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E C O N O M E T R I C A  


A THEORY OF AUCTIONS AND COMPETITIVE BIDDING' 

A model of competitive bidding is developed in which the winning bidder's payoff may 
depend upon his personal preferences, the preferences of others, and the intrinsic qualities 
of the object being sold. In this model, the English (ascending) auction generates higher 
average prices than does the second-price auction. Also, when bidders are risk-neutral, the 
second-price auction generates higher average prices than the Dutch and first-price 
auctions. In all of these auctions, the seller can raise the expected price by adopting a 
policy of providing expert appraisals of the quality of the objects he sells. 

1. INTRODUCTION 

THEDESIGN AND CONDUCT of auctioning institutions has occupied the attention 
of many people over thousands of years. One of the earliest reports of an auction 
was given by the Greek historian Herodotus, who described the sale of women to 
be wives in Babylonia around the fifth century B.C. During the closing years of 
the Roman Empire, the auction of plundered booty was common. In China, the 
personal belongings of deceased Buddhist monks were sold at auction as early as 
the seventh century A . D . ~  

In the United States in the 1980's, auctions account for an enormous volume 
of economic activity. Every week, the U.S. Treasury sells billions of dollars of 
bills and notes using a sealed-bid auction. The Department of the Interior sells 
mineral rights on federally-owned properties at a ~ c t i o n . ~  Throughout the public 
and private sectors, purchasing agents solicit delivery-price offers of products 
ranging from office supplies to specialized mining equipment; sellers auction 
antiques and artwork, flowers and livestock, publishing rights and timber. rights, 
stamps and wine. 

The large volume of transactions arranged using auctions leads one to wonder 
what accounts for the popularity of such common auction forms as the English 
a ~ c t i o n , ~  the first-price sealed-bid a ~ c t i o n , ~  the Dutch a ~ c t i o n , ~  and the second- 

'This work was partially supported by the Center for Advanced Studies in Managerial Economics 
at Northwestern University, National Science Foundation Grant SES-8001932, Office of Naval 
Research Grants ONR-N00-14-79-C-0685 and ONR-N000-14-77-C-0518, and by National Science 
Foundation Grant SOC77-06000-A1 at the Institute for Mathematical Studies in the Social Sciences, 
Stanford University. We thank the referees for their helpful comments. 

2These and other historical references can be found in Cassady [2]. 
3 0 n  September 30, 1980, U.S. oil companies paid $2.8 billion for drilling rights on 147 tracts in the 

Gulf of Mexico. The three most expensive individual tracts brought prices of $165 million, $162 
million, and $121 million respectively. 

4 ~ h eEnglish (ascending, progressive, open, oral) auction is an auction with many variants, some 
of which are described in Section 5. In the variant we study, the auctioneer calls successively higher 
prices until only one willing bidder remains, and the number of active bidders is publicly known at all 
times. 

5 ~ h eDutch (descending) auction, which has been used to sell flowers for export in Holland, is 
conducted by an auctioneer who initially calls for a very high price and then continuously lowers the 
price until some bidder stops the auction and claims the flowers for that price. 
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price sealed-bid auction.' What determines which form will (or should) be used 
in any particular circumstance? 

Equally important, but less thoroughly explored, are questions about the 
relationship between auction theory and traditional competitive theory. One may 
ask: Do the prices which arise from the common auction forms resemble 
competitive prices? Do they approach competitive prices when there are many 
buyers and sellers? In the case of sales of such things as securities, mineral rights, 
and timber rights, where the bidders may differ in their knowledge about the 
intrinsic qualities of the object being sold, do prices aggregate the diverse bits of 
information available to the many bidders (as they do in some rational expecta- 
tions market equilibrium models)? 

In Section 2, we review some important results of the received auction theory, 
introduce a new general auction model, and summarize the results of our 
analysis. Section 3 contains a formal statement of our model, and develops the 
properties of "affiliated" random variables. The various theorems are presented 
in Sections 4-8. In Section 9, we offer our views on the current state of auction 
theory. Following Section 9 is a technical appendix dealing with affiliated 
random variables. 

2. AN OVERVIEW OF THE RECEIVED THEORY AND NEW RESULTS8 

2.1. The Independent Private Values Model 

Much of the existing literature on auction theory analyzes the independent 
private values model. In that model, a single indivisible object is to be sold to one 
of several bidders. Each bidder is risk-neutral and knows the value of the object 
to himself, but does not know the value of the object to the other bidders (this is 
the private values assumption). The values are modeled as being independently 
drawn from some continuous distribution. Bidders are assumed to behave 
competitively;9 therefore, the auction is treated as a noncooperative game among 
the bidders." 

At least seven important conclusions emerge from the model. The first of these 
is that the Dutch auction and the first-price auction are strategically equivalent. 

6The first-price auction is a sealed-bid auction in which the buyer making the highest bid claims 
the object and pays the amount he has bid. 

h he second-price auction is a sealed-bid auction in which the buyer making the highest bid 
claims the object, but pays only the amount of the second highest bid. This arrangement does not 
necessarily entail any loss of revenue for the seller, because the buyers in this auction will generally 
place higher bids than they would in the first-price auction. 

8~ more thorough survey of the literature is given by Engelbrecht-Wiggans [4]. A comprehensive 
bibliography of bidding, including almost 500 titles, has been compiled by Stark and Rothkopf [26]. 

'Situations in which bidders collude have received no attention in theoretical studies, despite 
many allegations of collusion, particularly in bidding for timber rights (Mead [14]). 

'OThe case in which several identical objects are offered for sale with a limit of one item per bidder 
has also been analyzed (Ortega-Reichert [22], Vickrey [30]). All of the results discussed below have 
natural analogues in that more general setting. 

Another variation, in which the bidders' private valuations are drawn from a common but 
unknown distribution, has been treated by Wilson [34]. 
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Recall that in a Dutch auction, the auctioneer begins by naming a very high 
price and then lowers it continuously until some bidder stops the auction cnd 
claims the object for that price. An insight due to Vickrey [29] is that the decision 
faced by a bidder with a particular valuation is essentially static, i.e. the bidder 
must choose the price level at which he will claim the object if it has not yet been 
claimed. The winning bidder will be the one who chooses the highest level, and 
the price he pays will be equal to that amount. This, of course, is also the way the 
winner and price are determined in the sealed-bid first-price auction. Thus, the 
sets of strategies and the mapping from strategies to outcomes are the same for 
both auction forms. Consequently, the equilibria of the two auction games must 
coincide. 

The second conclusion is that-in the context of the private values model-the 
second-price sealed-bid auction and the English auction are equivalent, although 
in a weaker sense than the "strategic equivalence" of the Dutch and first-price 
auctions. Recall that in an English auction, the auctioneer begins by soliciting 
bids at a low price level, and he then gradually raises the price until only one 
willing bidder remains. In this setting, a bidder's strategy must specify, for each 
of his possible valuations, whether he will be active at any given price level, as a 
function of the previous activity he has observed during the course of the 
auction. However, if a bidder knows the value of the object to himself, he has a 
straightforward dominant strategy, which is to bid actively until the price reaches 
the value of the object to him. Regardless of the strategies adopted by the other 
bidders, this simple strategy will be an optimal reply. 

Similarly, in the second-price auction, if a bidder knows the value of the object 
to himself, then his dominant strategy is to submit a sealed bid equal to that 
value. Thus, in both the English and second-price auctions, there is a unique 
dominant-strategy equilibrium. In both auctions, at equilibrium, the winner wili 
be the bidder who values the object most highly, and the price he pays will be the 
value of the object to the bidder who values it second-most highly. In that sense, 
the two auctions are equivalent. Note that this argument requires that each 
bidder know the value of the object to himself." If what is being sold is the right 
to extract minerals from a property, where the amount of recoverable minerals is 
unknown, or if it is a work of art, which will be enjoyed by the buyer and then 
eventually resold for some currently undetermined price, then this equivalence 
result generally does not apply. 

A third result is that the outcome (at the dominant-strategy equilibrium) of the 
English and second-price auctions is Pareto optimal; that is, the winner is the 
bidder who values the object most highly. This conclusion follows immediately 
from the argument of the preceding paragraph and, like the first two results, does 
not depend on the symmetry of the model. In symmetric models the Dutch and 
first-price auctions also lead to Pareto optimal allocations. 

"In contrast, the argument concerning the strategic equivalence of the Dutch and first-price 
auctions does not require any assumptions about the values to the bidders of various outcomes. In 
particular, it does not require that a bidder know the value of the object to himself. 
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O P * ( v )  I 

Probabil i ty of Winning 

A fourth result is that in the independent private values model, all four auction 
forms lead to identical expected revenues for the seller (Ortega-Reichert [22], 
Vickrey [30]). This result remained a puzzle until recently, when an application of 
the self-selection approach cast it in a new light (Harris and Raviv [S], Myerson 
[21], Riley and Samuelson [24]). That approach views a bidder's decision prob- 
lem (when the strategies of the other bidders are fixed) as one of choosing, 
through his action, a probability p of winning and a corresponding expected 
payment e(p). (We take e(p) to be the lowest expected payment associated with 
an action which obtains the object with probability p.) It is important to notice 
that, because of the independence assumption, the set of (p, e(p)) pairs that are 
available to the bidder depends only on the rules of the auction and the strategies 
of the others, and not on his private valuation of the object. 

Figure 1 displays a typical bidding decision faced by a bidder who values the 
prize at v. The curve consists of the set of (p, e(p)) pairs among which he must 
choose.I2 Since the bidder's expected utility from a point (p, e) is v .p - e, his 
indifference curves are straight lines with slope v. Let p*(v) denote the optimal 
choice of p for a bidder with valuation v. It is clear from the figure that p*  must 
be nondecreasing. 

