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of

Section 1.2

Angles and the Dot Product

Suppose x = (x1, x2) and y = (y1, y2) are two vectors in R2, neither of which is the zero
vector 0. Let α and β be the angles between x and y and the positive horizontal axis,
respectively, measured in the counterclockwise direction. Supposing α ≥ β, let θ = α− β.
Then θ is the angle between x and y measured in the counterclockwise direction, as shown
in Figure 1.2.1. From the subtraction formula for cosine we have

cos(θ) = cos(α− β) = cos(α) cos(β) + sin(α) sin(β). (1.2.1)

Now
cos(α) =

x1
‖x‖

,

cos(β) =
y1
‖y‖

,

sin(α) =
x2
‖x‖

,

and
sin(β) =

y2
‖y‖

.

Thus, we have

cos(θ) =
x1y1
‖x‖‖y‖

+
x2y2
‖x‖‖y‖

=
x1y1 + x2y2
‖x‖‖y‖

. (1.2.2)
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Figure 1.2.1 The angle between two vectors
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Figure 1.2.2 The angle between x = (2, 1) and y = (1, 3)

Example Let θ be the smallest angle between x = (2, 1) and y = (1, 3), measured in
the counterclockwise direction. Then, by (1.2.2), we must have

cos(θ) =
(2)(1) + (1)(3)

‖x‖‖y‖
=

5√
5
√

10
=

1√
2
.

Hence

θ = cos−1

(
1√
2

)
=
π

4
.

See Figure 1.2.2.

With more work it is possible to show that if x = (x1, x2, x3) and y = (y1, y2, y3) are
two vectors in R3, neither of which is the zero vector 0, and θ is the smallest positive angle
between x and y, then

cos(θ) =
x1y1 + x2y2 + x3y3

‖x‖‖y‖
(1.2.3)

The term which appears in the numerators in both (1.2.2) and (1.2.3) arises frequently, so
we will give it a name.

Definition If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are vectors in Rn, then the
dot product of x and y, denoted x · y, is given by

x · y = x1y1 + x2y2 + · · ·+ xnyn. (1.2.4)

Note that the dot product of two vectors is a scalar, not another vector. Because of
this, the dot product is also called the scalar product. It is also an example of what is
called an inner product and is often denoted by 〈x,y〉.
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Example If x = (1, 2,−3,−2) and y = (−1, 2, 3, 5), then

x · y = (1)(−1) + (2)(2) + (−3)(3) + (−2)(5) = −1 + 4− 9− 10 = −16.

The next proposition lists some useful properties of the dot product.

Proposition For any vectors x, y, and z in Rn and scalar α,

x · y = y · x, (1.2.5)

x · (y + z) = x · y + x · z, (1.2.6)

(αx) · y = α(x · y), (1.2.7)

0 · x = 0, (1.2.8)

x · x ≥ 0, (1.2.9)

x · x = 0 only if x = 0, (1.2.10)

and
x · x = ‖x‖2. (1.2.11)

These properties are all easily verifiable using the properties of real numbers and the
definition of the dot product and will be left to Problem 9 for you to check.

At this point we can say that if x and y are two nonzero vectors in either R2 or R3

and θ is the smallest positive angle between x and y, then

cos(θ) =
x · y
‖x‖‖y‖

. (1.2.12)

We would like to be able to make the same statement about the angle between two vectors
in any dimension, but we would first have to define what we mean by the angle between
two vectors in Rn for n > 3. The simplest way to do this is to turn things around and use
(1.2.12) to define the angle. However, in order for this to work we must first know that

−1 ≤ x · y
‖x‖‖y‖

≤ 1,

since this is the range of values for the cosine function. This fact follows from the following
inequality.

Cauchy-Schwarz Inequality For all x and y in Rn,

|x · y| ≤ ‖x‖‖y‖. (1.2.13)

To see why this is so, first note that both sides of (1.2.13) are 0 when y = 0, and hence
are equal in this case. Assuming x and y are fixed vectors in Rn, with y 6= 0, let t be a
real number and consider the function

f(t) = (x + ty) · (x + ty). (1.2.14)
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By (1.2.9), f(t) ≥ 0 for all t, while from (1.2.6), (1.2.7), and (1.2.11), we see that

f(t) = x · x + x · ty + ty · x + ty · ty = ‖x‖2 + 2(x · y)t+ ‖y‖2t2. (1.2.15)

Hence f is a quadratic polynomial with at most one root. Since the roots of f are, as given
by the quadratic formula,

−2(x · y)±
√

4(x · y)2 − 4‖x‖2‖y‖2
2‖y‖2

,

it follows that we must have

4(x · y)2 − 4‖x‖2‖y‖2 ≤ 0. (1.2.16)

Thus
(x · y)2 ≤ ‖x‖2‖y‖2, (1.2.17)

and so
|x · y| ≤ ‖x‖‖y‖. (1.2.18)

Note that |x ·y| = ‖x‖‖y‖ if and only if there is some value of t for which f(t) = 0, which,
by (1.2.8) and (1.2.10), happens if and only if x + ty = 0, that is, x = −ty, for some
value of t. Moreover, if y = 0, then y = 0x for any x in Rn. Hence, in either case, the
Cauchy-Schwarz inequality becomes an equality if and only if either x is a scalar multiple
of y or y is a scalar multiple of x.

