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Functions of a Curve: Leibniz's Original 
Notion of Functions and Its Meaning 
for the Parabola 

David Dennis and Jere Confrey 

David Dennis received an M.S. in mathematical logic in 1977 
under Anil Nerode, who sparked in him a great interest in the 
history of mathematics, which he especially enjoys teaching. He 
has held instructorships in mathematics (Ithaca College, Wells 
College, Queens College-CUNY), and for his recent Ph.D. in 
mathematics education (under Jere Confrey) his dissertation 
was on the history of curve drawing devices and their concep? 
tual and educational significance. Comell's math-education re? 
search group has given him new directions for his historical 
studies. 

Jere Confrey, now an associate professor of mathematics 
education at Cornell University, founded the SummerMath pro- 
gram for women at Mount Holyoke College. How students view 
mathematical ideas intrigues her, since their views sometimes 
echo ideas long suppressed or forgotten since the rise of 
algebraic symbolism. She directs a research group that designs 
mathematical curriculum materials and software more inviting to 
all students. This group also conducts historical research to 
demystify the genesis of mathematical ideas. 

When the notion of a function evolved in the mathematics of the late seventeenth 

century, the meaning of the term was quite different from our modern set theoretic 

definition, and also different from the algebraic notions of the nineteenth century. 
The main conceptual difference was that curves were thought of as having a 

primary existence apart from any analysis of their numeric or algebraic properties. 
Equations did not create curves, curves gave rise to equations. When Descartes 

published his Geometry [10] in 1638, he derived for the first time the algebraic 
equations of many curves, but never once did he create a curve by plotting points 
from an equation. Geometrical methods for drawing each curve were always given 
first, and then by analyzing the geometrical actions involved in the curve drawing 
apparatus he would arrive at an equation that related pairs of coordinates (not 

necessarily at right angles to each other) [20]. Descartes used equations to create a 

taxonomy of curves [17]. 
This tradition of seeing curves as the result of geometrical actions continued in 

the work of Roberval, Pascal, Newton, and Leibniz. Descartes used letters to 

represent various lengths but did not create any specific system of names. Leibniz, 
who introduced the term function into mathematics [2], considered six different 
functions associated with a curve, i.e., line segments or lengths that could be 
determined from each point on a curve relating it to a given line or axis. He gave 
them the names abscissa, ordinate, tangent, subtangent, normal, and subnormal. 
These six are shown in Figure 1 for the curve RP, relative to the axis AO. The line 
PO is perpendicular to AO. The line PT is tangent to the curve at P, and the line 
PN is perpendicular to PT. 
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Figure 1 
PO ordinate; AO abscissa; PT tangent; OT subtangent; PN normal; ON subnormal. 

It is important to note here that the curve and an axis must exist before these six 
functions can be defined. In this definition, the abscissa and ordinate may at first 
seem to be a parametric representation of the curve, but this is not the case. No 

parameter, such as time or are length, is involved. The setting is entirely geometric. 
From the geometric point P, the line segments (functions) are defined relative to 
the axis AO. Abscissa is Latin for "that which is cut off," i.e., a piece of the axis 
AO is cut off. By cutting off successive pieces of the axis, the curve gives us an 
ordered series of line segments PO as P moves along the curve. Hence the term 
ordinate. 

It should also be noted here that all of these functions of a point P on a given 
curve are defined without reference to any particular unit of measurement. They 
are line segments. Leibniz, of course, like Descartes, wanted to introduce quan- 
tification and analyze the properties of curves algebraically, but since the definition 
of the functions is geometric he could postpone the choice of a unit until an 

appropriate one could be found for the curve at hand. The advantage of this will 

emerge in our discussion of the parabola. 
Since angles TPN, POT, and PON are right angles, the triangles TOP, PON, 

and TPN are all similar. This configuration will be familiar to geometers as the 
construction of a geometric mean between ON and OT, the mean being OP. 