In Figure 1, the tangency condition is e'(p*(v)) = v. Similarly, when the 
indifference line has multiple points of tangency, a small increase in v causes a 
jump Ap* in p*  and a corresponding jump Ae = v .Ap* in e(p*(v)). Hence we 
can conclude quite generally that e(p*(v)) = e(p*(O)) + J;t dp*(t). It then fol- 
lows that the seller's expected revenue from a bidder depends on the rules of the 
auction only to the extent that the rules affect either e(p*(O)) or thep* function. 
Notice, in particular, that all auctions which always deliver the prize to the 
highest evaluator have the same p*  function for all bidders. That observation, 
together with the fact that at the dominant-strategy equilibrium the second-price 

I2In general, the (p ,  e(p))-curve need not be continuous; there may even be values of p for which 
no (p ,  e(p)) pair is available. However, there will always be a point (0, e(0)) on the curve, with 
e(0) 5 0, for the bidder is free to abstain from participation. The quantity e(0) will be negative only if 
the seller at times provides subsidies to losing bidders. 
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auction yields a price equal to the second-highest valuation, leads to the fifth 
result. 

THEOREM0:  Assume that a particular auction mechanism is given, that the 
independent private values model applies, and that the bidders adopt strategies which 
consititute a noncooperative equilibrium. Suppose that at equilibrium the bidder who 
values the object most highly is certain to receive it, and that any bidder who values 
the object at its lowest possible level has an expected payment of zero. Then the 
expected revenue generated for the seller by the mechanism is precisely the expected 
value of the object to the second-highest evaluator. 

At the symmetric equilibria of the English, Dutch, first-price, and second-price 
auctions, the conditions of the theorem are satisfied. Consequently, the expected 
selling price is the same for all four mechanisms; this is the so-called "revenue- 
equivalence" result. It should be noted that Theorem 0 has an attractive 
economic interpretation. No matter what competitive mechanism is used to 
establish the selling price of the object, on average the sale will be at the lowest 
price at which supply (a single unit) equals demand. 

The self-selection approach has also been applied to the problem of designing 
auctions to maximize the seller's expected revenue (Harris and Raviv [8], Myer- 
son [21], Riley and Samuelson [24]). The problem is formulated very generally as 
a constrained optimal control problem, where the control variables are the pairs 
(p:(.), ei(pT(0))). As might be expected, the form of the optimal auction depends 
on the underlying distribution of bidder valuations. One remarkable conclusion 
emerging from the analysis is this: For many common sample distributions- 
including the normal, exponential, and uniform distributions-the four standard 
auction forms with suitably chosen reserve' prices or entry fees are optimal 
auctions. 

The seventh and last result in this list arises in a variation of the model where 
either the seller or the buyers are risk averse. In that case, the seller will strictly 
prefer the Dutch or first-price auction to the English or second-price auction 
(Harris and Raviv [8], Holt [9], Maskin and Riley [ l l ] ,  Matthews [13]). 

2.2. Oil, Gas, and Mineral Rights 

The private values assumption is most nearly satisfied in auctions for non- 
durable consumer goods. The satisfaction derived from consuming such goods is 
reasonably regarded as a personal matter, so it is plausible that a bidder may 
know the value of the good to himself, and may allow that others could value the 
good differently. 

In contrast, consider the situation in an auction for mineral rights on a tract of 
land where the value of the rights depends on the unknown amount of recover- 
able ore, its quality, its ease of recovery, and the prices that will prevail for the 
processed mineral. To a first approximation, the values of these mineral rights to 
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the various bidders can be regarded as equal, but bidders may have differing 
estimates of the common value. 

Suppose the bidders make (conditionally) independent estimates of this com- 
mon value V. Other things being equal, the bidder with the largest estimate will 
make the highest bid. Consequently, even if all bidders make unbiased estimates, 
the winner will find that he had overestimated (on average) the value of the 
rights he has won at auction. Petroleum engineers (Capen, Clapp, and Campbell 
[I]) have claimed that this phenomenon, known as the winner's curse, is responsi- 
ble for the low profits earned by oil companies on offshore tracts in the 1960's. 

The model described above, in which risk-neutral bidders make independent 
estimates of the common value where the estimates are drawn from a single 
underlying distribution parameterized by V,  can be called the mineral rights 
model or the common value model. The equilibrium of the first-price auction for 
this model has been extensively studied (Maskin and Riley [ll], Milgrom [15, 161, 
Milgrom and Weber [20], Ortega-Reichert [22], Reece [23], Rothkopf [25], Wilson 
[34]). Among the most interesting results for the mineral rights model are those 
dealing with the relations between information, prices, and bidder profits. 

For example, consider the information that is reflected in the price resulting 
from a mineral rights auction. It is tempting to think that this price cannot 
convey more information than was available to the winning bidder, since the 
price is just the amount that he bid. This reasoning, however, is incorrect. Since 
the winning bidder's estimate is the maximum among all the estimates, the 
winning bid conveys a bound on all the loser's estimates. When there are many 
bidders, the price conveys a bound on many estimates, and so can be very 
informative. Indeed, let f(x I v) be the density of the distribution of a bidder's 
estimate when V = v. A property of many one-parameter sampling distributions 
is that for v, < v,, f(x lo,)/ f(x 1 v2) declines as x increases.I3 If this ratio 
approaches zero, then the equilibrium price in a first-price auction with many 
bidders is a consistent estimator of the value V, even if no bidder can estimate V 
closely from his information alone (Milgrom [15, 161, Wilson [34]). Thus, the 
price can be surprisingly effective in aggregating private information. 

Several results and examples suggest that a bidder's expected profits in a 
mineral rights auction depend more on the privacy of his information than on its 
accuracy as information about V. For example, in the first-price auction a bidder 
whose information is also available to some other bidder must have zero 
expected profits at equilibrium (Engelbrecht-Wiggans, Milgrom, and Weber [5], 
Milgrom [15]). Thus, if two bidders have access to the same estimate of V and a 
third bidder has access only to some less informative but independent estimate, 
then the two relatively well-informed bidders must have zero expected profits, 
but the more poorly-informed bidder may have positive expected profits. Related 
results appear in Milgrom [15 and 171 and as Theorem 7 of this paper. 

I3This property is known to statisticians as the monotone likelihood ratio prope,.ty (Tong [27]). Its 
usefulness for economic modelling has been elaborated by Milgrom [18]. 
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2.3. A General Model 

Consider the issues that arise in attempting to select an auction to use in selling 
a painting. If the independent private values model is to be applied, one must 
make two assumptions: that each bidder knows his value for the painting, and 
that the values are statistically independent. The first assumption rules out the 
possibilities: (i) that the painting may be resold later for an unknown price, (ii) 
that there may be some "prestige" value in owning a painting which is admired 
by other bidders, and (iii) that the authenticity of the painting may be in doubt. 
The second assumption rules out the possibility that several bidders may have 
relevant information concerning the painting's authenticity, or that a buyer, 
thinking that the painting is particularly fine, may conclude that other bidders 
also are likely to value it highly. Only if these assumptions are palatable can the 
theory be used to guide the seller's choice of an auction procedure. Even in this 
case, however, little guidance is forthcoming: the theory predicts that the four 
most common auction forms lead to the same expected price. 

Unlike the private values theory, the common value theory allows for statisti- 
cal dependence among bidders' value estimates, but offers no role for differences 
in individual tastes. Furthermore, the received theory offers no basis for choosing 
among the first-price, second-price, Dutch, and English auction procedures. 

In this paper, we develop a general auction model for risk-neutral bidders 
which includes as special cases the independent private values model and the 
common value model, as well as a range of intermediate models which can better 
represent, for example, the auction of a painting. Despite its generality, the 
model yields several testable predictions. First, the Dutch and first-price auctions 
are strategically equivalent in the general model, just as they were in the private 
values model. Second, when bidders are uncertain about their value estimates, 
the English and second-price auctions are not equivalent: the English auction 
generally leads to larger expected prices. One explanation of this inequality is 
that when bidders are uncertain about their valuations, they can acquire useful 
information by scrutinizing the bidding behavior of their competitors during the 
course of an English auction. That extra information weakens the winner's curse 
and leads to more aggressive bidding in the English auction, which accounts for 
the higher expected price. 

A third prediction of the model is that when the bidders' value estimates are 
statistically dependent, the second-price auction generates a higher average price 
than does the first-price auction. Thus, the common auction forms can be ranked 
by the expected prices they generate. The English auction generates the highest 
prices followed by the second-price auction and, finally, the Dutch and first-price 
auctions. This may explain the observation that "an estimated 75 per cent, or 
even more, of all auctions in the world are conducted on an ascending-bid basis" 
(Cassady [2, page 661). 

Suppose that the seller has access to a private source of information. Further, 
suppose that he can commit himself to any policy of reporting information that 
he chooses. Among the possible policies are: (i) concealment (never report any 
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information), (ii) honesty (always report all information completely), (iii) censor- 
ing (report only the most favorable information), (iv) summarizing (report only a 
rough summary statistic), and (v) randomizing (add noise to the data before 
reporting). 

The fourth conclusion of our analysis is that for the first-price, second-price, 
and English auctions policy, (ii) maximizes the expected price: Honesty is the 
best policy. 

The general model and its assumptions are presented in Section 3. The analysis 
of the model is driven by the assumption that the bidders' valuations are 
affiliated. Roughly, this means that a high value of one bidder's estimate makes 
high values of the others' estimates more likely. This assumption, though restric- 
tive, accords well with the qualitative features of the situations we have de- 
scribed. 

Sections 4 through 6 develop our principal results concering the second-price, 
English, and first-price auction procedures. 

In Section 7, we modify the general model by introducing reserve prices and 
entry fees. The introduction of a positive reserve price causes the number of 
bidders actually submitting bids to be random, but this does not significantly 
change the analysis of equilibrium strategies nor does it alter the ranking of the 
three auction forms as revenue generators. However, it does change the analysis 
of information reporting by the seller, because the number of competitors who 
are willing to bid at least the reserve price will generally depend on the details of 
the report: favorable information will attract additional bidders and unfavorable 
information will discourage them. The seller can offset that effect by adjusting 
the reserve price (in a manner depending on the particular realization of his 
information variable) so as to always attract the same set of bidders. When this is 
done, the information-release results mentioned above continue to hold. 

