kind of memory, i = 1, 2. The
designer can calculate the maximal roots for each equation (i = 1, 2) and then he/she can choose that

Information 2010, 1 10

kind of memory for which the solution is larger. It will mean that the computer capacity will be larger
for the chosen kind of memory. For example, suppose that the total price should not exceed 1 (C = 1),
the prices of one cell of memory are c1 = 2−30 and c2 = 2−34, whereas µ̂1 = 1.2, µ̂2 = 1.4. The direct
calculation of the Equation (10) for S1 = 230 and S2 = 234 shows that the former is preferable, because
the computer capacity is larger for the first kind of memory.

Obviously, this model can be generalized for different set of instructions and different kinds of
memory. In such a case the considered problem can be described as follows. We suppose that there
are instructions µwi (n) for writing information from a special register to n-th cell of i-th kind of memory
(n = 0, ..., ni − 1, 1 = 1, ..., k, and similar instructions µri (n) for reading. Moreover, it is supposed that
all other instructions cannot directly read or write to the memory of those kinds, i.e., they can write to
and read from the registers only. (It is worth noting that this model is quite close to some real computers.)
Denote the execution time of the instructions µwi (n) and µri (n) by τ̇i, 1 = 1, ..., k.

In order to get an upper bound of the computer capacity for the described model we, as before,
consider the set of instructions as an alphabet and estimate its capacity applying Theorem 1. From (7)
we obtain that the capacity is logX0, where X0 is the largest real solution of the following equation:

∑
x∈I∗

X−τ(x) +R (
2n1

X τ̇1
+

2n2

X τ̇2
+ ...+

2nk
X τ̇k

) = 1 (11)

where I∗ contains all instructions except µri (n) and µwi (n), 1 = 1, ..., k, R is a number of registers. (The
summand 2ni

X τ̇i
corresponds to the instructions µwi (n) and µri (n).)

Let us suppose that a price of one cell of ith kind of memory is ci whereas the total cost of memory is
limited by C. Then, from the previous equation we obtain the following optimization problem:

logX0 −→ maximum

where X0 is the maximal real solution of the Equation (11) and

c1n1 + c2n2 + ...+ cknk ≤ C

ni ≥ 0, i = 1, ..., k. The solution of this problem can be found using standard methods and used by
computer designers.

The suggested approach can be applied to optimization of different parameters of computers including
the structure of the set of instructions, etc.

5. Conclusions

We have suggested a definition of the computer capacity and its efficiency as well as a method for their
estimation. It can be suggested that this approach may be useful on the design stage when developing
computers and similar devices.

It would be interesting to analyze the “evolution” of computers from the point of view of their
capacity. The preliminary analysis shows that the development of the RISC processors, the increase
in quantity of the registers and some other innovations, lead to the increase of the capacity of computers.
Moreover, such methods as using cache memory can be interpreted as an attempt to increase the
efficiency of a computer.

Information 2010, 1 11

It is worth noting that the suggested approach in general can be extended to multi-core processors and
special kinds of cache memory.

Acknowledgment

Research was supported by Russian Foundation for Basic Research (grant no. 09-07-00005).

References

1. Papadimitriou, C.H. Computational Complexity; Addison-Wesley: New York, NY, USA, 1996.
2. Kolmogorov, A.N. Three approaches to the quantitative definition of information. Probl. Inform.

Transm. 1965, 1, 3–11.
3. Li, M.; Vitanyi, P. An Introduction to Kolmogorov Complexity and Its Applications, 2nd edition;

Springer-Verlag: New York, NY, USA, 1997.
4. Knuth, D.E. MMIX: A RISC Computer for the New Millennium. In The Art of Computer

Programming; Addison-Wesley: New York, NY, USA, 2005; Volume 1, Fascicle 1.
5. Shannon, C.E. A mathematical theory of communication. Bell Sys. Tech. J.

1948, 27, 379–423, 623–656.
6. Tanenbaum, A.S. Structured Computer Organization; Prentice Hall PTR: Upper Saddle River,

NJ, USA, 2005.
7. Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley: Hoboken, NJ, USA, 2006 .
8. Csiszár, I. Simple proofs of some theorems on noiseless channels. Inform. Contr.

