A Short Introduction to Selected Classes of the Boost C++ Library

Dimitri Reiswich

December 2010

Dimitri R Boost Intro December 2010 1/ 98

=

Useful Macros

Boost Shared Pointer
m Exercise

Distribution Functions

Random Numbers
m Exercise

Function

Bind
m Exercise

The Any Class
Optional
Serialization
Filesystem

Matrix operations with uBLAS

Boost Intro

December 2010

2/ 98

Boost has some useful and convenient macros which we will discuss first. The C++ code for
the following discussion is shown below.

#include <vector>

#include <boost/current_function.hpp>
#include <boost/foreach.hpp>

#include <boost/static_assert.hpp>

#include <boost/detail/lightweight_test.hpp>

#define MY_NUM 1300

void testMacroa (){
std::cout << "You have called:" << BOOST_CURRENT_FUNCTION << std::endl;
}

void testMacrob (){
BOOST_STATIC_ASSERT (MY_NUM!=1400);
}

void testMacroc (){
std::vector<double> myVec (10);

BOOST_FOREACH (double& x,myVec) x=10.0;
BOOST_FOREACH (double x,myVec) std::cout << x << std::endl;

¥

void testMacrod (){
BOOST_ERROR("Failure of this function");
double x=0.0;
BOOST_TEST (x!=0);

Boost Intro December 2010 3/ 98

= BOOST_CURRENT_FUNCTION is a macro that returns the current functions name. Calling
void testMacroa() yields

You have called:void __cdecl testMacroa(void)

which shows the function name and its input/output variable types.

m BOOST_STATIC_ASSERT generates a compile time error message, if the input expression is
false. The void testMacrob() version compiles without any problems, since the global
variable MY_NUM is set to 1400. However, changing this variable to 1300 will result in an
error in the compilation output as shown in the figure below.

Dutput =

Showw oukput From: Build - \,i’l Q

estingiboost_testing\Macrol hi{l€) : error C2027: use of undefined type 'boost::STATIC ASSERTION_FATLURE<:-'

ng IIYBoost ImtroductioniBoostTestingiboost_testingiReleaseyBuildLog.hen"

<] m B

(53 Code Definition Window [$2ICall Brawser ||;_:| Output |

Figure: Static Assert Output

Boost Intro December 2010 4 /98

m BOOST_FOREACH replaces the often tedious iteration over containers. The usual iteration is
either performed via a code similar to for(int i=0;i<vec.size();i++) or by using an
iterator.

BOOST_FOREACH uses a convenient syntax to do the same job. In the void testMacroc()
function, the BOOST_FOREACH(double& x,myVec) writes the vector myVec, while the next line
prints the components of the same vector. The output of the program is ten times the
number 10. Note that there is a & in the first loop, such that the operation operates by
reference on the variable .

A similar syntax allows to iterate through maps from the STL. Assume that you have a
std: :map<int,double> variable called myMap. The iteration through this map can be
performed via

std::pair<int,double> x;
BOOST_FOREACH(x,myMap) std: :cout << x.second << std::endl;

Dimitri R c Boost Intro December 2010 5/ 98

m Finally, we discuss the BOOST_ERROR and BOOST_TEST macros, which are part of the
lightweight_test header file. These macros are useful in quick code testing. The first
macro prints an error message with the name and location of the error. The output is

...boost_testing \Macrol.h(25): Failure of this function in
function ’void __cdecl testMacrod(void)’

The BOOST_TEST macro tests if the supplied condition is true and prints an error
otherwise. The output in this case is

...boost_testing \Macrol.h(26): test ’x!=0’ failed in function ’
void __cdecl testMacrod(void)’

Boost Intro December 2010 6/ 98

Boost Shared Pointer
m Exercise

Boost Intro December 2010 7/ 98

One of the problems of working with raw pointers which allocate memory on the heap is that
is easy to forget to delete them. Another problem is that it is quite easy to reassign the
pointer in the code to some other object and cause a memory leak since the reference to the
original object is lost. Also, exceptions can cause a failure to reach the delete command, as
will be shown later. Finally, it is quite hard to keep track of the object’s life time, in
particular if the object is passed to other objects and functions. It is hard to say, if the
object is still referenced by some other object or if it can be deleted at a certain point.

Modern languages like Java have a garbage collector which takes care of all of the problems
above. In c++, this can be handled by smart pointers, which are part of the boost library.
The smart pointers are probably the most popular objects in boost. The next section will
introduce the boost: :shared_ptr, since it is the most often used smart pointer.

Dimitri R ic Boost Intro December 2010 8 / 98

Consider the toy class TestClassA.h given below. Any time the constructor/destructor is
called, a message will be printed.