When both a reserve price and an entry fee are used, a bidder will participate 
in the auction if and only if his expected profit from bidding (given the reserve 
price) exceeds the entry fee. In particular, he will participate only if his value 
estimate exceeds some minimum level called the screening level. The most 
tractable case for analysis arises when the "only if" can be replaced by "if and 
only if," that is, when every bidder whose value estimate exceeds the screening 
level participates: we call that case the regular case. The case of a zero entry fee 
is always regular. 

For each type of auction we study, any particular screening level x* can be 
achieved by a continuum of different combinations (r, e) of reserve prices and 
entry fees. We show that if (r, e) and (7, e) are two such combinations with e > 2, 
and if the auction corresponding to (r, e) is regular, then the auction correspond- 
ing to (7,Z) is also regular but generates lower expected revenues than the 
(r, e)-auction. Therefore, so long as regularity is preserved and the screening level 
is held fixed, it pays to raise entry fees and reduce reserve prices. 

In Section 8, we consider another variation of the general model, in which 
bidders are risk-averse. Recall that in the independent private values model with 
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risk aversion, the first-price auction yields a larger expected price than do the 
second-price and English auctions. In our more general model, no clear qualita- 
tive comparison can be made between the first-price and second-price auctions in 
the presence of risk aversion, and all that can be generally said about reserve 
prices and entry fees in the first-price auction is that the revenue-maximizing fee 
is positive (cf. Maskin and Riley [Ill). With constant absolute risk aversion, 
however, both the results that the English auction generates higher average prices 
than the second-price auction, and that the best information-reporting policy for 
the seller in either of these two auctions is to reveal fully his information, retain 
their validity. 

3. THE GENERAL SYMMETRIC MODEL 

Consider an auction in which n bidders compete for the possession of a single 
object. Each bidder possesses some information concerning the object up for 
sale; let X = (XI, . . . ,X,) be a vector, the components of which are the 
real-valued informational variable^'^ (or value estimates, or signals) observed by 
the individual bidders. Let S = (S,, . . . ,S,) be a vector of additional real- 
valued variables which influence the value of the object to the bidders. Some of 
the components of S might be observed by the seller. For example, in the sale of 
a work of art, some of the components may represent appraisals obtained by the 
seller, while other components may correspond to the tastes of art connoisseurs 
not participating in the auction; these tastes could affect the resale value of the 
object. 

The actual value of the object to bidder i-which may, of course, depend on 
variables not 'observed by him at the time of the auction-will be denoted by 
q.= ui(S,X). We make the following assumptions: 

ASSUMPTION u on Rm+" such that for all i, u,(S,X) 1: There is a function 
= u(S,X,, {Xj)jzi). Consequently, all of the bidders' valuations depend on S in 
the same manner, and each bidder's valuation is a symmetric function of the 
other bidders' signals. 

ASSUMPTION2: The function u is nonnegative, and is continuous and nonde- 
creasing in its variables. 

ASSUMPTION3: For each i, E [ q]< co. 

I4To represent a bidder's information by a single real-valued signal is to make two substantive 
assumptions. Not only must his signal be a sufficient statistic for all of the information he possesses 
concerning the value of the object to him, it must also adequately summarize his information 
concerning the signals received by the other bidders. The derivation of such a statistic from several 
separate pieces of information is in general a difficult task (see, for example, the discussion in 
Engelbrecht-Wiggans and Weber [7]). It is in the light of these difficulties that we choose to view each 
Xi as a "value estimate," which may be correlated with the "estimates" of others but is the only piece 
of information available to bidder i .  
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Both the private values model and the common value model involve valuations 
of this form. In the first case, m = 0 and each = Xi; in the second case, m = 1 
and each y. = S, .  

Throughout the next four sections, we assume that the bidders' valuations are 
in monetary units, and that the bidders are neutral in their attitudes towards risk. 
Hence, if bidder i receives the object being sold and pays the amount b,  his 
payoff is simply V.- b. 

Let f(s,x) denote the joint probability densityI5 of the random elements of the 
model. We make two assumptions about the joint distribution of S and X: 

ASSUMPTION4: f is symmetric in its last n arguments. 

ASSUMPTION5: The variables S,, . . . ,S,, X,, . . . ,X, are affiliated. 

A general definition of affiliation is given in the Appendix. For variables with 
densities, the following simple definition will suffice. 

Let z and z' be points in Rm+". Let z V z' denote the component-wise 
maximum of z and z', and let z A z' denote the component-wise minimum. We 
say that the variables of the model are affiated if, for all z and z', 

Roughly, this condition means that large values for some of the variables make 
the other variables more likely to be large than small. 

We call inequality (2) the "affiliation inequality" (though it is also known as 
the "FKG inequality" and the "MTP, property"), and a function f satisfying (2) 
is said to be "affiliated." Some consequences of affiliation are discussed by 
Karlin and Rinott [lo] and by Tong [27], and related results are reported by 
Milgrom [18] and Whitt [32]. For our purposes, the major results are those given 
by Theorems 1-5 below. 

THEOREM1: Let f :  Rk+ R. (i) Iff is strictly positive and twice continuously 
differentiable, then f is affiliated if and only if for i # j ,  a21n f/aziazj 2 0. (ii) If 
f(z) = g(z)h(z) where g and h are nonnegative and affiliated, then f is affiliated. 

A proof of part (i) can be found in Topkis 128, p. 3101. Part (ii) is easily 
checked. 

I5This assumption-that the joint distribution of the various signals has an associated density- 
substantially simplifies the development of our results by making the statement of later assumptions 
simpler, and by ensuring the existence of equilibrium points in pure strategies. All of the results in 
this paper, except for the explicit characterizations of equilibrium strategies, continue to hold when 
this assumption is eliminated. In the general case, equilibrium strategies may involve randomization. 
These randomized strategies can be obtained directly, or indirectly as the limits of sequences of pure 
equilibrium strategies of the games studied here, using techniques developed in Engelbrecht-Wiggans, 
Milgrom, and Weber [S], Milgrom [17], and Milgrom and Weber [19]. 
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In the independent private values model, the only random variables are 
XI, . . . ,X,, and they are statistically independent. For this case, (2) always 
holds with equality: Independent variables are always affiliated. 

In the mineral rights model, let g(x, Is) denote the conditional density of any 
X, given the common value S and let h be the marginal density of S. Then 
f(s, x) = h(s)g(x, I s) . . .g(x, I s). Assume that the density g has the monotone 
likelihood ratio property; that is, assume that g(x 1s) satisfies (2).16 It then 
follows from Theorem 1 (ii) that f satisfies (2). Consequently, for the case of 
densities g with the monotone likelihood ratio property, the mineral rights model 
fits our formulation. 

The affiliation assumption also accommodates other forms of the density f. 
For example, it accommodates a number of variations of the mineral rights 
model in which the bidders' estimation errors are positively correlated. And, if 
the inequality in (2) is strict, it formalizes the assumption that in an auction for a 
painting, a bidder who finds the painting very beautiful will expect others to 
admire it, too. 

In this symmetric bidding environment, we identify competitive behavior with 
symmetric Nash equilibrium behavior. We will find that, at equilibrium, bidders 
with higher estimates tend to make higher bids. Consequently, we shall need to 
understand the properties of the distribution of the highest estimates. 

Let Y,, . . . , Y,-, denote the largest, . . . , smallest estimates from among 
X,, . . . ,X,. Then, using (I) and the symmetry assumption, we can rewrite 
bidder 1's value as follows: 

The joint density of S,,  . . . , S,, XI, Y,, . . . , Y, - , is 

where the last term is an indicator function. Applying Theorem 1 (ii) to (4), we 
have the following result. 

THEOREM2: Iff is affiliated and symmetric in X,, . . . ,X,, then S1, . . . , S,, 
XI, Y,, . . . , Y, - I are affiliated. 

The following additional results, which are used repeatedly, are derived in the 
Appendix. 

THEOREM3: If Z,, . . . ,Zk are affiliated and g,, . . . ,gk are all nondecreasing 
functions (or all nonincreasing functions), then g,(Z,), . . . ,gk(Zk) are affiliated. 

I6The density g has the monotone likelihood ratio property if for all s' > s and x' > x ,  g ( x  Is) 
/ g ( x  1 s f )2 g(x'  I s) /g(x '  1 s'). This is equivalent to the affiliation inequality: g ( x  I s)g(x' I s') 
2 g(x' I s)g(x I so. 
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THEOREM4: If Z, ,  . . . ,Zk are affiliated, then Z, ,  . . . ,Zk-,  are affiliated. 

THEOREM5: Let Z,, . . . ,Zk be affiliated and let H be any nondecreasing 
function. Then the function h defined by 

is nondecreasing in all of its arguments. In particular, the functions 

for I = 1, . . . ,k are all nondecreasing. 

In view of Theorems 2 and 5, we can conclude that the function E [V, I X, = x, 
Y, =y,, . . . , Y,-, =y,-,] is nondecreasing in x. To simplify later proofs, we 
add the nondegeneracy assumption that this function is strictly increasing in x. 
All of our results can be shown to hold without this extra assumption. 

4. SECOND-PRICE AUCTIONS'~ 

In the second-price auction game, a strategy for bidder i is a function mapping 
his value estimate xi into a bid b = bi(x,) 2 0. Since the auction is symmetric, let 
us focus our attention on the bidding decision faced by bidder 1. 

Suppose that the bidders j # 1 adopt strategies b,. Then the highest bid among 
them will be W = maxF1bj(Xj) which, for fixed strategies b,, is a random 
variable. Bidder 1 will win the second-price auction if his bid b exceeds W, and 
W is the price he will pay if he wins. Thus, his decision problem is to choose a 
bid b to solve 

If b,(x,) solves this problem for every value of x,, then the strategy b, is called a 
best reply to b,, . . . ,b,. If each bi in an n-tuple (b,, . . . ,b,) is a best reply to the 
remaining n - 1 strategies, then the n-tuple is called an equilibrium point. 

Let us define a function v :R2+ R by v(x, y)  = E [V, I XI = x, Y, =y]. In view 
of (3) and Theorems 2 and 5, v is nondecreasing. Our nondegeneracy assumption 
ensures that v is strictly increasing in its first argument. 