Inspired by the work of Pascal, Leibniz saw a fourth triangle which was similar 
to the three mentioned above [2], [5], [11]. This was the infinitesimal or characteris- 
tic triangle (see Figure 2), used by Pascal to integrate the sine function [21]. 
Leibniz viewed a geometric curve as made up of infinitely small line segments 
which each had a particular direction. He perceived the utility of this concept in 
Pascal's work and it became one of the primary notions in his development of a 

system of notation for calculus. Although many modern mathematicians avoid this 

conception, it is still used as an important conceptual device by engineers. Figure 2 
still appears in calculus books because it conveys an important meaning, especially 
to those who use calculus for the analysis of physical or mechanical actions. (With 
the invention, early in this century, of the calculus of differentials as linear 
functions on the tangent lines to the curve, Leibniz's fundamental insight was 
made rigorous without recourse to "infinitesimals" [18].) 

Leibniz saw great significance in the triangles of Figure 1 because they were 

large and visible yet similar to the unseen characteristic triangle. This finding of 

large triangles that are similar to infinitesimal ones is a theme that runs through 
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Figure 2 

many of the most important works of Leibniz [5], [8], [11]. From Figures 1 and 2, 
the similarity relations tell us that 

dy PO ON 

~dx~~df~Td' 

Let us look at how this system works in the case of the parabola. We must first 
have a way to draw a parabola. Everything begins with the existence of a curve. 

Figure 3 shows a linkage that will draw parabolic curves. This figure comes from 
the work of Franz Van Schooten (1615-1660) [23, p. 359], whose extensive 
commentaries on Descartes' Geometry were widely read in the seventeenth cen? 

tury [22]. Because his works supplied many of the details Descartes omitted they 
were in fact more popular than the Geometry itself. 

Figure 3 

This apparatus constructs the parabola from the familiar focus/directrix defini? 
tion. That is, the parabola is the set of points equidistant from a point and a line. 
The ruler GE is the directrix and the point B is the focus. Four equal-length links 
create a movable rhombus BFGH which guarantees that FH will always be the 

perpendicular bisector of BG as G moves along the ruler. GI is a movable ruler 
that is always perpendicular to the directrix EG. The point D is the intersection of 
FH and GI as the point G moves along the directrix. Hence at all positions 
BD = GD, and hence D traces a parabola with focus B and directrix EG. 
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This construction can be simulated on a computer using the software Geometer's 

Sketchpad [14]. This software allows one to define a perpendicular bisector so the 
rhombus is unnecessary. One can either drag a point along the directrix or have 
the computer animate such a motion. Figure 4 was made using this software. The 

point F is the focus, and the point S is moving along the directrix. BP is the 

perpendicular bisector of FS, SP is always perpendicular to the directrix, and the 
intersection point P traces a parabola. 

Directrix 

One consequence of this construction that is immediately apparent to the eye is 

that, at each point, BP is the tangent line to the curve at P. Curves can often be 
drawn by constructing a series of tangents to the curve, the curve being the 

"envelope" of its family of tangent lines. This construction is often done using 
strings or paper foldings [13], [19]. In order to fold a parabola as in Figure 4, let 
one edge of a sheet of paper be the directrix and mark any point as the focus. 
Make a series of folds each of which brings a point on the directrix onto the focus. 
These folds will then be the perpendicular bisectors of the segments between these 

pairs of points, hence tangent lines to the parabola. 
Using the axis of symmetry of the parabola as our axis for abscissas and the 

vertex, A, as our starting point, we can investigate this curve using the six functions 
of Leibniz (Figure 5). Since the tangent line is part of the construction this can be 

Figure 5 
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readily accomplished with Geometer's Sketchpad. Because it is impossible to 

convey the feel of this moving construction on paper, we strongly encourage the 
reader to experience it by dragging the point S up and down the directrix and 

observing how the "Leibniz configuration" changes. 
What can be seen by watching the six functions in this dynamic setting? With the 

figure in motion and using color to highlight the six functions, two invariances 
become readily apparent. The first one most people notice is that the subnormal 
ON has constant length. The second is that the vertex A is always the midpoint of 
the subtangent OT, for points O and T can be seen to approach and recede from 

point A symmetrically. These two invariances can be easily deduced from the 

geometry of the construction, but of greater significance is that they can be visually 
experienced from the action of the construction. Geometer's Sketchpad allows for 
confirmation of one's visual experience by turning on meters that monitor these 

lengths empirically. Sure enough, ON has constant length, and the length of AT is 

always equal to the length of AO. 