#ifndef
#define

TEST_CLASS_A
TEST_CLASS_A

#include<iostream>

class A
{

private:

public:

};

#endif

double myValue_;

A(const double& myValue):myValue_(myValue){
std::cout<<"Constructor of A"<<std::endl;
}
“AOA{
std::cout<<"Destructor of A with walue "<<myValue_<<std::endl;
}

double getValue() const{ return myValue_;}

Boost Intro December 2010

9 /98

The usual way to allocate the object TestClassA on the heap is to use the new operator and
delete it at the end via delete. This is shown in the function void testSharedPtra() below.

#include "TestClassAd.h"

void testSharedPtra(){

// (a) Usual way to dynamically allocate memory space on the heap
A* ptr_myA=new A(1.0);
delete ptr_myA;

}

Calling testSharedPtra() yields

Constructor of A
Destructor of A with value 1

However, in the function testSharedPtrb() below we throw an exception before reaching the
delete statement.

#include <boost/shared_ptr.hpp>
#include "TestClassAd.h”

void testSharedPtrb (){

// (b) Behaviour of raw pointers for exceptions
A* ptr_myA=new A(1.0);
throw "Error ocurred for class A.";
delete ptr_myA;

Boost Intro December 2010 10 / 98

The output of calling the function is

Constructor of A.
Error ocurred for class A.

Obviously, the destructor has not been called and the object has not been deleted. This, and
other problems will be solved by using the smart pointers.

To use boost’s shared_ptr, include the following header in your project
<boost/shared_ptr.hpp>

The smart pointers are template classes and constructed via

shared_ptr<T> p(new T);

where T is some class. The constructor after the new keyword can be any of the implemented
constructors of T.

Dimitri R ic Boost Intro December 2010 11 / 98

We will test the pointer by allocating again an object of class A on the heap. This time, a
smart pointer will be used. The code is given by the function testSharedPtrc() which is shown
below.

#include <boost/shared_ptr.hpp>
#include "TestClassA.h"

void testSharedPtrc (){

// (c) Allocation via boost::shared_ptr
boost::shared_ptr<A> bptr_myA(new A(1.0));

}

The output of calling this function is

Constructor of A
Destructor of A with value 1

Obviously, the object is deleted correctly without calling the delete statement in the code.

Boost Intro December 2010 12 / 98

Is is also possible to use a raw pointer as an argument in the constructor of the shared_ptr.
This is illustrated in the following function testSharedPtrd().

#include <boost/shared_ptr.hpp>
#include "TestClassA.h"

void testSharedPtrd (){
// (d) Assign ownership of usual pointers to a shared_ptr
A* ptr_myA=new A(1.0);
boost::shared_ptr<A> bptr_myA(ptr_myA);
std::cout << bptr_myA->getValue() << std::endl;
}

In this case, the ownership is assigned to the smart pointer which takes care of the memory
management. The function illustrates, that we can call the functions of the object via the
usual — operator known from raw pointer operations. Calling function testSharedPtrd()
yields the following output:

Constructor of A
1
Destructor of A with value 1

The constructor introduced above is quite convenient if the task is to rewrite old C++ code
such that the new code uses smart pointers. The only operation that needs to be done is
passing the old pointer to the smart pointer - which should take the old name- and erase the
delete statement for the old pointer.

Boost Intro December 2010 13 / 98

What about the exception problem we had before? What will happen, if we throw an

exception after creating a smart pointer? An example of this case is given in the function
testSharedPtre() below.

#include <boost/shared_ptr.hpp>
#include "TestClassd.h"

void testSharedPtre (){

// (e) Behaviour of boost::shared_ptr in exceptions
boost::shared_ptr<A> bptr_myA(new A(1.0));
throw "Error ocurred in testSharedPtr"

Constructor of A
Destructor of A with value 1
Error ocurred in testSharedPtr

Obviously, the object the smart pointer points to is deleted, even though an error is thrown.
The next discussion shows that memory leaks can be avoided by using smart pointers.

Boost Intro December 2010 14 / 98

Consider the function testSharedPtrf () given in the code below

#include <boost/shared_ptr.hpp>
#include "TestClassAd.h"

void testSharedPtrf (){

// (f) Behaviour of raw pointers when reassigning
A* ptr_myA =new A(1.0);
ptr_myA =new A(2.0);

delete ptr_myA;
}

The first function shows the typical memory leak problem: After assigning a new object to
the pointer ptr_myA, we loose the reference to object A with the number 1. The first object is
not deleted when calling the delete operation at the end of the program, as shown by the
output

Constructor of A
Constructor of A
Destructor of A with value 2

Boost Intro December 2010 15 / 98

The same operation is performed with a smart pointer by using the equivalent reset

operation.