THEOREM v(x,x). Then the n-tuple of strategies (b*, . . . ,b*) is 6: Let b*(x) = 

an equilibrium point of the second-price auction. 

I70ur basic analysis of the second-price auction is very similar to that given in Milgrom [17], 
although the present set-up is a bit different. Theorems 6 and 7 were first proved in that reference. 
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PROOF: Since b* is increasing, W = b*(Y,). So bidder 1's conditional expected 
payoff when he bids b is 

* - ' (b )  
= J b  [ ~ ( x 7 a ) - v ( a j ~ ) ] f y 1 ( a I x ) d a j  

-m 

where fy,(.  I x) is the conditional density of Y, given XI  = x. Since v is increasing 
in its first argument, the integrand is positive for a < x and negative for a > x. 
Hence, the integral is maximized by choosing b so that b*-'(b) = x, i.e., 
b = b*(x). This proves that b* is a best reply for bidder 1. Q.E.D. 

An important special case arises if we assume that V, = V,  = . . . = Vn = V. 
We call this the generalized mineral rights model. (It differs from the mineral 
rights model in not requiring the bidders' estimates of V to be conditionally 
independent.) Suppose that, in this context, we introduce an (n + ])st bidder 
with an estimate Xn+, of the common value V. We say that Xn+,  is a garbling of 
(X,, Y,) if the joint density of (V,X,, . . . ,Xn,Xn+,) can be written as g(V, 
XI, . . . ,X,) . h(Xn+,I XI, Y,). For example, if bidder n + l bases his estimate 
Xn+, only on information that was also available to bidder 1, this condition 
would hold. 

THEOREM7: For the generalized mineral rights model, if Xn+,  is a garbling of 
(XI, Y,), then bidder n + 1 has no strategy that earns a positive expected payoff 
when bidders 1, . . . ,n use (b*, . . . ,b*). Consequently, in this (n + 1)-bidder 
second-price auction, the (n + I)- tuple (b*, . . . ,b*, bn + ,) where bn + ,= 0 is an 
equilibrium point. 

PROOF: Let Z = max(X,, Y,). If bidder n + 1 observes X,+, and then makes a 
winning bid b, then his conditional expected payoff is 

The last equality uses the fact that E [ V 1 XI, Y,, Xn+ ,I = E [ V I XI, Y,], a conse- 
quence of the garbling assumption. Since u is nondecreasing, u(X,, Y,) - u(Z, Z) 
5 0, so the last expectation is nonpositive. Q.E.D. 
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Now consider how the equilibrium is affected when the seller publicly reveals 
some information X, (which is affiliated with all the other random elements of 
the model). We shall assume the seller's revelations are credible. l 8  

Define a function w :R3+R by w(x, y ;  z) = E [V, I XI = x, Y1 =y,  Xo = z]. By 
Theorems 2 and 5, w is nondecreasing. After X, is publicly announced, a new 
conditional joint density f(s,, . . . ,s,, x,, . . . ,x, I x,) applies to the random 
elements of the model, and it is straightforward to verify that the conditional 
density satisfies the affiliation inequality; So, carrying out the same analysis as 
before, there is an equilibrium (6,. . . ,b) given by b(x; x,) = w(x,x; x,). Note 
that this time a strategy maps two variables, representing private and public 
information, into a bid. For any fixed value of X,, the equilibrium strategy is a 
function of a single variable and is similar in form to b*. 

Let R, be the expected selling price when no public information is revealed 
and let R, be the expected price when X, is made public. 

THEOREM8: The expected selling prices are as follows: 

Revealing information publicly raises revenues, that is, R, 2 R,. 

PROOF: Recall that v(Y,, Y,) is the price paid when bidder 1 wins. Thus, R, is 
the expected price paid by bidder 1 when he wins. By symmetry, it is the 
expected price, regardless of the winner's identity. The same argument applies 
to R,. 

Next, note the following identities. 

For x >y, we apply Theorems 2, 4, and 5 to get: 

I8This might be the case if, for example, there were some effective recourse available to the buyer 
if the seller made a false announcement, or if the seller were an institution, like an auction house, 
which valued its reputation for truthfulness. 
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= E [ w ( ~ 1 ,  { x1  Q.E.D.~ 1 ; x o ) l  > Y , ) ]= R,. 

Theorem 8 indicates that publicly revealing the information X ,  is better, on 
average, than revealing no information. One might wonder whether it would be 
better still to censor information sometimes, i.e., to report Xo only when it 
exceeds some critical level. Of course, if this policy of the seller were known, 
rational bidders would correctly interpret the absence of any report as a bad sign. 

There are many possible information revelation policies. If one assumes that 
the bidders know the information policy, then one can also assume without loss 
of generality that the seller always makes some report, though that report may 
consist of a blank page. Let Z be a random variable, uniformly distributed on 
10, I] and independent of the other variables of the model. We formulate the 
seller's report very generally as X i  = r(X,, Z ) ,  i.e., the seller's report may depend 
both on his information and the spin of a roulette wheel. We call r the seller's 
reporting policy. 

THEOREM9: In the second-price auction, no reporting policy leads to a higher 
expected price than the policy of always reporting Xo. 

PROOF: Let r be any reporting policy and let XA = r(X,,  2 ) .  The conditional 
distribution of X i ,  given the original variables ( S ,X ) ,  depends only on X,. We 
denote the conditional density (if one exists) by g(XA1 X,) and the marginal 
density by g(X@. For any realization xb of X i ,  the corresponding conditional 
joint densityI9 of ( S ,X )  is f ( s , x )g (xb  I xo) /g(xb) ,  which satisfies the affiliation 
inequality in ( s , x )  since f does, by Theorem 1. Therefore, by Theorem 8, 
revealing X ,  further raises expected revenues. But revealing both X ,  and X i  leads 
to the same equilibrium bidding as revealing just X,, so the result follows. 

Q.E.D. 

5. ENGLISH AUCTIONS 

There are many variants of the English auction. In some, the bids are called by 
the bidders themselves, and the auction ends when no one is willing to raise the 

I 9 l f  Gx,(. 1 Xi) denotes the conditional distribution of Xo given Xb, then the variables S , ,  . . . , Sm, 
Xo, X,, . . . , X, always will have a density with respect to the product measure M m X G(. 1x3X 
M", where M is Lebesgue measure, and the density always will have the fomf ( s ,  x)g(xo I xb)/f(xo). 
A density with respect to any product measure suffices for our analysis, so the theorem is proved by 
our argument. 
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bid.20 In others, the auctioneer calls the bids, and a willing bidder indicates his 
assent by some slight gesture, usually in a way that preserves his anonymity. 
Cassady [2] has described yet another variant, used in Japan, in which the price 
is posted using an electronic display. In that variant, the price is raised continu- 
ously, and a bidder who wishes to be active at the current price depresses a 
button. When he releases the button, he has withdrawn from the auction. These 
three forms of the English auction correspond to three quite different games. The 
game model developed in this section corresponds most closely to the Japanese 
variant. We assume that both the price level and the number of active bidders 
are continuously displayed. We use the term "English auction" to designate this 
variant. 

In the English auction with only two bidders, each bidder's strategy can be 
completely described by a single number which specifies how high to compete 
before ceding the contest to the other bidder. The bidder selecting the higher 
number wins, and he pays a price equal to the other bidder's number. Thus, with 
only two bidders, the English and second-price auctions are strategically equiva- 
lent. When there are three or more bidders, however, the bidding behavior of 
those who drop out early in an English auction can convey information to those 
who keep bidding, and our model of the auction as a game must account for that 
possibility. 

We idealize the auction as follows. Initially, all bidders are active at a price of 
zero. As the auctioneer raises the price, bidders drop out one by one. No bidder 
who has dropped out can become active again. After any bidder quits, all 
remaining active bidders know the price at which he quit. 

A strategy for bidder i specifies whether, at any price level p, he will remain 
active or drop out, as a function of his value estimate, the number of bidders who 
have quit the bidding, and the levels at which they quit. Let k denote the number 
of bidders who have quit and let p ,  5 . . . 5 p k  denote the levels at which they 
quit. Then bidder i's strategy can be described by functions bik(xi I p, ,  . . . ,pk)  
which specify the price at which bidder i will quit if, at that point, k other 
bidders have quit at the prices p, ,  . . . ,p,. It is natural to require that 
bik(xiI p l ,  . . . ,pk)  be at leastp,. 

Now consider the strategy b* = (b;, . . . ,b,*-,) defined iteratively as follows. 

( 5 )  b;(x) = E [ V, [ X I  = x, Y, = x, . . . , Y,- = x]. 

20A model in which the bidders call the bids has been analyzed by Wilson [33]. 
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The component strategies reflect a kind of myopic bidding behavior. Suppose, 
for example, that k = 0, i.e., no bidder has quit yet. Suppose, too, that the price 
has reached the level b,*(y) and that bidder 1 has observed XI  = x .  If bidders 
2, . . . ,n were to quit instantly, then bidder 1 could infer from this behavior that 
y l = . . . = Yn-, =y.  In that case, he would estimate his payoff to be E [V, I X, 
= x ,  Y, =y, . . . , Yn-, =y]  - b$(y). By (5) and Theorem 5, that difference is 
positive if x >y and negative if x <y.  Thus, b,* calls for bidder 1 to remain 
active until the price rises to the point where he would be just indifferent between 
winning and losing at that price. The other strategies b$ have similar interpreta- 
tions, but they assume that bidders infer whatever they can from the quitting 
prices of those who are no longer active. 

THEOREM10: The n-tuple (b*, . . . ,b*) is an equilibrium point of the English 
auction game. 