Postponing for a moment the geometrical proofs of these two statements, let us 
first look at what they tell us about the parabola. In the tradition of Descartes, we 
introduce variables after we have drawn the curve. Let x = AO, and let y = OP; 
i.e., x is the length of the abscissa and y is the length of the ordinate. Since 

triangles TOP and PON are similar, we have that PO/OT = ON/PO. Since A is 
the midpoint of OT, this becomes 

y ON 
? =-, or (2-ON)-x=y2. 
2x y 

v J 

Since ON is constant, this yields the equation of the parabola. The constant length 
(2 ? ON) is known in geometry as the latus rectum; i.e., the rectangle formed by x 
and the latus rectum is always equal in area to the square on y. As we are free to 
choose our unit, we could choose ON = \. The equation then becomes x =y2. 

Using the similarity between the characteristic triangle and triangle TOP, we 
obtain 

dx OT 2x 

~dy=~PO=~V~ 
y' 

Hence both the equation and the derivative can be found from considering the 
invariant properties of Leibniz's configuration under the actions that constructed 
the curve. 

The choice of ON = \ gave the equation and derivative of the parabola in their 
best known form, but this is perhaps a little artificial from the geometric stand- 

point. The subnormal ON is the primary invariant of this curve-drawing action and 
can be seen as the natural choice of a unit for this curve. As it turns out, the 
subnormal ON is always equal to the distance between the focus and the directrix 
of the parabola. Thus it is a natural unit. Using the subnormal as a unit, the 

equation of the parabola becomes x =y2/2, i.e., the common integral form of the 

parabola as the accumulated area under the line x=y. It is in this form that 
the parabola most often appears in the table interpolations of John Wallis and 
Isaac Newton [9]. 

One way to prove that the subnormal is constant is to show that it always equals 
the distance between the focus and the directrix. Looking at Figure 5, we see that 
SF and PN are both perpendicular to BP, so triangles SCF and PON are 

congruent; hence ON = CF. 
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In order to prove that the vertex A is always the midpoint of the subtangent 
OT, one can establish that triangles TBA and PBK are congruent. They are clearly 
similar, but since B is the midpoint of SF it is also the midpoint of AK, so they 
are congruent. Hence TA =KP =AO. 

Lastly, one might ask: How can we be sure that the line BP is always tangent to 
the parabola? That is to say, how can we be sure that each instance of the line BP 
intersects the parabola in only one point? Let Q^P be a point on BP, and let R 
be the foot of the perpendicular from Q to the directrix CS. Since R is the closest 

point to Q on the directrix, QR < QS. Since BP is the perpendicular bisector of 

SF, QS = QF. Hence QR < QF and Q cannot be on the parabola, being closer to 
the directrix than to the focus. One could also check the tangency of BP 

analytically by writing the equation of the parabola and the line BP using the same 
coordinate system and then solving the two equations simultaneously, arriving at a 

quadratic equation with one repeated root. This is the method that Descartes 

developed for finding tangents; i.e., tangency occurs when repeated roots appear in 
the simultaneous solutions. 