#include <boost/shared_ptr.hpp>
#include "TestClassA.h"

void testSharedPtrg(){

// (g) Behaviour of smart pointers when reassigning
boost::shared_ptr<A> bptr_myA(new A(1.0));
bptr_myA.reset (new A(2.0));

}

The output is

Constructor of A
Constructor of A
Destructor of A with value 1
Destructor of A with value 2

This doesn’t work with the reset function only. It works even if we reassign bptr_myA to
another boost pointer via bptr myA=bptr_myB where bptr_myB points to some other object.

Boost Intro

December 2010

16 / 98

m Write a function which allocates a std::vector<double> vector of size 100 using the
shared_ptr class. Fill the vector at index ¢ with the number 4, e.g.vec[il=i by using a
standard for loop. Calculate the sum of the vector by using the BOOST_FOREACH macro.

Boost Intro December 2010 17 / 98

Distribution Functions

Boost Intro December 2010 18 / 98

NEEERFFREFEAREREFEFEE SR B BEENR

Bernoulli Distribution

Beta Distribution

Binomial Distribution
Cauchy-Lorentz Distribution
Chi Squared Distribution
Exponential Distribution
Extreme Value Distribution

F Distribution

Gamma (and Erlang) Distribution
Log Normal Distribution
Negative Binomial Distribution
Noncentral Beta Distribution
Noncentral Chi-Squared Distribution
Noncentral F Distribution
Noncentral T Distribution
Normal (Gaussian) Distribution
Pareto Distribution

Poisson Distribution

Rayleigh Distribution

Students t Distribution
Triangular Distribution

Weibull Distribution

Uniform Distribution

Dimitri R ic Boost Intro

December 2010

19 / 98

On each distribution, we can apply the usual operations, such as the calculation of the
cumulative distribution value at a given point . The following operations are available with
the corresponding syntax

m Cumulative Distribution Function: cdf(distribution,x)
m Density: pdf (distribution,x)

m Inverse CDF': quantile(distribution,x)

m Complementary CDF': cdf (complement (distribution,x))
m Mean: mode(distribution)

m Variance: variance(distribution)

= Standard Deviation: standard deviation(distribution)
m Skew: skewness(distribution)

m Kurtosis: kurtosis(distribution)

m Excess Kurtosis: kurtosis_excess(distribution)

Dimitri R c Boost Intro December 2010 20 / 98

To use the distributions, include the

<boost/math/distributions.hpp>

header in your code, the distribution constructors are straightforward since they simply
accept the distribution parameters. Example C++ code is shown below:

#include <boost/math/distributions.hpp>

void distributionFuncl (){

boost::math::normal_distribution<> d(0.5,1);

std::
std::
std::
std::
std::
std::
std:
std::
std:

std::
std::
std::

cout << "CDF:"<< cdf(d,0.2)<< std::endl;

cout << "PDF:"<< pdf(d,0.0)<< std::endl;

cout << "Inverse:"<< quantile(d,0.1)<< std::endl;
cout << "Mode:"<< mode(d)<< std::endl;

cout << "Variance:"<< variance(d)<< std::endl;
cout << "SD:"<< standard_deviation(d)<< std::endl;

:cout << "Skew:"<< skewness(d)<< std::endl;

cout << "Kurtosis:"<< kurtosis(d)<< std::endl;

:cout << "Ezcess Kurt:" << kurtosis_excess(d)<< std::endl;

pair<double,double> sup=support(d);
cout << "Left Sup:"<< sup.first<< std::endl;
cout << "Right Sup:"<< sup.second<< std::endl;

Boost Intro December 2010

21 / 98

The output of function void distributionFunc1() is

CDF:0.382089
PDF:0.352065
Inverse:-0.781552
Mode:0.5

Variance:1

SD:1

Skew:0

Kurtosis:3

Excess Kurt:0

Left Sup:-1.79769e+308
Right Sup:1.79769e+308

Dimitri R ic Boost Intro December 2010 22 / 98

The constructors for other distributions are straightforward, take a look at the boost
documentation for details. Below, we give 10 constructor examples for various distributions.

