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It often may be necessary to resample a  bitmap pixel image. Perhaps because    
it is to be resized, rotated, or have its perspective corrected, or get intentionally   
distorted, or have its image shape rectified. It turns out there are several newer 
approaches to this problem that differ markedly in image quality, in processing 
speed, complexity, language programmability, and ease of understanding.

What I thought I would do here is review some pixel interpolation methods that 
include Nearest Neighbor, Bilineal Interpolation, Bilineal With Lookup, a 3x3     
Compromise, and Bicubic Interpolation. I was unable to find any derivation of 
Bicubic Interpolation that I felt was reasonably complete and understandable, so 
we will expand upon it in detail here.

The Interpolation Problem

Typically, you will have a sampled data system representing your image. With a 
two dimensional array of samples usually linearly spaced in the x (horizontal) and 
y (vertical) directions. For one reason or another, you will require a group of new 
sample points intermediate to your input pixels. Typically, one new pixel will have
four nearest neighbors on a rectangular grid…
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It is often simplest to assume a unit square between the four nearest pixels. Our
new and sought after pixel will then be some x fraction and y fraction into this 
unit square. Your interpolation problem then consists of finding suitable values for
these fractions.

Your sought after new pixel position should be the result of some pixel -by-pixel 
calculation seeking to change the size or distortion of the image. Both the new x 
and y results will have an  integer portion that decides which initial group of four
pixels to use. Plus a  residue or fractional remainder portion that positions you   
within the selected four sample square.

Your task is to then find a credible intensity value for that new location.

Typically, you will have to repeat your interpolation at least three times, once for
each of the red, green, and blue pixel bitmap planes. Thus, algorithm speed can 
easily become a key limiting issue. Especially on megapixel images.

A crucial rule…

  NO NEW DATA will be added by ANY interpolation scheme!

  The best you can do is minimize interpolation artifacts.

Before sampling, your image function can be assumed to be some continuous    
surface. To make the surface smooth, we do require a continuous function and  
continuous derivatives at each sample point. The surface can be assumed to be 
bandwidth limited, and the existing samples can be assumed to be dense enough.

Nearest Neighbor

With the Nearest Neighbor scheme, you just grab the nearest pixel and use it. 
One simple way to do this is to round your x value and add it to a rounded and 
doubled y value. This will give you four integers 0, 1, 2, and 3 that can use table  
lookup or case commands to read one of the four corner pixels.

We might start with this sample data set array and use it to compare the different 
interpolation methods…

                   [ [0.60 0.60 0.48 0.24 0.60 0.60] 
                     [0.60 0.60 0.48 0.24 0.60 0.60] 
                     [0.00 0.00 0.36 0.12 0.48 0.48] 
                     [0.24 0.24 0.48 0.60 0.12 0.12] 
                     [0.12 0.12 0.24 0.48 0.36 0.36] 
                     [0.12 0.12 0.24 0.48 0.36 0.36] ]
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Although this is a 6x6 data grid, we will only concern ourselves with the middle   
4x4 array representing 3 x 3 = 9 unit squares. The reasons for this will become 
apparent when we get to the Bicubic Interpolation method.

Here is some PostScript code…

dup floor cvi dup /yi exch store sub /yr exch store
dup floor cvi dup /xi exch store sub /xr exch store

xr round yr round 2 mul add cvi

    [ {data yi get xi get} {data yi get xi 1 add get}
      {data yi 1 add get xi get}{data yi 1 add get xi 1 add get}
    ] exch get exec

Our first lines convert the input position into box and position- in -box values. The
middle line converts the position- in -box to an integer 0 to 3. The final lines select
the lower left, lower right, upper left, or upper right data point value. Here is 
what one of your bitmap planes will look like in false color…

As you can see, your results will mostly be in error and the artifacts may get 
downright ugly. Please note again that this is a false color plot of a single bitmap
plane. In this case red = 0 on up through blue = 0.6
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Nearest Neighbor is by far the fastest and by far the ugliest interpolation scheme. 
It can introduce major artifacts into your modified bitmap. As a relative speed 
indicator, on one unoptimized and older PostScript implementation, the time per 
pixel is just over 10 microseconds. We can use this figure later for a relative 
baseline comparison of the other interpolation speeds.