PROOF: It is straightforward to verify from (5) and (6) that each b,* is 
increasing in its first argument. Hence, if bidders 2, . . . , n adopt b* and bidder 1 
wins the auction, the price he will pay is E [V, I XI =y,, Y, =y, ,  . . . , Yn-, 
=yn- ,] where y,,  . . . ,yn-,  are the realizations of Y,, . . . , Yn- ,. His conditional 
estimate of V, given XI, Y,, . . . , Yn-, is E [ V, I XI = x ,  Y, =y,, . . . , Yn- , 
=yn- ,I, so his conditional expected payoff is nonnegative if and only if x 2 y, .  
Using b*, bidder 1 will win if and only if X, > Y, (recall that the event 
{XI= Y, } is null). Hence b* is a best reply for bidder 1. Q.E.D. 

THEOREM11: The expected price in the English auction is not less than that in 
the second-price auction. 

PROOF: This is identical to the proof of Theorem 8, except that Y,, . . . , Yn-, 
play the role of X,. Q.E.D. 

In effect, the English auction proceeds in two phases. In phase 1, the n - 2 
bidders with the lowest estimates reveal their signals publicly through their 
bidding behavior. Then, the last two bidders engage in a second-price auction. 
We know from Theorem 8 that the public information phase raises the expected 
selling price. 

By mimicking the proofs of Theorem 8 and 9, we obtain corresponding results 
for English auctions. Define 5 and i? as follows. 

X, = z ] .  
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THEOREM12: If no information is provided by the seller, the expectedprice is 

R,E = E [ c ( Y l ,Y 1 7  Y2, . . . , Yn-I)I {Xi > Yi}]. 

If the seller announces Xo, the expectedprice is 

Revealing information publicly raises revenues, that is, R: 2 R/ 

THEOREM13: In the English auction, no reporting policy leads to a higher 
expected price than the policy of always reporting Xo. 

6. FIRST-PRICE AUCTIONS 

We begin our analysis of first-price auctions by deriving the necessary condi- 
tions for an n-tuple (b*, . . . ,b*) to be an equilibrium point, when b* is 
increasing and differentiable.21 Suppose bidders 2, . . . , n adopt the strategy b*. 
If bidder 1 then observes XI = x and bids b, his expected payoff II(b; x )  will be 
given by 

where x is infimum of the support of Y,. The first-order condition for a 
maximum of II(b; x )  is 

where II, denotes aII /ab and FYIis the cumulative distribution corresponding to 
the density fyl. If b* is a best reply for 1, we must have I Ib(b*(x) ;x )= 0. 
Substituting b*(x)  for b in the first-order condition and rearranging terms leads 

his derivation of the necessary conditions follows Wilson [34]. The derivation is heuristic: in 
general, b* need not be continuous. For example, let n = 2 and take X I  and X2 to be either 
independent and uniformly distributed on [0, 11 (with probability 1/2), or independent and uniform 
on [ l ,  21. (Note that X ,  and X 2  are affiliated.) Finally, let V,= Xi .  Then b* jumps from 1/2 to 1 at 
x =  1. 
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to a first-order linear differential equation:22 

Condition (7) is just one of the conditions necessary for equilibrium. Another 
necessary condition is that (v(x,x) - b*(x)) be nonnegative. Otherwise, bidder 
1's expected payoff would be negative and he could do better by bidding zero. It 
is also necessary that v(x,x) - b*(x) be nonpositive. Otherwise, when X, =x, a 
small increase in the bid from b*(x) to b*(g) + c would raise 1's expected payoff 
from zero to some small positive number. These last two restrictions determine 
the boundary condition: b*(x) = v(x,x). 

THEOREM14: The n-tuple (b*, . . . ,b*) is an equilibrium of the first-price 
auction, where: 

(8) b*(x) = 1 andJxv(a, a )  d ~ ( a  x), 
-X 

L (a  I x) = exp( - ~ds ~ ~ ~ ~ \ ~ 
Let t(x) = v(x, x). Then b* can also be written as: 

LEMMA1: Fy1(xI z)/ fy,(x I z) is decreasing in z. 

PROOF: By the affiliation inequality, for any a 5 x and any z' 5 z, we have 
fy,(a Iz)/fyl(x Iz) 5 fyl(a Iz')/fyl(x Iz'). Integrating with respect to a over the 
range x 5 a 5 x yields the desired result. Q.E.D. 

PROOFOF THEOREM I14: Notice that L(.  x), regarded as a probability distribu- 
tion on (x, x), increases stochastically in x (that is, L(a I x) is decreasing in x). 
Since v(a, a )  is increasing, b* must be increasing. 

Temporarily assume that b* is continuous in x. Then there is no loss of 
generality in assuming that b* is differentiable, since Theorem 3 permits us to 
rescale the bidders' estimates monotonically.24 Consider bidder 1's best response 

2 2 ~ yconvention, we take f,,(x Ix)/F,,(x Ix) to be zero when x is not in the support of the 
distribution of Y , .  

231f the integral is infinite, L(a  I x) is taken to be zero. 
2 4 ~ nthis proof only, we take special care to argue without assuming that the equilibrium bidding 

strategies are continuous or differentiable. Subsequent arguments in this paper involve a variety of 
differentiability assumptions that are made solely for expositional ease. 
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problem. It is clear that he need only consider bids in the range of b*. Therefore, 
to show that b*(z) is an optimal bid when X, = z, it suffices to show that 
II,(b*(x); z) is nonnegative for x < z and nonpositive for x > z. Now, 

By (7), the bracketed expression is zero when x = z. Therefore, by Lemma 1 
and the monotonicity of b* and v ,  the bracketed expression (and therefore, 
II,(b*(x); z)) has the same sign as (z - x). 

It remains to consider the cases where b* (as defined by (8)) is discontinuous 
at some point x. That can happen only if for all positive E, the first of the 
following expressions is infinite: 

= In Fy l (x  + E I x + E)- In Fyl(x I x + c); 

the inequality follows from Lemma 1. The final difference can be infinite only if 
Fyl(xI 0, and that in turn implies that FYn_,(x x + c) = 0. (Otherwise, x + E)= I 
there would be some point z = (z,, . . . ,z,) in the conditional support of 
(X,, . . . ,X,) given X, = x + c, with some zi < x. By symmetry, all of the 
permutations of z are also in the support and therefore, by affiliation, the 
component-wise minimum of these permutations is in the support. But that 
would contradict the earlier conclusion that Fyl (x  I x + c) = 0.) Thus, if any Xi 
exceeds x, all must. 

It now follows that the bidding game decomposes into two subgames, in one of 
which it is common knowledge that all estimates exceed x and in the other 
of which it is common knowledge that none exceed x. Taking the refinement of 
all such decompositions, we obtain a collection of subgames, in each of which b* 
is continuous. The first part of our proof then applies to each subgame sepa- 
rately. Q.E.D. 

The remaining results in this section, as well as parts of the analyses in 
Sections 7 and 8, make use of the following simple lemma. 

LEMMA2: Let g and h be differentiable functions for which (i) g(&) > h(&) and 
(ii) g(x) < h (x) implies g'(x) > hl(x). Then g(x) > h (x) for all x 2 ~ .  

PROOF: If g(x) < h(x) for some x >Z then, by the mean value theorem, there 
is some 2 in @,x) such that g(2) < h(2) and g'(2) < h'(2). This contradicts (ii). 

Q.E.D. 

Our first application of this lemma is in the proof of the next theorem. 
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THEOREM15: The expected selling price in the second-price auction is at least as 
large as in the first-price auction. 

PROOF: Let R(x,z) denote the expected value received by bidder 1 if his own 
estimate is z and he bids as if it were x; that is, define 

Let WM(x,z) denote the conditional expected payment made by bidder 1 in 
auction mechanism M (in the case at hand, either the first-price or second-price 
mechanism) if (i) the other bidders follow their equilibrium strategies, (ii) bidder 
1's estimate is z, (iii) he bids as if it were x, and (iv) he wins. For the first-price 
and second-price mechanisms, we have W1(x, z) = b*(x) and W2(x, z) = 

E [u(Y,, Y,) I Y, < x, X, = zl. 
In mechanism M, bidder 1's problem at equilibrium when XI = z is to choose 

a bid, or equivalently to choose x, to maximize R(x, z) - WM(x, z)F,](x I z). The 
first-order condition must hold at x = z: 

where R, and W? denote the relevant partial derivatives. The equilibrium 
boundary condition is: WM(&,&) = v ( z , ~ ) .  

Clearly, W:(X, z) = 0. From Theorem 5 it follows that w;(x, z) >0. Hence, by 
(9), if W2(z,z) < W1(z,z) for some z, then dW2/dz = W: + W; 2 w,' + W: 
= dW1/dz. Therefore, by Lemma 2, W2(z, z) 2 W1(z, z) for all z 2s. The 
theorem follows upon noting that the expected prices in the first-price and 
second-price auctions are E [ w'(x,,X,) I {XI> Y,)] and E [ w~(x, ,x,)  I {XI 
> Y,)], respectively. Q.E.D. 

A similar argument is used below to establish that in a first-price auction the 
seller can raise the expected price by adopting a policy of revealing his informa- 
tion. 

THEOREM16: In the first-price auction, a policy of publicly revealing the seller's 
information cannot lower, and may raise, the expected price. 

PROOF: Let b*(. ;s) represent the equilibrium bidding strategy in the first-price 
auction after the seller reveals an informational variable X, = s. The analogue of 
equation (7) is: 

f r , ( x I X ~ S )
b*'(x; s) = (w(x,x; s) - b*(x; s)) 

Fyl(x I x, s) ' 

By a variant of Lemma 1, fyl(x I x,s)/Fyl(x I x,s) is nondecreasing in s, and by 
Theorem 5, w(x,x;s) is also nondecreasing in s. The equilibrium boundary 
condition is b*(z; s) = w(&,&; s). Hence, applying Lemma 2 to the functions 
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b*(.;s) for any two different values of s, we can conclude that b*(x;s) is 
nondecreasing in s.  