#include <boost/math/distributions.hpp>
void distributionFunc2(){

double leftBound=0.0,rightBound=2.0;
boost::math::uniform_distribution<> di(leftBound,rightBound);

double numTrials=10,probTrial=0.2;
boost::math::binomial_distribution<> d2(numTrials,probTrial);

double degFreedom=20;
boost::math::students_t_distribution<> d3(degFreedom);
boost::math hi_squared_distribution<> d4(degFreedom);

double mean=0.0, var=0.20;
boost::math::lognormal_distribution<> d5(mean,var);
boost::math::cauchy_distribution<> d6(mean,var);

double degFreedom1=20,degFreedom2=35;
boost::math::fisher_f_distribution<> d7(degFreedoml,degFreedom2);

double nonCentPar=0.2;
boost::math::non_central_chi_squared_distribution<> d8(degFreedoml ,nonCentPar);

double arrivRate=0.2;
boost::math::poisson_distribution<> d9(arrivRate);
boost::math::exponential_distribution<> di0(arrivRate);

Boost Intro December 2010 23 / 98

Random Numbers
m Exercise

Boost Intro December 2010 24 / 98

The general construction procedure for random number generators in boost is
set a seed such that you can reproduce the same numbers,
choose a random series generator such as Mersenne-Twister,
choose the distribution function,

connect the random series generator and distribution function via a variate generator,

generate random number.
The random number can be obtained by calling the () operator on the variate generator.

=B

Boost Intro December 2010 25 / 98

The following random series generators are available at the moment
= Linear Congruential
= Additive Combine
m Inverse Congruential
m Shuffle Output
m Mersenne Twister with a period length of 219937

m Various lagged Fibonacci generators

Dimitri R ic Boost Intro December 2010 26 / 98

The following distributions have a random number generator

uniform_int: Uniform on a set of integers
uniform_real: Continuous uniform
uniform_on_spere: Uniform on a unit sphere
triangle_distribution
bernoulli_distribution
binomial_distribution

exponential _distribution
poisson_distribution
geometric_distribution
cauchy_distribution

normal_distribution

lognormal_distribution

Boost Intro

December 2010

27 / 98

In the first function below, we generate discrete uniform random numbers in the set {1, ...,6}
with Mersenne-Twister. In the second function we generate a normal variable by using a
Fibonacci Generator.

#include <boost/random.hpp>

void randomFuncil (){

}

// create seed

unsigned long seed=12411;

// produces general pseudo random number series with the Mersenne Twister Algorithm
boost::mt19937 rng(seed);

// uniform distribution on 1...6

boost::uniform_int<> six(1,6);

// connects distribution with random series

boost::variate_generator <boost::mt19937&, boost::uniform_int<>> unsix(rng,six);

std::cout << unsix() << std::endl;
cout << unsix () << std
cout << unsix () << std

void randomFunc2(){

// create seed

unsigned long seed=89210;

// produces general pseudo random number series with lagged fibonacci algorithm

boost::lagged_fibonaccil279 rng(seed);

// normal distribution with mean 10 and standard deviation 0.1

boost::normal_distribution<> norm(10,0.1);

// connects distribution with random series

boost::variate_generator <boost::lagged_fibonaccil279%, boost::normal_distribution<>>
unnorm(rng,norm) ;

std::cout << unnorm() << std::endl;
cout << unnorm() << std
cout << unnorm() << std

Boost Intro December 2010

28 / 98

The output of the first function is

N

The second function randomFunc2 gives

9.95236
9.9209
9.88191

Dimitri R Boost Intro December 2010 29 / 98

In the C++ code below, we show how to repeat a random number series by resetting its state.
We generate random variables following the Cauchy distribution. After generating 3 random
variables, we set the random number generator to the initial state by calling rng.seed(seed).

#include <boost/random.hpp>

void randomFunc3 (){
// create seed
unsigned long seed=12411;
// produces general pseudo random number with MT
boost::mt19937 rng(seed);
// distribution, that maps to 1...6
boost::cauchy_distribution<> cdist;
// connects mapping with random series
boost::variate_generator <boost::mt19937&,

boost::cauchy_distribution<>> cauchy(rng,cdist);

std::cout << cauchy() << std::endl;
std::cout << cauchy() << std::endl;
std::cout << cauchy() << std::endl;

rng.seed(seed);

std::cout << "---- -"<< std::endl;
std::cout << cauchy() << std::endl;
std::cout << cauchy() << std::endl;
std::cout << cauchy() << std::endl;

Boost Intro December 2010 30 / 98

The output after calling the function is

1.89711
0.222357
-3.88349
1.89711
0.222357
-3.88349

Dimitri R Boost Intro December 2010 31 / 98

Finally, we show how to generate a random vector with a unit length with dimension 5. This

is achieved via the unit sphere distribution.