Bilineal Interpolation

With Bilineal Interpolation, you proportion your result to the relative distance 
between your four original points. You could first do an x interpolation and then 
a y. Or vice versa. Curiously, either way should lead you to this approximate but 
highly useful final formula…

      f(x,y) = f(0,0)(1-x)(1-y) + f(1,0)(x)(1-y) + 
                  f(0,1)(1-x)(y) + f(1,1)(x)(y)

This measures the distance to each of the old corner points and provides a 
weighted average. The results are far better looking than nearest neighbor…

We see that there a very few artifacts remaining, but that bilineal interpolation   
should be useful for all but the most critical of applications. 
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Here is some bilineal interpolation code done in PostScript…

     dup floor cvi dup /yi exch store sub /yr exch store
     dup floor cvi dup /xi exch store sub /xr exch store

     data yi get xi get 1 xr sub  1 yr sub  mul mul   
     data yi get xi 1 add get xr 1 yr sub mul mul  add
     data yi 1 add get xi get 1 xr sub yr  mul mul add
     data yi 1 add get xi 1 add get xr mul yr mul add

We once again split our input position into a pair of integer positions and two 
fractional residue values. Each original data point is then converted into a 
weighted average using the calculations shown.

As a relative speed indicator, again on one unoptimized and older PostScript 
implementation, the execution time per pixel is just over 14 microseconds. Thus, 
there is only a forty percent penalty for vastly superior results.  The surprisingly 
low speed difference is apparently caused by PostScript being quite fast and 
adept at on-stack adds and multiplies, but somewhat slower on its proc lookups 
and executions.

Bilineal  via Table Lookup

The speed of calculating any pixel interpolation is highly dependent both on the 
system speed and the language used. In general, interpreted languages will be 
slowest and compiled languages faster. Hand crafted machine language will be 
faster still. Fastest of all, of course, would be dedicated hardware in the form of a 
FPGA or whatever.

It is often faster to look up a value in a table than to calculate it. Which suggests 
that some implementations of Bilineal Interpolation may be significantly improved
by replacing repeated multiply and adds with a quantized table lookup of some 
predetermined constants.

However, this is apparently not the case with PostScript and table lookup 
interpolation may not be beneficial enough with your language choice. Your 
results may vary.

The 3x3 Compromise

If extreme speeds are essential, the limiting minimum case of a 3x3 bilineal table 
lookup might be useful. The results would end up pretty bad, but should still be 
significantly better than nearest neighbor. Only one lookup is needed 4/9ths of 
the time, a two lookup average 4/9ths of a time, and the full four lookup average
a mere 1/9th of the time.
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Bicubic Interpolation

This is the Godzilla of pixel interpolation algorithms. It gives absolutely superb 
results with negligible artifacts. But is very hard to understand and requires an 
extreme number of complex calculations. 

Bicubic Interpolation attempts to reconstruct the exact surface between your four
initial pixels. It does this by extracting sixteen pieces of information. Based on the
values of the samples, the x slopes of those values, the y slopes of those values, 
and the xy slope cross products of those values.

It turns out that any point on a two dimensional unity normalized surface can be 
represented by a set of sixteen cubic polynomial equations. 

The key bicubic equations are…  

          p(x,y) = a00*x^0^y^0 + a01*x^0^y^1 + 
                       a02*x^0^y^2 + a03*x^0^y^3 +

                       a10*x^1^y^0 + a11*x^1^y^1 + 
                       a12*x^1^y^2 + a13*x^1^y^3 +

                       a20*x^2^y^0 + a21*x^2^y^1 + 
                       a22*x^3^y^2 + a23*x^2^y^3 +

                       a30*x^3^y^0 + a31*x^3^y^1 + 
                       a32*x^3^y^2 + a33*x^3^y^3

This expression can be simplified somewhat by noting that x^0 = y^0 = 1 and x^1
= x and y^1= y. Our non-trivial problem is to find the sixteen constant coefficients
a00 through a33 for an initial four unit square data points and their nearest eight 
neighbors.

We can start by substituting some variables to simplify the notation. So, let w0 =  
f(0,0) or the pixel value at our lower left point. Let w1 = (f0,1) or the pixel value 
at our lower right point. Let w2 = f(0,0) or the pixel value at our upper left point. 
And let w3 = (f1,1) or the pixel value at our upper right point.

Similarly, we will let x0 through x3 represent the xslope (or partial derivative with
respect to x) at each point. Normally, we do not know the exact x slope value. 
So, we can approximate it by taking the average of the changes between your  
previous and next data point. 
   
We can also let y0 through y3 represent the yslope (or partial derivative with 
respect to y) at each point. Finally, to handle the behavior near the middle of our 
four data point set, we can let z0 through z3 represent the slope product or 
(partial derivative cross product) at each point.
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We actually end up using 16 data points for calculation, with the "extras" being 
needed to find our x and y slopes. This is not a problem interior to your pixel 
map. But you will have to do something at the edges to either ignore or fake the 
slopes. Which is why our sample data has "extra" values around its outside edge.

The results can be quite impressive…

We see an artifact free surface that we can pick any point off of. The surface is 
continuous and has continuous slopes at every point.