Let W*(x,z) = E [b*(x; X,) I Y, < x, XI  = z]. By Theorem 5, W,*(x,z)2 0. 
Note that W*(& = E [w(x,x; X,) I Y, =g,XI =&I = v(x,x). If bidder 1, prior to 
learning X, but after observing XI  = z, were to commit himself to some bidding 
strategy b*(x; .), his optimal choice would be x = z (since b*(z; x,) is opti- 
mal when X, = x,). Thus, W* must satisfy (9). Hence, by Lemma 2, W*(z,z) 
> wl(z ,  z) for all z 2 ~ ;the details follow just as in the proof of Theorem 15. 
The expected prices, with and without the release of information, are E [ W*(X,, 
XI) I {X, > Y,)] and E[w'(x,,x,) I {X, > Y,)]. Therefore, releasing informa- 
tion raises the expected price. Q.E.D. 

If the seller reveals only some of his information, then, conditional on that 
information, X,,X,, . . . ,X, are still affiliated. Thus, we have the following 
analogue of Theorems 9 and 13. 

THEOREM17: In the first-price auction, no reporting policy leads to a higher 
expected price than the policy of always reporting X,. 

There is a common thread running through Theorems 8, 1 1, 12, 15, and 16 that 
lends some insight into why the three auctions we have studied can be ranked by 
the expected revenues they generate, and why policies of revealing information 
raise expected prices. This thread is most easily identified by viewing the auctions 
as "revelation games" in which each bidder chooses a report x instead of a bid 
b*(x). 

No auction mechanism can determine prices directly in terms of the bidders' 
preferences and information; prices (and the allocation of the object being sold) 
can depend only on the reports that the bidders make and on the seller's 
information. However, to the extent that the price in an auction depends directly 
on variables other than the winning bidder's report, and to the extent that these 
other variables are (at equilibrium) affiliated with the winner's value estimate, the 
price is statistically linked to that estimate. The result of this linkage is that the 
expected price paid by the bidder, as a function of his estimate, increases more 
steeply in his estimate than it otherwise might. Since a winning bidder with 
estimate x expects to pay v(& in all of the auctions we have analyzed, a steeper 
payment function yields higher prices (and lower bidder profits). 

In the first-price auction, for example, revealing the seller's information links 
the price to that information, even when the winning bidder's report x is held 
fixed. In the second-price auction, the price is linked to the estimate of the 
second-highest bidder, and revealing information links the price to that informa- 
tion as well. In the English auction, the price is linked to the estimates of all the 
non-winning bidders, and to the seller's estimate as well, should he reveal it. The 
first-price auction, with no linkages to the other bidders' estimates, yields the 
lowest expected price. The English auction, with linkages to all of their estimates, 
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yields the highest expected price. In all three auctions, revealing information 
adds a linkage and thus, in all three, it raises the expected price. 

7. RESERVE PRICES AND ENTRY FEES 

The developments in Sections 4-6 omit any mention of the seller setting a 
reserve price or charging an entry fee.25 Such devices are commonly used in 
auctions and are believed to raise the seller's revenue. Moreover, a great deal of 
attention has recently been devoted to the problem of setting reserve prices and 
entry fees optimally (Harris and Raviv [S], Maskin and Riley [ll];  Matthews [13], 
Riley and Samuelson [24]). 

It is straightforward to adapt the equilibrium characterization theorems 
(Theorems 6, 10, and 14) to accommodate reserve prices. In the first-price 
auction, setting a reserve price r above v(x,x) simply alters the boundary 
condition, and the symmetric equilibrium strategy becomes 

b*(x) = re L(x* I x) +i,:v(a, a )  dL(a I x) for x 2 x*, 

b*(x) < r for x < x*, 

where x* = x*(r) is called the screening level and is given by 

It is important to note that when the same reserve price r is used in a 
first-price, second-price auction, or English auction, the same set of bidders 
participates. Thus, in the second-price auction with reserve price r,26 the equilib- 
rium bidding strategy is 

b*(x) = v(x,x) for x 2 x*, 


b*(x) < r for x < x*. 


A formal description of equilibrium with a reserve price in an English auction 

25Actually, by permitting only nonnegative bids, we have been making the implicit assumption 
that there is a reserve price of zero. This reserve price has been "non-binding," in the sense that 
Assumption 2 (nonnegativity of K)ensured that no bidder would wish to abstain from participation 
in the auction. 

If an auction is conducted with no reserve price, other symmetric equilibria may appear. For 
example, consider a first-price auction in the independent private values setting, when all V,= Xiare 
independent and uniformly distributed on (0, 1). For every k 20 there is an equilibrium point in 
which each bidder uses the bidding strategy b(x) = (n/(n + 1)). x - k /xn - '  and each has (ex ante) 
expected payoff ( l /n(n + 1)) + k. The range of the strategy function is (0, n/(n + 1)) if k = 0, and is 
( - co,n/(n + 1) - k) if k > 0. This may explain why almost all observed auctions incorporate (at 
leas$ implicitly) a reserve price. 

26The outcome of this auction is determined as if the seller had bid r. Thus, if only one bidder bids 
more than r, the price he pays is equal to r. It is of interest to note that, when o(x*, x*) = EIVl  ( XI 
= x*, y l  = x*] > E I V I / X I= x*, Y I< x*], at equilibrium there will be no bids in a neighborhood 
of r. 
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would be lengthy; the equilibrium strategies incorporate the inference that if a 
bidder does not participate, his valuation must be less than x*. 

With a fixed reserve price, one can again show that the English auction 
generates higher average prices than the second-price auction, which in turn 
generates higher average prices than the first-price auction. The introduction of a 
reserve price does not alter these important conclusions. 

More subtle and interesting issues arise when the seller has private informa- 
tion. If he fixes a reserve price and then reveals his information, he will generally 
affect x* and hence change the set of bidders who are willing to compete. In our 
information revelation theorems, we assumed that the reserve price was zero, so 
that revealing information would not alter the set of competitors. 

Given any reserve price F, and realization z of X,, let x*(FIz) denote the 
resulting value of x*. It is clear from expression (10) that x* is decreasing in F 
and maps onto the range of XI. Hence, there exists a reserve price r = r(z IF) 
such that x*(r 1 z) = x*(F); we call r(z I F) the reserve price corresponding to z, 
given 7. 

THEOREM18: Given any reserve price r for the first-price, second-price, or 
English auction, a policy of announcing X ,  and setting the corresponding reserve 
price raises expected revenues. 

PROOF: Let YT = max(Y,,x*(F)). Let v*(x, y) = EIVI I XI = x, YT =y]  and 
let w*(x, y,z) = E [V1I XI  = x, YT =y,  X o  = z]. By Theorems 2-5, X,, XI, and 
YT are affiliated and v* and w* are nondecreasing, so the arguments used for 
Theorems 8 and 12 still apply. The argument used in the proof of Theorem 16 
generalizes without difficulty. Q.E.D. 

As with Theorems 8, 12, and 16, Theorem 18 has the corollary that no policy 
of partially reporting the seller's information leads to a higher expected price 
than full revelation: Again, "honesty is the best policy." 

When both a reserve price r and an entry fee e are given, we more generally 
define the screening level x*(r, e) to be 

It is not always true that the set of bidders who will choose to pay the entry fee 
and participate in an auction consists of all those whose value estimates exceed 
the screening level. In a first-price auction, an entry fee might discourage 
participation by some bidder with a valuation x well above x*(r,e) if he 
perceives his chance of winning (Fy,(x I x ) )  as being slight.27 

270ne such case is the following. There are two variables, X Iand X,, so that Y ,  = X,. Assume 
V, = X,.  With probability 1/2, the X,'s are drawn independently from a uniform distribution on 
[O,21 and, with probability 1/2, from a uniform distribution on [I, 21. Then F,,(x  I x) jumps down 
from 1/2 to 1/4 as x passes up through 1. With a reserve price of zero and an entry fee of 0.32, 
x+ = 0.8 but some bidders with valuations exceeding 1.0 will choose not to bid. 
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If the set of bidders who participate at equilibrium in an auction with reserve 
price r and entry fee e does consist of those with valuations exceeding x*(r, e), 
then we say that the pair (r, e) is regular for that auction. The next result shows 
that among regular pairs with a fixed screening level, it pays to set high entry fees 
and low reserve prices, rather than the reverse. 

THEOREM19: Fix an auction mechanism (first-price, second-price, or English), 
and suppose that the (reserve price, entry fee) pair (r, e) is regular. Let (F, E) be 
another pair with the same screening level (i.e., x*(r, e) = x *(F, ?)) and with ? < e. 
Then (7, C) is regular, but the expected revenue from the (F, Z)-auction is less than or 
equal to that from the (r, e)-auction. 

PROOF: Let P(x, z) and P(x, z) denote the expected payments made by bidder 
1 in the (r,e)-auction and the (F,E)-auction, respectively, when (i) the other 
bidders follow their equilibrium strategies, (ii) bidder 1's estimate is z, and (iii) he 
bids as if his estimate were x. (Notice that P and P are not conditioned on bidder 
1 winning.) Defining R as in the proof of Theorem 15, we have the following 
equilibrium conditions: P,(z, z) = R,(z, z) = P,(z, z) for all z 2 x*, and P(x*, x*) 
= R(x*,x*) = P(x*,x*). 

If the two auctions are first-price auctions with equilibrium strategies b and 6, 
then P(x,z) = b(x)Fyl(xI Z) + e and P(x,z) = b ( x ) ~ , ~ ( xlz) + E. Since b and b 
are solutions of the same differential equation, with b(x*) = r < F = b(x*), the 
functions cannot cross and so b < b everywhere. Also, 

since the partial derivative term is negative (by affiliation). Hence, an application 
of Lemma 2 yields P(z, z) 2 P(z, z) for all z 2 x*. 

For the second-price or English auction, the payments made by a bidder when 
his type is z and he bids as if it were x differ only when he pays the reserve price, 
i.e., only when Y, < x*. Therefore, P2(x, z) - &(x, z) = (r - F)(a/az)Fyl(x* 1 z) 
2 0. Once again, Lemma 2 implies that P(z,z) 2 P(z,z). 

The expected payoff at equilibrium in the (7, ?)-auction for a bidder with 
estimate z 2 x* is R (z, Z) - P(z, z) 2 R (z, z) - P(z, z) 2 0, since (r, e) is regular. 
Hence, such bidders will participate in the (F, E)-auction and the seller's expected 
revenue from each of them is less than it is in the (r, e)-auction. 