#include <boost/random.hpp>
#include <boost/foreach.hpp>

void randomFunc4 (){
unsigned long seed=24061;
boost::mt19937 rng(seed);
niform_on_sphere<double,std::vector<double>> myUn(5);
boost::variate_generator <boost::mt19937¢&,
boost::uniform_on_sphere<double,std::vector<double>>>
unSphere (rng,myUn) ;

std::vector<double> res=unSphere();

BOOST_FOREACH (double x,res) std::cout << x << std::endl;
double sum=0.0;

BOOST_FOREACH (double x,res) sum+=x*Xx;

std::cout << "------------ " << std::endl;

std::cout << "Vector Length:" << std::sqrt(sum) << std::endl;

Boost Intro

December 2010

32 / 98

The output after calling the function is

0.897215
-0.312284
-0.311839
-0.0105574
0.0113303

Vector Length:1

Dimitri R Boost Intro December 2010 33 / 98

m Write a random number generator for the x2 distribution with any degree of freedom.
This is currently not available in the library. Use the trick, that if Y ~ U[0,1] is a
uniform distributed random variable, then

-1
X ~FgH(Y)

where F;l is the inverse CDF of the random variable X.

Dimitri R Boost Intro December 2010 34 / 98

Function

Boost Intro December 2010 35 / 98

The function class allows to instantiate a pointer to a function with a flexible and clean
syntax. The underlying objects can be any function or function pointer. The class has two
syntax forms: the preferred form and the portable form. The choice of the syntax depends on
the compiler, we will use the preferred form throughout the following discussion (for Visual
Studio 2008). The class requires the following header

<boost/function.hpp>
The basic structure of the constructor is
boost::function<return type (first variable type,..., last variable type)> f;

A boost function object which points to a function which returns a double and accepts two
double variables can be initialized with

boost: :function<double (double,double)> f;
A simple multiplication function
double myMult(const double& x, const double& y){return x*y;}
can be assigned to the boost function pointer via

f=myMult;

We can now call £(x,y) just as if this is the original function. The maximum number of input
variables is currently 10.

Dimitri R c Boost Intro December 2010 36 / 98

As an example, we will show the passing of a function pointer to some other function, which
does not know anything about the implementation of the passed object. The passed
functions will be the payoffs of a call and a put respectively. Obviously, this is a toy example.
However, this example can be extended easily to more complex examples. For example, one
can think of a Monte Carlo engine, which accepts any payoff function.

#include <boost/function.hpp>

double myCall(const double& spot, const double& strike){
return std::max(spot-strike,0.0);

}

double myPut(const double& spot, const double& strike){
return std::max(strike-spot,0.0);

}

void printRes(boost::function<double(double,double)> f,

const double& x, const double& y){

std::cout << "Result:" << f(x,y) << std::endl;

}

void testingFunctionl (){
double s=112.5,K=105.0;
boost::function<double (double,double)> funcPtr;

funcPtr=myCall;
printRes (funcPtr,s,K);

funcPtr=myPut;
printRes (funcPtr,s,K);

Boost Intro December 2010 37 / 98

The output of the function is

Result:7.5
Result:0

Calling a boost::function object which has not been assigned to another function will result
in an exception. However, it is possible to check if the function object is a NULL pointer:

boost: :function<double (double)> f;
if (1f) //Error. Do something here

The same can be achieved by calling the £.empty() function. Assigning a function to boost
function can be done in various ways. The following three versions for a given function
myFunc are legal

boost: :function<double (double)> f (myFunc);

boost: :function<double (double)> f;
f=myFunc;

boost: :function<double (double)> f;
f=&myFunc;

Boost Intro December 2010 38 / 98

Note, that similar results can be achieved by a standard function pointer, such as

double (*myMultPtr) (double x, double y); //create function pointer
myMultPtr=&myMult;

However, myMultPtr needs exactly the same parameter types as the myMult function, no
implicit conversions of variables are possible.

Something that can not be done by standard function pointers is the definition of a class
member function pointer. For example, consider a class X with a function

double X::myFunc(double x). One is interested in ”extracting” the member function by
declaring a function pointer to it. This can be achieved with boost’s function pointer by
passing some class reference to the function (e.g. an object pointer or an object reference). A
pointer example will be demonstrated below. First, define the function pointer as

boost: :function<double (X*,double)> xMembFunc;
xMembFunc=& X::myFunc

Given an instance of X called myX the function pointer can be called via
xMembFunc (&myX,x)

This can be simplified further by using boost’s bind library which will be introduced later. A
complete example will be shown on the next slide.