Bicubic calculations are often done using matrix techniques. Since these can be 
hard to understand, we will instead use ordinary algebra here. Helped along with 
a partial differential equation or two. All you will need to know about partial 
differentials here is that (A) A partial differential is the slope in one variable 
direction, and (B) The differential (or its limit derivative) of f(x) = b0 + b1x +       
b2x^2 + b3x^3 is its slope of b1 + 2b2x + 3b3x^2.

Finding a new bicubic interpolated pixel value inside a unit square starts off by 
finding w0 through z3. These are already known from our available pixel data, or 
can be easily calculated from it. You then use these w0 through z3 to evaluate 
expressions for the various ax coefficients.

Sadly, we now have w0 through z3 as a function of a00 through a33. We instead 
need a00 through a33 as a function of w0 through z3. So, we have to solve 16 
linear equations in 16 unknowns to isolate the axx values. 
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Finally, from our newly calculated a00 through a33 values, we can find the value 
of our new pixel using our bicubic formula shown above.

Here is how  w0 through z3 are related to the a00 through a33 coefficients…

 
              w0 = f(0,0) = a00
              w1 = f(1,0) = a00 + a10 + a20 + a30
              w2 = f(0,1) = a00 + a01 + a02 + a03
              w3 = f(1,1) = a00 + a10 + a20 + a30 +
                                    a01 + a11 + a21 + a31 +
                                    a02 + a12 + a22 + a32 +
                                    a03 + a13 + a23 + a33
   
              x0 = fx(0,0) = a10
              x1 = fx(1,0) = a10 + 2a20 + 3a30
              x2 = fx(0,1) = a10 + a11 + a12 + a13
              x3 = fx(1,1) = 1*(a10 + a11 + a12 + a13) +
                                    2*(a20 + a21 + a22 + a23) +
                                    3*(a30 + a31 + a32 + a33)
   
              y0 = fy(0,0) = a01
              y1 = fy(1,0) = a01 + a11 + a21 + a31
              y2 = fy(0,1) = a01 +2Aa02 + 3a03
              y3 = fy(1,1) = 1*(a01+a11+a21+a31) +
                                    2*(a02+a12+a22+a32) +
                                    3*(a03+a13+a23+a33)
   
              z0 = fxy(0,0) = a11
              z1 = fxy(1,0) = a11 + 2a21 + 3a31
              z2 = fxy(0,1) = a11 + 2a12 + 3a13
              z3 = fxy(1,1) = 1*a11 + 2*a12 + 3*a13 +
                                    2*a21 + 4*a22 + 6*a23 +
                                    3*a31 + 6*a32 + 9*a33

In general, these equations are found by substituting 1 and 0 values for x and y 
and their slope derivatives. Let’s look at four typical examples…

              • w2:  Finds value at x=0, y=1. x=0 drops out all
                        equations with powers of x=1, x=2, and x=3.
                        Leaving a01*y + a02*y + a03*y. Which at y=1 
                        becomes w2 = a01 + a02 + a03.
 
              • x1:  Finds xslope at x=1, y=0. y=0 drops out all
                        equations with powers of y=1, y=2, and y=3.
                        Leaving a10*x + a20*x^2 + a30*x^3. Whose
                        partial derivative is a10 + 2a20*x + 3a30*x^2.
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              • y3:  All equations are initially active. x=1
                        everywhere. y slopes will be 0 + a01y + ... +
                        a02y + ... + 3a03y^2 + ... Which at y=1 will
                        become the result shown.

              • z3:  Cross products of the slopes
                        will be a11(1x*1y) + a12(1x*2y) + a13(1x*3y^2)
                        + a21(2x^2*y) + a22(2x^2*2y^2) + ... Which
                        at x=1 and y=1 becomes 1a11 + 2a12 + 3a13 +
                        2a21 + 4a22 + ... 

Finding the Coefficients

We do now have w0 through z3 as functions of a00 through a33. To solve for 
individual axx values, we have to solve 16 linear equations in 16 unknowns. This 
can be done manually, or by inserting the values into any of several math 
equation programs. The results should be…