It remains to show that bidders with estimates z < x* will choose not to 
participate in the (7, ?)-auction. In the proofs of Theorems 6, 10, and 14, we 
argued (implicitly) that the decision problem max, R (x, z) - P(x, z) is quasicon- 
cave for each of the three auction forms, and that the maximum is attained at 
x = z. Those arguments remain valid in the present context; we shall not repeat 
them here. Instead, we observe this consequence of quasiconcavity: for z < x*, 
the optimal choice of x subject to the constraint x 2 x* is x = x*. The resulting 
expected payoff to a bidder with estimate z is R(x*,z) - P(x*,z). 
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Now, P(x*,z)  - P(x*,z)  = F(x*,x*)  - P(x*,x*) + (7 - r)[Fyl(x*I z) -
Fyl(x* Ix*)]. But P(x*,x*) = R(x*,x*) = P(x*,x*), and, by affiliation, the 
bracketed term is nonnegative. Therefore F(x*,z) 2 P(x*,z). Hence, the ex-
pected profit of the bidder with estimate z is R(x*, z) - P(x*, z) < R(x*, z) -
P(x*,z), and this last expression is nonpositive because the (r,e)-auction is 
regular. Q.E.D. 

8. RISK AVERSION 

In the model with risk-neutral bidders, we have shown that the English, 
second-price, and first-price auctions can be ranked by the expected prices they 
generate. We have also shown that in the English and second-price auctions, the 
seller benefits by establishing a policy of complete disclosure of his information. 
In this section, we investigate the robustness of those results when the bidders 
may be risk averse. For simplicity, we limit attention to the case of zero reserve 
prices and zero entry fees. 

Consider first the independent private values model, in which 15 = Xi and 
XI, . . . ,X, are independent. For this model, the first- and second-price auctions 
generate identical expected prices. Now let bidder i's payoff be u(Xi - b) when 
he wins at a price of b, where u is some increasing, concave, differentiable 
function satisfying u(0) = 0. Let b: denote the equilibrium strategy in the 
first-price auction. Then the analogue of the differential equation (7) is: 

where the inequality follows from the concavity of u. Let b$ denote the 
equilibrium with risk-neutral bidders. From (1 1) it follows that whenever b:(x) 
-< b$(x), b:'(x) > b$'(x); the equilibrium boundary condition is: b$&) = b:(s) 
=&. It then follows from Lemma 2 that, for x >x, b:(x) > b$(x): risk aversion 
raises the expected selling price. It is straightforward to verify that, with = Xi, 
the second-price auction equilibrium strategy is b*(x) = x, independent of risk 
attitudes. Thus, with independent private values and risk aversion, the first-price 
auction leads to higher prices than the second-price auction. In conjunction with 
our earlier result (Theorem 15), this implies that, for models that include both 
affiliation and risk aversion, the first- and second-price auctions cannot generally 
be ranked by their expected prices. 

To treat the second-price auction when bidders are risk averse and do not 
know their own valuations, it is useful to generalize the definition of the function 
v .  Let v(x, y)  be the unique solution of: 

E[U(V, - v(x, y)) I XI = x, Y , =y] = u(0). 
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The proof of Theorem 6 can be directly generalized to show that (b*, . . . ,b*) is 
an equilibrium point of the second-price auction when b*(x) = v(x, x). 

Similarly, it is useful to generalize the definition of w. Let w(x, y,z) be the 
unique solution of: 

In proving that releasing public information raises the expected selling price in 
Section 4, we used the fact that the relation 

E [ ~ ( x , ,  Yl,XO) 1x1, Y,] 2 v(X,, Y,) 

holds with equality when the bidders are risk neutral. Applied to risk-averse 
bidders, this inequality asserts that resolving uncertainty by releasing information 
reduces the risk premium demanded by the bidders. If the information being 
conveyed is perfect information (so that it resolves uncertainty completely), then, 
clearly, the risk premium is reduced to zero. But for risk-averse bidders, it is not 
generally true that partially resolving uncertainty reduces the risk premium. In fact, 
the class of utility functions for which any partial resolution of uncertainty tends 
to reduce the risk premium is a very narrow one. 

Let us now rephrase this issue more formally. For a given utility function u 
and a random pair (V, X), define R (x) by E [z! (V - R (x)) I X = x] = u(0) and 
define R by E [u(V - R)] = u(0). We shall say that revealing X raises average 
willingness to pay if E [R (X)] 2 R. 

THEOREM20: Let u be an increasing utility function. Then it is true for every 
random pair (V, X) that revealing X raises average willingness to pay if and only if 
the coefficient of absolute risk aversion - u"(.)/uf(.) is a nonnegative constant. 

PROOF: We shall consider a family of random pairs (V,, X). Let X take values 
in {O,l) and let V, = X(Z + a), where Z is some unspecified random variable. 
Suppose X and Z are independent and P {X = 0) = P {X = 1) = 1/2. Finally, 
suppose E[u(Z)] = u(O), and normalize so that u(0) = 0. 

Fix u and let be the willingness to pay for V, when there is no information. 
Let R,(x) be defined as in the text. Then R,(O) = 0, R,(l) = a ,  and E[R,(X)] 
= a/2. If revealing X always increases willingness to pay, then Z a/2. So, 

Since this holds with equality at a = 0 and since it must hold for all a ,  positive 
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and negative, the final expression must be maximized when a = 0: 

Now, let g(w) = uf(u-'(w)) and let W = u(Z). By varying Z, we can obtain any 
desired random variable W on the range of u. The conclusion reached above can 
be restated as: E [W] = 0 implies E [g (  W)] = uf(0). It then follows that g(w) 
= cw + ul(0) and hence that ul(x) = cu(x) + ul(0). Hence u is linear (and we are 
done), or u(x) = A + Becx. The inequality condition in (12) rules out B > 0; 
since u' 2 0, it follows that c 5 0. This proves the first assertion of the theorem. 

Next fix (V, W) and let u(x) = -exp(- ax). Then 

= E E exp a E - R ( x ) ) ) u ( v - R ( x ) ) I x ] ][ [  ( (  
= E exp a R - R(x)) )E[u(v  - R(x))  1 X I ][ ( (  
= E exp a K-R(x)))u(o)][ ( (  

It follows that -E [R(X)] 5 0. Q.E.D. 

A straightforward corollary of this result is that E [w(X,, Y,,Xo) IXI = x, 
Y, =y]  2 V(X, y). This inequality can be used to generalize our various results 
concerning English and second-price auctions. 

THEOREM21: Suppose the bidders are risk averse and have constant absolute risk 
aversion. Then (i) in the second-price and English auctions, revealing public 
information raises the expected price, (ii) among all possible information reporting 
policies for the seller in second-price and English auctions, full reporting leads to the 
highest expected price, and (iii) the expected price in the English auction is at least 
as large as in the second-price auction. 

PROOF: AS in the risk-neutral developments, everything hinges on the initial 
statement about information release raising the expected price in a second-price 
auction. We shall prove only this proposition. 

Note that w is a nondecreasing function. From this fact, Theorem 5, and the 
corollary of Theorem 20 observed in the text, we have for all x >y that 
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Hence E[v(Y,, Y,)I {X, > Y,) ]S  E[w(Y,, Y,,X,)I {X, > Y,}], which is the de- 
sired result. Q.E.D. 

The proof of Theorem 21 suggests that reporting information to the bidders 
has two effects. First, it reduces each bidder's average profit by diluting his 
informational advantage. The extent of this dilution is represented by the second 
inequality in the proof. Second, when bidders have constant absolute risk 
aversion, reporting information raises the bidders' average willingness to pay. 
This is represented by the first inequality in the proof. 

Generally, partial resolution of uncertainty can either increase or reduce a 
risk-averse bidder's average willingness to pay. Since only an increase is possible 
when bidders have constant absolute risk aversion or when the resolution of 
uncertainty is complete, the cases of reduced average willingness to pay can only 
arise when the range of possible wealth outcomes from the auction is large (so 
that the bidders' coefficients of absolute risk aversion may vary substantially 
over this range) and when the unresolved uncertainty is substantial. For auctions 
conducted at auction houses, this combination of conditions is unusual. Thus, 
Theorem 21 may account for the frequent use of English auctions and the 
reporting of expert appraisals by reputable auction houses. 

9. WHERE NOW FOR AUCTION THEORY? 

The use of auctions in the conduct of human affairs has ancient roots, and the 
various forms of auctions in current use account for hundreds of billions of 
dollars of trading every year. Yet despite the age and importance of auctions, the 
theory of auctions is still poorly developed. 

One obstacle to achieving a satisfactory theory of bidding is the tremendous 
complexity of some of the environments in which auctions are conducted. For 
example, in bidding for the development of a weapons system, the intelligent 
bidder realizes that the contract price will later be subject to profitable renegoti- 
ation, when the inevitable changes are made in the specifications of the weapons 
system. This fact affects bidding behavior in subtle ways, and makes it very 
difficult to give a meaningful interpretation to bidding data. 

Most analyses of competitive bidding situations are based on the assumption 
that each auction can be treated in isolation. This assumption is sometimes 
unreasonable. For example, when the U.S. Department of the Interior auctions 
drilling rights for oil, it may offer about 200 tracts for sale simultaneously. A 
bidder submitting bids on many tracts may be as concerned about winning too 
many tracts as about winning too few. Examples suggest that an optimal bidding 
strategy in this situation may involve placing high bids on a few tracts and low 
bids on several others of comparable value (Engelbrecht-Wiggans and Weber 
[6]).Little is understood about these simultaneous auctions, or about the effects 
of the resale market in drilling rights on the equilibria in the auction games. 

Another basic issue is whether the noncooperative game formulation of auc-
tions is a reasonable one. The analysis that we have offered seems reasonable 
when the bidders do not know each other and do not expect to meet again, but it 



1118 P. R. MILGROM AND R. J. WEBER 

is less reasonable, for example, as a model of auctions for timber rights on 
federal land, when the bidders (owners of lumber mills) are members of a trade 
association and bid repeatedly against each other. 