Boost Intro December 2010 39 / 98

#include <boost/function.hpp>
#include <boost/bind.hpp>

class FunctionClass{
private:
double a_j;
public:

FunctionClass (const double& a):a_(a){}

double multWithA(const double& x) const{return a_x*x;}
double operator () (const double& x) const{return a_x*x;}
¥

void testingFunction2 (){
FunctionClass myClass(2.0);

double x=12.0;
// initialize function pointers to a class function

boost ::function<double (FunctionClass*,double)> funcPtr, funcPtri;
// assign the multWithA function and the operator
funcPtr=¢FunctionClass::multWithA;
funcPtri=&FunctionClass::operator ();

std::cout << myClass.multWithA(x) << std::endl;
std::cout << funcPtr (&myClass,x) << std::endl;
std::cout << funcPtri(&myClass,x) << std::endl;

// bind the function with the class instance
boost::function<double (double)> funcPtrNew;
funcPtrNew=boost::bind (funcPtr ,&myClass,_1);

std::cout << funcPtrNew(x) << std::endl;

Boost Intro December 2010 40 / 98

The output of the function is

24
24
24
24

In some cases it is expensive to have boost function clone a function object. In such cases, it

is possible to request that Boost keeps a reference to the function object by calling the
boost::ref function. Example code follows.

#include <boost/function.hpp>

double myMult (const double& x, const double& y){
return x*y;

}

void testingFunction3 (){
boost::function<double (double,double)> myMultPtr;
myMultPtr=boost::ref (myMult);
std::cout << myMultPtr(3.0,3.0) << std::endl;

Boost Intro December 2010

41 / 98

Bind
m Exercise

Boost Intro December 2010 42 / 98

The bind class is able to bind any function object argument to a specific value or route input
arguments into arbitrary positions. Bind does not need to know anything about the variable
types the function accepts/returns, which allows a very convenient syntax. The class works
for functions, function objects and function pointers. Example applications are:

= You have a function which accepts many arguments, and you would like to work with
one variable only, keeping the others constant.
m You are given a function which you can not modify and you would like to call the

function with the parameters being in a different, probably more intuitive order.

Many of the applications above arise in situations where a library is used which accepts a
functor where the order or number of variables is different than in the own function interface.
The function header is

<boost/bind.hpp>

Bind can be used very conveniently with boost function classes, which will be used
throughout this introduction. Boost bind refers to input variables by their number with a _
prefix in the order they are passed to the function. For example, _1 denotes the first
argument of the function.

Dimitri R Boost Intro December 2010 43 / 98

As an example, we consider the indicator function called indicatorFunc on the interval [a, b]
declared as

double indicatorFunc(const double & x, const double & a, const double & b)

The indicator function I(z)[q,p) is 1, if « € [a, b] and zero otherwise. Suppose, you need to
work a lot with this function on the interval [—1,1]. You certainly don’t want to write
indicatorFunc(x,-1,1) each time you need the function. And you might not be interested in
declaring an extra function for each new interval. The new function you want will be a simple
function accepting and returning a double variable. We will declare it as a boost function first

boost::function<double (double)> indPmOne;

The bind class allows you to bind specified parameters a,b to the declared indPmOne function
object via

double a=-1.0, b=1.0;
indPmOne=boost: :bind<indicatorFunc,_1,a,b)

The _1 indicates that the first parameter should stay as it is, while the other parameters
should be fixed. The H(@[—LO,LO] version can now be called easily via

indPmOne (x)

The corresponding code follows.

Boost Intro December 2010 44 / 98

#include <boost/bind.hpp>
#include <boost/function.hpp>

double indicatorFunc(const double& x, const double& a, const double& b){
if (x>=a && x<=b) return 1.0;
else return 0.0;

}

void testingBind1l (){
double a=-1.0, b=1.0;

boost::function<double (double)> ind;
ind=boost::bind(indicatorFunc,_1,a,b);

std::cout << ind(2.0) << std::endl;
std::cout << ind(0.5) << std::endl;

}

The output is

Boost Intro December 2010 45 / 98

Now suppose you like the original function declaration

double indicatorFunc(const double & x, const double & a, const double & b)
but you prefer some other order of the variables, for example passing the interval bounds first

double indicatorFunc(const double & a, const double & b, const double & x)
To do this, define a corresponding function object

boost: :function<double (double, double, double)> indReordered;
The bind class allows you to reorder the input parameters via
indReordered=boost: :bind<indicatorFunc,_3,_1,_2)

This is somewhat tricky. If the function is called by using the command

indReordered(a,b,x)

it is read as follows: take third argument of the invoked function and put it in the first place
of the original function. Take the first argument and put it in the second original place....
Example code follows.