With the Cauchy-Schwarz inequality we have

−1 ≤ x · y
‖x‖‖y‖

≤ 1 (1.2.19)

for any nonzero vectors x and y in Rn. Thus we may now state the following definition.

Definition If x and y are nonzero vectors in Rn, then we call

θ = cos−1

(
x · y
‖x‖‖y‖

)
(1.2.20)

the angle between x and y.

Example Suppose x = (1, 2, 3) and y = (1,−2, 2). Then x·y = 1−4+6 = 3, ‖x‖ =
√

14,
and ‖y‖ = 3, so if θ is the angle between x and y, we have

cos(θ) =
3

3
√

14
=

1√
14
.

Hence, rounding to four decimal places,

θ = cos−1

(
1√
14

)
= 1.3002.
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Example Suppose x = (2,−1, 3, 1) and y = (−2, 3, 1,−4). Then x ·y = −8, ‖x‖ =
√

15,
and ‖y‖ =

√
30, so if θ is the angle between x and y, we have, rounding to four decimal

places,

θ = cos−1

(
−8√

15
√

30

)
= 1.9575.

Example Let x be a vector in Rn and let αk, k = 1, 2, . . . , n, be the angle between x
and the kth axis. Then αk is the angle between x and the standard basis vector ek. Thus

cos(αk) =
x · ek
‖x‖‖ek‖

=
xk
‖x‖

.

That is, cos(α1), cos(α2), . . . , cos(αn) are the direction cosines of x as defined in Section
1.1. For example, if x = (3, 1, 2)in R3, then ‖x‖ =

√
14 and the direction cosines of x are

cos(α1) =
3√
14
,

cos(α2) =
1√
14
,

and

cos(α3) =
2√
14
,

giving us, to four decimal places,
α1 = 0.6405,

α2 = 1.3002,

and
α3 = 1.0069.

Note that if x and y are nonzero vectors in Rn with x · y = 0, then the angle between
x and y is

cos−1(0) =
π

2
.

This is the motivation behind our next definition.

Definition Vectors x and y in Rn are said to be orthogonal (or perpendicular), denoted
x ⊥ y, if x · y = 0.

It is a convenient convention of mathematics not to restrict the definition of orthog-
onality to nonzero vectors. Hence it follows from the definition, and (1.2.8), that 0 is
orthogonal to every vector in Rn. Moreover, 0 is the only vector in Rn which has this
property, a fact you will be asked to verify in Problem 12.

Example The vectors x = (−1,−2) and y = (1, 2) are both orthogonal to z = (2,−1)
in R2. Note that y = −x and, in fact, any scalar multiple of x is orthogonal to z.
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Example In R4, x = (1,−1, 1,−1) is orthogonal to y = (1, 1, 1, 1). As in the previous
example, any scalar multiple of x is orthogonal to y.

Definition We say vectors x and y are parallel if x = αy for some scalar α 6= 0.

This definition says that vectors are parallel when one is a nonzero scalar multiple of
the other. From our proof of the Cauchy-Schwarz inequality we know that it follows that
if x and y are parallel, then |x · y| = ‖x‖‖y|. Thus if θ is the angle between x and y,

cos(θ) =
x · y
‖x‖‖y‖

= ±1.

That is, θ = 0 or θ = π. Put another way, x and y either point in the same direction or
they point in opposite directions.

Example The vectors x = (1,−3) and y = (−2, 6) are parallel since x = − 1
2y. Note

that x · y = −20 and ‖x‖‖y‖ =
√

10
√

40 = 20, so x · y = −‖x‖‖y‖. It follows that the
angle between x and y is π.

Two basic results about triangles in R2 and R3 are the triangle inequality (the sum
of the lengths of two sides of a triangle is greater than or equal to the length of the third
side) and the Pythagorean theorem (the sum of the squares of the lengths of the legs of a
right triangle is equal to the square of the length of the other side). In terms of vectors in
Rn, if we picture a vector x with its tail at the origin and a vector y with its tail at the
tip of x as two sides of a triangle, then the remaining side is given by the vector x + y.
Thus the triangle inequality may be stated as follows.

