\qquad

Class Teacher: \qquad

MA131 - Analysis 1
 Workbook 1 Assignments

Due in 12th Oct

Assignment 1

1. Solve the inequality $1 / x<x<1$ by Case Analysis.
2. Consider the following argument:

$$
\frac{1}{x}<x<1 \quad \therefore 1<x^{2} \quad \therefore 1<x .
$$

But $x<1$, therefore there are no solutions. How many mistakes can you find? Comment on this "solution" as though you were a teacher and it was written by one of your students.

Is the following statement true for all x and y : "If $x<y$ then $x^{2}<y^{2}$ "? What about this statement: "If $x^{2}<y^{2}$ then $x<y$ "?

Assignment 3

1. Use induction to prove that if both x and y are positive then $x<y \Longrightarrow x^{n}<y^{n}$.
2. Now try to prove the converse, that if both x and y are positive then $x^{n}<y^{n} \Longrightarrow$ $x<y$. separately where necessary.
3. $a-|(a-|a|)|$.
4. $|(|x|-2)|$.

Assignment 5 Solve the following inequalities:

1. $|x-1|+|x-2| \geq 5$;
2. $|x-1| \cdot|x+1|>0$.

Assignment 6

1. Put a variety of numbers into the Triangle Inequality and convince yourself that it really works.
2. Write out the triangle inequality when you take $x=a-b$ and $y=b-c$.
3. Prove the Triangle Inequality.

Assignment 7

1. Show, for positive a and b, that $\frac{a+b}{2}-\sqrt{a b}=\frac{(\sqrt{a}-\sqrt{b})^{2}}{2}$.
2. Show that the arithmetic mean is always greater than or equal to the geometric mean. When can they be equal?