Boost Intro December 2010 46 / 98

#include <boost/bind.hpp>
#include <boost/function.hpp>

double indicatorFunc(const double& x, const double& a, const double& b){
if (x>=a && x<=b) return 1.0;
else return 0.0;

}
void testingBind2 (){
double x=1.01,a=-1.0, b=1.0;

std::cout << "Original Function:" <<indicatorFunc(x,a,b) << std::endl;
boost::function<double (double, double, double)> indReordered;
indReordered=boost::bind (indicatorFunc,_3,_1,_2); // (a,b,x)

std::cout << "Reordered Arguments:" << indReordered(a,b,x)<< std::endl;

}

The output is

Original Function:0
Reordered Arguments:0

Boost Intro December 2010 47 / 98

A very useful functionality is the binding of class member functions. Suppose you have a
class X with a function f and you have an instance x of class X. The syntax to bind and call
the function is

bind(&X::f, &x, _1)(y);

where we are passing the instance and function by reference. We will demonstrate this in a
simple example. Suppose you have your own normal distribution class with a default
constructor NormalClass() and a memeber function normalPdf which returns the density for a
given mean and standard deviation as

double normalPdf (const double& x, const double& mean, const double& std)

You are unhappy about this architecture since you are convinced that passing the mean and
standard deviation to the constructor would have been much more convenient. In particular,
because you will use the standard normal setup most of the time. However, suppose you
can’t change the framework. You can setup the standard normal density by defining a boost
function as

boost: :function<double (double)> stdNd;
and bind the class member function to the boost function by calling
stdNd=boost: :bind (&NormalClass: :normalPdf,&nc,_1,0.0,1.0);

with nc being an instance of NormalClass.

Boost Intro December 2010 48 / 98

Now, you can easily call the standard normal density with stdNd(x). A complete example is

shown below
#include <boost/math/distributions.hpp>
#include <boost/bind.hpp>

#include <boost/function.hpp>

class NormalClass{

public:
NormalClass (){}
double normalPdf (const double& x, const double& mean, const double& std){
boost::math::normal_distribution<> d(mean,std);
return pdf (d,x);
}
double normalCdf (const double& x, const double& mean, const double& std){
boost::math::normal_distribution<> d(mean,std);
return cdf(d,x);
¥
};

void testingBind3 (){

boost::function<double (double)> stdNd, stdNcumm;
NormalClass nc;

stdNd=boost::bind (4NormalClass::normalPdf ,&nc,_1,0.0,1.0);
stdNcumm=boost::bind (&NormalClass::normalCdf ,&nc,_1,0.0,1.0)

std::cout << stdNd(1.1) << std::endl;
std::cout << stdNcumm(0.0) << std::endl;

The output is

0.217852
0.5

Boost Intro December 2010 49 / 98

m Write a SimpleGenericMonteCarloClass with the following constructor

SimpleGenericMonteCarloClass(boost: :function<double (double)>& pathGen,
unsigned long& seed, unsigned long& numSims)

The function pathGen accepts a standard normal variable and returns the asset at time 7.
The constructor should then invoke the generation of numSims standard normals saved in
a boost: :shared_ptr<std::vector<double>>. The normal variables can be generated using
boost’s random number generators with the provided variable seed. The class should
have a function

void performSimulation(boost::function<double (double)> discPayoff)

which calculates the discounted expected Monte Carlo value. The function discPayoff
accepts the asset at time T' (generated by pathGen) and returns the discounted payoff.
Implement a getMean() function which returns the mean. After setting up the class,
calculate a plain vanilla put price in a Black-Scholes setup. All market parameters
should be bind to the corresponding functions. This implies binding the discount factor
and strike to discPayoff and binding all GBM parameters to pathGen.

Boost Intro December 2010 50 / 98

@ The Any Class

Boost Intro December 2010 51 / 98

The any class does exactly what the name says: it can take any value. This can be helpful in
situations, where we receive a general object whose type is not known at this point. As
shown in the code below, we can assign any variable to myVar, a double, a string or even a
std: :vector<double>. Also, we can pass any variable type to a function which accepts an any
object. The code below compiles without any errors.

#include <boost/any.hpp>

#include <vector>

void callAny(boost::any x);

void AnyTestingl (){
boost::any myVar;
myVar=1.1;
myVar=std::string("1.1");
myVar=std::vector<double>(3);

double x=1.1;

callAny (x);
}

void callAny(boost::any x){
// do nothing
}

Boost Intro December 2010 52 / 98

The type of the any variable can be checked with the type() function against the standard
typeid(T) function, as shown in the code below. To retrieve the original variable back, use
the any_cast function called by

T* ptrMyT=boost::any_cast<T>(&myAny) ;

for a general class T. The result is a NULL pointer, if the cast was not successful, otherwise it
is a valid pointer.