These two invariant properties of the parabola were never mentioned (so far as 
we know) in the published work of Leibniz. The fact that the vertex is the midpoint 
of the subtangent was demonstrated by Appollonius [1]. The fact that the subnor- 
mal is constant is credited to L. Euler, who expanded and popularized the ideas of 
Leibniz [7]. They both appear in Book 2 of Euler's most famous textbook, the 
Introduction to Analysis of the Infinite [12]. This book, published in 1748, was the 
first modern precalculus textbook and, along with its sequels on differential and 

integral calculus, did much to standardize curriculum and notation. Nearly all of 
the topics in our modern precalculus books are contained in Euler's book, but 
what is missing from our modern treatments is the bold empirical spirit of Euler's 

investigations, as well as most of his more advanced geometry and infinite series. 
Euler says in the preface to his text that he presents many questions that can be 
more quickly resolved using calculus. He insists, however, that when students rush 
into calculus too rapidly they become confused, because they lack the experiential 
basis (both geometric and algebraic) upon which calculus is built. 

The parabola example demonstrates how much can be found using only basic 

geometry combined with empirical investigation. By letting the configuration move, 
we create a situation where algebra evolves naturally from geometry. Too often in 
our schools we find our geometry curriculum static and isolated from other topics, 
especially algebra. Two-column geometry proofs provide a shadow of Euclid, but 

they cannot provide the dynamic experience that leads to an understanding of 
functions and calculus. An important philosophical prerequisite for understanding 
calculus is the belief that geometry and algebra are consistent with each other, and 

historically this belief did not come easily [4]. This belief is too often tacitly 
assumed in our classrooms. In order for students to comprehend and appreciate 
this they must first be allowed to experience doubt as to whether a geometric result 
will be confirmed by an arithmetic result [8]. With modern software, computers can 
now readily simulate moving geometry, and this experience can be very compelling. 
For some, an empirical experience based on mechanical devices or paper folding 
can be even more compelling. 

For the reader who wishes to attempt this kind of analysis on other curves, we 
offer the following tantalizing tidbits. If the directrix in the above construction is a 
circle instead of a line, then one can draw both hyperbolas and ellipses with their 

tangents [8], [23]. Paper folding also works [13], [19]. In the case of the hyperbola, if 
a tangent line at a point P is extended until it intersects the asymptotes at points 
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A and B, then P will always be the midpoint of the segment AB. This little-known 
theorem is in Euler [12] but goes back to Apollonius [1]. As an empirical 
observation this can lead in many analytic directions. For example, the derivative 
of y = 1/x can immediately be seen to be - 1/x2. Check it out! (Similar methods 
can be applied to draw planetary orbits; see the wonderful article by A. Lenard 

[16].) 

Exercise. We have shown that parabolas have constant subnormals. What curves 
have constant subtangents? (Answer follows reference list.) 

In order to have the kind of empirical experience that Lakatos [15] suggests is 
fundamental to mathematical discovery, people should be encouraged to design, 
build, and explore their own devices and computer simulations. Some experience 
with mechanical devices can greatly aid many students as they attempt to master 
the use of software like Geometer's Sketchpad. All algebraic curves, for example, 
can be drawn with linkages [3]; some are easily built and others are best simulated. 
The border between mathematics, simulation, and mechanical engineering can 
become quite fuzzy. In such a setting geometry and algebra complement, validate, 
and empower one another without forming a hierarchy. 

After many years of working in mathematics education at all levels, we have 
come to believe that effective educational practice must involve people in a 
balanced dialogue between "grounded activity" and "systematic inquiry" [6]. This 
discussion of the parabola provides an excellent example of such a dialogue. 

Acknowledgment. This research was funded by National Science Foundation Grant no. 9053590. 
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Answer to Exercise. Exponential curves y =y0ekt. For a discussion of this question and many others 
like it, see [8]. 

The Product of Four (Positive) Numbers in Arithmetic Progression Is 
Always the Difference of Two Squares 

+ 

(a + dXa + 2d) = a(a + 3d) + 2d2 a2 + 3ad + d2 

a(a + d)(a + 2d)(a + 3d) = U2 + 3flrf + d2)2 - (d2)2 

Roger B. Nelsen 
Lewis and Clark College 
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