 
            a00 =  w0,
            a01 =  y0,
            a02 = -3w0 + 3w2 -2y0 - y2
            a03 =  2w0 - 2w2 + y0 + y2
            a10 =  x0
            a11 =  z0
            a12 = -3x0 + 3x2 - 2z0 - z2
            a13 =  2x0 - 2x2 +  z0 + z2
            a20 = -3w0 + 3w1 - 2x0 - x1
            a21 = -3y0 + 3y1 - 2z0 - z1
            a22 =  9w0 - 9w1 - 9w2 + 9w3 + 6x0 + 3x1 + 
                     -6x2 - 3x3 + 6y0 - 6y1 + 3y2 - 3y3 + 
                      4z0 + 2z1 + 2z2 + z3
            a23 = -6w0 + 6w1 + 6w2 - 6w3 -4x0 - 2x1 + 
                      4x2 + 2x3 -3y0 + 3y1 - 3y2 + 3y3 +
                     -2z0 -  z1 - 2z2 -  z3
            a30 =  2w0 - 2w1 +  x0 +  x1
            a31 =  2y0 - 2y1 +  z0 +  z1
            a32 = -6w0 + 6w1 + 6w2 -6 w3 -3x0 - 3x1 +
                      3x2 + 3x3 -4y0 + 4y1 - 2y2 + 2y3 +
                     -2z0 - 2z1 -  z2 -  z3
            a33 =  4w0 - 4w1 - 4w2 + 4w3 + 2x0 + 2x1 +
                     -2x2 - 2x3 + 2y0 - 2y1 + 2y2 - 2y3 + 
                       z0 +  z1 +  z2 +  z3 
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It is tedious and highly error prone to try and do this by hand. There are some 
obvious simplifications. Four values are available by inspection. Eight of these can 
be solved with pairs of equations. Leaving four equations in four unknowns.

Ferinstance, if you want to do a manual solution, you can grab a00, a01, a10, and
a11 by inspection. w1 and x1 can then be simultaneously solved for a20 and a30.
Then x2 and z2 can be simultaneously solved for a12 and a13. And  w2 and y2 
can be simultaneously solved for a02 and a03. And  y1 and z1 can in turn get 
simultaneously solved for a21 and a31. 

If you save them for last, the remaining variables can end up as four equations in 
four unknowns. With all previous calculated values being reducible down into four
constants, one for each equation. Two of these equations can then relate a22 and
a33, while another two can relate a32 and a33. And substituted back to solve for 
a33. The final three variables follow by simple arithmetic.

A Summary

An important warning: Bicubic calculations might rarely end up slightly above   
unity or slightly below zero. The rest of your code must be able to clip these 
values or otherwise deal with them.
 
Again on one unoptimized and older PostScript implementation, the execution 
time per pixel for a bicubic interpolation was just over 100 microseconds. Thus 
bicubic speed in this instance is seven times worse than bilineal and is ten times  
worse than nearest neighbor.

I suspect that when further optimized on a newer Distiller and a faster machine, 
the results will end up something like three seconds per megabyte per color       
plane for bilineal and twenty seconds per megabyte per color plane for bicubic. 
Thus, bicubic can most certainly be used for typical PostScript bitmap image 
manipulations but will likely forever remain somewhat on the slow side.

Your results will vary with your language and implementation choices. Again, 
compiled languages will usually beat out interpreted ones. Hand crafted machine 
code will often be much faster still, and custom hardware may even be faster.

Reducing bilineal to somewhat coarser table lookups may or may not prove time 
effective or worthwhile on some implementations.

In some cases, doubling your sample rate can significantly reduce interpolation 
problems. But only with 4X speed and 4x storage penalties that may not end up 
being cost effective. 

I originally thought a 2X sampled 3x3 compromise interpolation solution would 
be useful for such things as eBay images . But it appears that a genuine bicubic 
interpolation can end up nearly speed competitive.

With far better results.
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Some Improvements

Finding "real" derivative slopes at each data point could possibly further improve 
bicubic. This would tend to sharpen the transitions. But would take some sort of 
more content specific and wider area processing.

Once any method and language is selected, second or third passes can be made 
to tweak and improve your code’s operating speed. Some general techniques for  
PostScript speedups appear here.

This slightly obtuse rework of our bilinear code is 34 percent faster…

     dup cvi dup /yi exch store sub /yr exch store
     dup cvi dup /xi exch store sub /xr exch store

     data yi get dup xi get 1 xr sub  mul exch xi 1 add 
     get xr mul add 1 yr sub mul

     data yi 1 add get dup xi get 1 xr sub mul exch xi 
     1 add get xr mul add yr mul add

For More Help

Complete bicubic PostScript code detailed examples can be extracted from the    
sourcecode for this GuruGram.

Working PostScript code for bilineal and bicubic has also been extracted to this    
utility and this demo.

Much of our analysis and review done here was based on the two Wikipedia 
entries found here and here. Additional insight into single dimensional cubic 
spline image interpolation appears here.

Similar tutorials and additional support materials are found on our Cubic Spline, 
our PostScript and our GurGram library pages. As always, Custom Consulting is 
available on a cash and carry or contract basis. As are seminars. 

For details, you can email don@tinaja.com. Or call (928) 428-4073.
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