Triangle inequality If x and y are vectors in Rn, then

‖x + y‖ ≤ ‖x‖+ ‖y‖. (1.2.21)

The first step in verifying (1.2.21) is to note that, using (1.2.11) and (1.2.6),

‖x + y‖2 = (x + y) · (x + y)

= x · x + 2(x · y) + y · y
= ‖x‖2 + 2(x · y) + ‖y‖2. (1.2.22)

Since x · y ≤ ‖x‖‖y‖ by the Cauchy-Schwarz inequality, it follows that

‖x + y‖2 ≤ |x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2,

from which we obtain the triangle inequality by taking square roots.
Note that in (1.2.22) we have

‖x + y‖2 = ‖x‖2 + ‖y‖2

if and only if x · y = 0, that is, if and only if x ⊥ y. Hence we have the following famous
result.
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Pythagorean theorem Vectors x and y in Rn are orthogonal if and only if

‖x + y‖2 = ‖x‖2 + ‖y‖2. (1.2.23)

Perhaps the most important application of the dot product is in finding the orthogonal
projection of one vector onto another. This is illustrated in Figure 1.2.3, where w represents
the projection of x onto y. The result of the projection is to break x into the sum of two
components, w, which is parallel to y, and x −w, which is orthogonal to y, a procedure
which is frequently very useful. To compute w, note that if θ is the angle between x and
y, then

‖w‖ = ‖x‖| cos(θ)| = ‖x‖ |x · y|
‖x‖‖y‖

=

∣∣∣∣x · y

‖y‖

∣∣∣∣ = |x · u|, (1.2.24)

where
u =

y

‖y‖

is the direction of y. Hence w = |x · u|u when 0 ≤ θ ≤ π
2 , which is when x · u > 0, and

w = −|x ·u|u when π
2 < θ ≤ π, which is when x ·u < 0. Thus, in either case, w = (x ·u)u.

θ

x w−

w

y

x

Figure 1.2.3 Orthogonal projection

Definition Given vectors x and y, y 6= 0, in Rn, the vector

w = (x · u)u, (1.2.25)

where u is the direction of y, is called the orthogonal projection, or simply projection, of x
onto y. We also call w the component of x in the direction of y and x · u the coordinate
of x in the direction of y.

In the special case where y = ek, the kth standard basic vector, k = 1, 2, . . . , n, we see
that the coordinate of x = (x1, x2, . . . , xn) in the direction of y is just x · ek = xk, the kth
coordinate of x.
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Example Suppose x = (1, 2, 3) and y = (1, 4, 0). Then the direction of y is

u =
1√
17

(1, 4, 0),

so the coordinate of x in the direction of y is

x · u =
1√
17

(1 + 8 + 0) =
9√
17
.

Thus the projection of x onto y is

w =
9√
17

u =
9

17
(1, 4, 0) =

(
9

17
,

36

17
, 0

)
.

Problems

1. Let x = (3,−2), y = (−2, 5), and z = (4, 1). Compute each of the following.

(a) x · y (b) 2x · y
(c) x · (3y − z) (d) −z · (x + 5y)

2. Let x = (3,−2, 1), y = (−2, 3, 5), and z = (−1, 4, 1). Compute each of the following.

(a) x · y (b) 2x · y
(c) x · (3y − z) (d) −z · (x + 5y)

3. Let x = (3,−2, 1, 2), y = (−2, 3, 4,−5), and z = (−1, 4, 1,−2). Compute each of the
following.

(a) x · y (b) 2x · y
(c) x · (3y − z) (d) −z · (x + 5y)

4. Find the angles between the following pairs of vectors. First find your answers in
radians and then convert to degrees.

(a) x = (1, 2), y = (2, 1) (b) z = (3, 1), w = (−3, 1)

(c) x = (1, 1, 1), y = (−1, 1,−1) (d) y = (−1, 2, 4), z = (2, 3,−1)

(e) x = (1, 2, 1, 2), y = (2, 1, 2, 1) (f) x = (1, 2, 3, 4, 5), z = (5, 4, 3, 2, 1)

5. The three points (2, 1), (1, 2), and (−2, 1) determine a triangle in R2. Find the measure
of its three angles and verify that their sum is π.

6. Given three points p, q, and r in Rn, the vectors q− p, r− p, and q− r describe the
sides of the triangle with vertices at p, q, and r. For each of the following, find the
measure of the three angles of the triangle with vertices at the given points.

(a) p = (1, 2, 1), q = (−1,−1, 2), r = (−1, 3,−1)

(b) p = (1, 2, 1, 1), q = (−1,−1, 2, 3), r = (−1, 3,−1, 2)
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7. For each of the following, find the angles between the given vector and the coordinate
axes.

(a) x = (−2, 3) (b) w = (−1, 2, 1)

(c) y = (2, 3, 1,−1) (d) x = (1, 2, 3, 4, 5)

8. For each of the following, find the coordinate of x in the direction of y and the projec-
tion w of x onto y. In each case verify that y ⊥ (x−w).

(a) x = (−2, 4), y = (4, 1) (b) x = (4, 1, 4), y = (−1, 3, 1)

(c) x = (−4,−3, 1), y = (1,−1, 6) (d) x = (1, 2, 4,−1), y = (2,−1, 2, 3)

9. Verify properties (1.2.5) through (1.2.11) of the dot product.

10. If w is the projection of x onto y, verify that y is orthogonal to x−w.

11. Write x = (1, 2,−3) as the sum of two vectors, one parallel to y = (2, 3, 1) and the
other orthogonal to y.

12. Suppose x is a vector with the property that x · y = 0 for all vectors y in Rn, y 6= x.
Show that it follows that x = 0.