1969, 14, 285–298.
9. Doty, D. Dimension extractors and optimal decompression. Theory Comput. Syst.

2008, 43 , 425–463.
10. Fortnow, L.; Lutz, J.H. Prediction and dimension J. Comput. Syst. Sci.

2005, 70, 570–589.
11. Lind, D.; Marcus, B. An Introduction to Symbolic Dynamics and Coding; Cambridge University

Press: Cambridge, UK, 1996.
12. Ryabko, B.Ya. Noiseless coding of combinatorial sources, Hausdorff dimension, and Kolmogorov

complexity. Prob. Inform. Transm. 1986, 22, 170-179.
13. Knuth, D.E. Fundamental Algorithms. In The Art of Computer Programming; Addison-Wesley:

New York, NY, USA, 1968; Volume 1.
14. Krichevsky, R. Universal Compression and Retrieval; Kluwer Academic Publishers: Dordrecht,

Netherlands, 1993.

Appendix

Proof of the claim 1. We will consider stationary subsets [14], because their capacity (or combinatorial
entropy [14]) can be defined analogously (4). Let G ⊂ A∞, where A is an alphabet. The definition
of a stationary subset G is as follows: take a word from G and cross its first letter out. If the
word obtained remains an element of G, then G is called stationary. The following proposition
due to R. Krichevsky [14]:

Information 2010, 1 12

Proposition 1 Let G be a stationary set and G(s) be the set of all s−letter prefixes of all words from G,

where s is an integer. Then lims→∞ log |G(s)|/s exists.

The proof can be found in [14].
Let, as before, SC be a set of all allowable sequences of instructions from I . We denote the subset of

all infinite sequences of SC by S∞C . Let us represent a set of all instructions as I = {x1, x2, ..., xN} and
define a new alphabet I∗ as follows: I∗ = {x11, x21, ..., x

τ(x1)
1 , x12, x

2
2, ..., x

τ(x2)
2 , ..., x1N , x

2
N , ..., x

τ(xN)
N }. We

suppose that the length of all letters from I∗ equals 1 and define a subset of allowable sequences S∗C as
follows: x1i1x

2
i1
...x

τ(xi1)
i1 x1i2x

2
i2
...x

τ(xi2)
i2 ... ∈ S∗C if and only if xi1 xi2 ... ∈ SC . In words, any letter (or

instructions) from I , whose length is τ(x), is presented as a sequence of τ(x) letters, whose length is 1.
Having taken into account that I is finite, it is easy to see that if the limT→∞ log |S∗C(T)|/T exists, then
the limit (4) exists, too.

Let A be an alphabet and G is a subset of one-side infinite words over A, i.e., G ⊂ A∞. We define the
set G−1 as follows: take all words from G and cross their first letters out. The obtained set of words is
G−1 and, by definition,G−s = (G−(s−1))−1,G0 = G, s > 0. Let τ ∗ =

∏
x∈I τ(x) and Ŝ∗C =

⋃τ∗

j=0(S
∗
C)−j.

From those definitions we immediately obtain that Ŝ∗C is a stationary set and, according to Proposition,
there exists limT→∞ | log Ŝ∗C(T)|/T. Taking into account the definitions of τ ∗ and Ŝ∗C , we can see that
for any integer T

log |Ŝ∗C(T)| ≤ log |S∗C(T)| ≤ log(τ ∗|Ŝ∗C(T)|).

The limT→∞ | log Ŝ∗C(T)|/T exists, hence, limT→∞ | log(τ ∗|Ŝ∗C(T)|)/T exists. From this and last
inequalities we can see that limT→∞ log |S∗C(T)|/T exists. As we mentioned above, it means that the
limit (4) exists, too.

Claim is proven.

c© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access
article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/.)

	Introduction
	The Efficiency and Capacity of Computers
	The Basic Concepts and Definitions
	Methods for Estimating the Computer Capacity

	MIX and MMIX
	Possible Applications
	Conclusions