The theory of repeated games suggests that collusive behavior in a single 
auction can be the result of noncooperative behavior in a repeated bidding 
situation. That raises the question: which auction forms are most (least) subject 
to these collusive effects? Issues of collusion also arise in the study of bidding by 
syndicates of bidders. Why do large oil companies sometimes join with smaller 
companies in making bids? What effect do these syndicates have on average 
prices? What forces determine which companies join together into a bidding 
syndicate? 

Another issue that has received relatively little attention in the bidding 
literature concerns auctions for shares of a divisible object. Recent studies 
(Harris and Raviv [S], Maskin and Riley [12], Wilson [35]) indicate that such 
auctions involve a host of new problems that require careful analysis. 

Much remains to be done in the theory of auctions. A number of important 
issues, some of which are described above, simply do not arise in the auctions of 
a single object that have traditionally been studied and that we have analyzed in 
this paper (see, for example, the survey by Weber [31]). Nevertheless, the 
treatment presented here of the role of information in auctions is a first step 
along the path to understanding auctions which take place in more general 
environments. 

Northwestern University 

Manuscript received November, 1980; revision received August, 1981. 

APPENDIX ON AFFILIATION 

A general treatment of affiliation requires several new definitions. First, a subset A of Rk is called 
increasing if its indicator function 1, is nondecreasing. Second, a subset S of Rk is a sublattice if its 
indicator function Is is affiliated, i.e., if z V z' and z A z' are in S whenever z and z' are. 

Let Z = ( Z , , . . . ,Z k )be a random k-vector with probability distribution P. Thus, P ( A )=-Prob(Z 
EA). We denote the intersection of the sets A and B by AB and the complement of A by A.  

DEFINITION:Z , ,  . . . , Zk are associated if for all increasing sets A and B,  P(AB)  2 P(A)P(B) .  

REMARK:It would be equivalent to require P(JE)2 P ( ~ ) P ( B )or even P ( A B )5 P ( x ) P ( B ) .  

DEFINITION:Z,, . . . ,Zk are affiliated if for all increasing sets A and B and every sublattice S ,  
P(AB I S )  2 P(A  I S ) P ( B  I S ) ,  i.e., if the variables are associated conditional on any sublattice. 

With this definition of affiliation, Theorems 3-5 become relatively easy to prove. However, we 
shall also need to establish the equivalence of this definition and the one in Section 3 for variables 
with densities. We begin by establishing the important properties of associated variables. 

THEOREM22: The following statements are equivalent. 
(i) Z , ,  . . . , Zk are associated. 
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(ii) For every pair of nondecreasing functions g and h,  

(iii)For every nondecreasing function g and increasing set A ,  

PROOF: The inequality in (iii) is equivalent to requiring only (iii'): E [ g ( Z )  I A ]  2 E [ g ( Z ) ] ,  since 
E [ g ( Z ) I= P ( A ) E [ g ( Z ) I A l +  P ( m [ g ( Z ) I ~ I l .  

One can show that (ii) implies (iii') by taking h = 1 , .  Similarly, to show that (iii') implies (i), take 
g = I , .  T o  see that ( i)  implies (ii), suppose initially that g and h are nonnegative. Then we can 
approximate g to within 1 / n  by 

where A,, = ( x  / g ( x )  > i / n ) ,  and h can be similarly approximated using functions h, and increasing 
sets B , .  I f  Z , ,  . . . , Zk are associated, then 

Letting n +co completes the proof for nonnegative g and h. The extension to general g and h is 
routine. Q.E.D. 

The next result is a direct corollary o f  Theorem 22. 

THEOREM23: The following statements are equivalent. 
(i) Z , ,  . . . , Zk are affiliated. 
(ii) For every pair of nondecreasing functions g and h and every sublattice S, 

(iii)For every nondecreasing function g, increasing set A ,  and sublattice S ,  

Theorems 3 and 4 follow easily using part (ii) o f  Theorem 23, and Theorem 5 is a direct 
consequence o f  part (iii). 

Finally, we verify that the present definition o f  affiliation is equivalent to the one given in Sec- 
tion 3. 

THEOREM = Then Z is affiliated if and on1 24: Let Z ( Z , ,  . . . ,Z k )  have joint probability density!. 
if f satisfies the affi:liation inequality f ( z  V z f ) f ( zA z') 2 f ( z ) f ( z f )  for p-almost every ( z ,  z') E R2 z  , 
where p denotes Lebesgue measure. 

PROOF:I f  k = 1, both f and Z are trivially affiliated. W e  proceed by induction to show that i f f  is 
affiliated a.e. [ p ] ,  then Z is affiliated. Suppose that the implication holds for k = m - 1, and define 
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Z ,  = (Z2, . . . ,Z,) and z - ,  = ( t2 ,  . . . ,zm) In the following arguments, we omit the specification 
"almost everywhere [ y]." 

Let k = m, and suppose that f is affiliated. Consider any two points z; > zI .  Let f ,  denote the 
marginal density of Z, ,  and consider the function [f(z;, .) + f ( t , ,  .)]/[fl(zl) + fl(z;)], which is the 
conditional density of Z - ,  given Z I  E {z,,:',). It can be routinely verified that this function is 
affiliated.,' Therefore, by the induction hypothesis, Z - ,  is affiliated conditional on Z ,  E {z, ,z;j .  
Notice that, since f is affiliated, the expression f(z,, z -  ,)I[f(z,, z -  I )  + f(z;, z- ,)I is decreasing in 
z ,. Let g be any increasing function on IWk. Then 

and it follows that E [g (Z)  I Z ,  = z,] 6 E[g(Z)  I Z ,  = z;], i.e., E [g (Z)  I Z ,  = x] is increasing in x. 
Now, let h : IWk +R also be increasing. For any non-null sublattice S, the conditional density of Z 

given S isf(z). l,(z)/P(S), which is affiliated whenever f is. Also, by the induction hypothesis, 2-
is affiliated conditional on Z,.  Hence 

E [ g ( Z ) h ( Z ) I S ]  = E [ E [ ~ ( Z ) ~ ( Z ) I Z ~ , S ]I S ]  

2 E [ E [ ~ ( Z ) I Z , , S ~ . E [ ~ ( Z ) ~ Z , , S II S ]  

2 ~ [ g ( Z ) l ~ ] ~ E [ h ( z ) l S ] .  

The second inequality follows from the monotonicity of E [g (Z)  I Z ,  = x, S ]  and E[h(Z) I Z ,  = x, S ]  
in x. Thus we have proved that Z is affiliated iff is. 

For the converse, the idea of the proof is to take S = {z, z', z V z', z A z'), A = {x I x 2 z) ,  and 
B = { x  I x 2 z'}, and to apply the definition of affiliation using Bayes' Theorem. This works, but is 
not rigorous because S is a null event. Instead, we will approximate S,  AS, and BS by small but 
non-null events, and will then pass to the limit. 

Let Q n  be the partition of @into  k-cubes of the form [i,/2", (i, + 1)/2") X . . . X [ik/2", (i, + 1) 
/2"). Let Qn(z) denote the unique element of this partition containing the point z. Since Q0  X Q0 
has only countably many elements, there exists a function q : Q0 x Qo+R such that (i) for every 
T E QO x QO, q(T) > 0, and (ii) CTEQaXQoq(T) = 1. Define a probability measure v on IW2k by 
v(B) = C TEQoxp~q(T)y(BT)(recall that y denotes Lebesgue measure). Clearly, v is proportional to 
y on every T E Qn x Q n ,  for every n 20. Let E"[.] be the expectation operator corresponding to v. 

Let Y and Y' be the projection functions from IW2k to IWk defined by Y(z, z') = z and YJ(z, 2')  = z'. 
Y and Y' are random variables when ( R ~ ~ ,  v) is viewed as a probability space. We approximate the 
vector of densities (f(z), f(zl), f(z v z'), f ( i  A 2')) by the function X n  = (X;, X,", X;, X,") defined on 
IW2k by: 

Xn(z,zf)= EL'[(f(Y),  f(Yf),  f (Y  V Y'), f (Y  A Y')) I (Y, Y') E Qn(:) x Qn(z')1. 

,'The verification amounts to showing that if W,, W,, and Wj are (0, 1 )-valued random variables 
with a joint probability distribution P satisfying the affiliation inequality, then the joint distribution 
of W, and W2 also satisfies the inequality. The conclusion follows from the inequalities: 

(PlllP, - plolpolo)ipll,p, - P0l,Pl@J)2 0, 

P , l , P ~ l2 P I O I P ~ I , ,  and PIIOP, 2 Pl@JP010. 

mailto:Pl@JP010
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Xn  is a martingale in Ft4,and thus for almost every (z, t'), 

lim Xn(z ,  z') = (f(z), f(zl), f ( t  V z'), f(z A z'))
n-co 

(cf. Chung 13, Theorem 9.4.81). Also, for almost every (z, t ') pair, we have z,  # z',, . . . ,tk# z;. For 
any such pair, for sufficiently large n, 

Xn(z,z ')  = 2"k(P(Qn(z)), P(Qn(z ' ) ) ,  P ( Q n ( z  V z')), P ( Q n ( z  A z'))). 

Each cube Qn( t )  has a minimal element, so we may define A, = ( x I x 2 min Qn(z)), B, = { x  I x 
2min Qn(z')), and S, = Qn(z)U Qn(z') U Qn(z V z') U Qn(z A z'). The sets A, and B, are 
increasing, S, is a sublattice, and for sufficiently large n the following three identities hold: 

P(B, / S,) = c;'(x," + X,"), 

where c,, = X; + X," + X; + X i  and each XIn is evaluated at (z, z'). By the definition of affiliation, 
we have P(A,B, I S,) 2 P(A, I S,) . P(B, I S,), or equivalently, c; 'x,"2 c i 2 ( x ;  + X,")(X," + Xi). 
Letting n -+ co yields (for almost every (z, z')): 

where c = f(z) + f(zf) + f(z V z') + f(z A z'). A rearrangement of terms yields the affiliation inequal- 
ity. Q.E.D. 
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