#include <boost/any.hpp>

void AnyTesting2 (){

boost::any myAny;
double myDbl(1.1);

myAny=myDbl;

bool isDbl=myAny.type()==typeid(double);

std::cout << "Is Double:" << isDbl << std::endl;
bool isString=myAny.type ()==typeid(std::string);
std::cout << "Is String:" << isString << std::endl;

double* ptrMyDbl=boost::any_cast<double>(&myAny);
if (ptrMyDbl!=NULL) std::cout << "My Double: "<< *ptrMyDbl << std::endl;

int* ptrMyInt=boost::any_cast<int>(&myAny);
if (ptrMyInt==NULL) std::cout << "Cast Failed" << std::endl;

Boost Intro December 2010 53 / 98

The output of the function is

Is Double:1
Is String:0
My Double:1.1
Cast Failed

The any class can be very useful for setting up property sets of objects. An illustration for
the property set of a barrier option is shown below.

#include <boost/any.hpp>

#include <string>

#include <map>

void AnyTesting3 (){
enum BarrierType{DownAndOut ,UpAndIn,DownAndIn,UpAndOut};
std::map<std::string,boost::any> myPropertySet;
myPropertySet ["domRate"]=0.003;
myPropertySet [“forRate”]=0.031;

myPropertySet ["Name"]=std::string("Barrier Option");
myPropertySet ["BarrType "]=BarrierType (DownAndOut);

Boost Intro December 2010 54 / 98

Optional

Boost Intro December 2010 55 / 98

Boost optional provides a framework to deal with objects whose initialization is optional. An
example is a function which returns an object whose construction has either been successful
or not. The library provides a framework to check if the object has been initialized or not.
Another example is a class member variable, which is initialized by one of the constructors.
Before using the variable, a check for initialization has to be performed. The library has to
be included with the following header

<boost/optional.hpp>

The initialization of an optional object is performed with
B boost::optional<T> opt(t);

where t is an instance of the template class T. The variable opt now has a value of 1. If opt is
not initialized, it has a value of 0. Consequently, we can check if opt has one of the values
before proceeding. Alternatively, the variable can be checked against the NULL keyword.

Dimitri R Boost Intro December 2010 56 / 98

The class object passed to optional can be dereferenced in various ways. Example functions
which return objects or pointers to objects are

m get(): returns the object
m operator *(): returns the object
m get_ptr() returns a pointer to the object
Example code for an initialization of a double variable follows
#include <boost/optional.hpp>
void testingOptionall (){
boost::optional<double> myOpti;
double b=1.1;
boost::optional<double> myOpt2(b);

std::cout << myOptl << std::endl;
std::cout << myOpt2 << std::endl;

if (myOpt1==NULL){
std::cout <

N

"Empty Object” << std::endl;
}
elseq{

n

std::cout << *myOptl << std::endl;

¥

if (myOpt2==NULL){
std::cout <

n

"Empty Object” << std::endl;
b3
elsed{

std::cout <

N

myOpt2.get () << std::endl;

}

Boost Intro December 2010 57 / 98

The output of the function is

0

1

Empty Object
1.1

A nice feature of the class is the implementation of the == operator, which allows to compare
the optional object with a base object. For example, the following code

B double a=10.0; boost::optional<double> optA(a);
bool isA=(optA==a);

sets isA to true. To conclude the discussion, we give an example of an optional member
variable initialization. We discuss a class called SimpleSettlementClass with two constructors.
The first constructor takes the settlement date, while the second is created with a settlement
date and the number of days which has to be added to the settlement date. A settlement()
function returns the settlement while a settlementDays() function returns the days for the
shift. The first constructor does not initialize the settlement days, so we set this variable to
be optional. The class uses boost’s date library which will not be introduced here. The
syntax is straightforward. The example code follows.

Dimitri R ic Boost Intro December 2010 58 / 98

#include <boost/date_time/gregorian/gregorian.hpp>
#include <boost/optional.hpp>

class SimpleSettlementClass{

private:

public:

boost::gregorian::date d
boost::optional<int> settlementDays_;

SimpleSettlementClass(const boost::gregorian::date& d):d_(d){
// default constructor with settlement date given

};

SimpleSettlementClass (const boost::gregorian::date& d, const int& settlementDays):d_(d),
settlementDays_(settlementDays){
// constructor with initial date + settlement days

};
boost::gregorian::date settlement() const{

if (settlementDays_){
return d_+boost::gregorian::days(*settlementDays_);
¥
else{
return d_;
}
¥
int settlementDays() const{
if (settlementDays_){
return *settlementDays_;

else{
return 0;

¥

Boost Intro December 2010

59 / 98

The class functionality is tested with
#include "Optional2.h"

void testingOptional2 (){
boost::gregorian::date d1(2009,9,20);

SimpleSettlementClass settlement1(dil);
SimpleSettlementClass settlement2(d1,3); // advance settlement by 3 days

std:: "Settlement 1: " << settlementl.settlement ()<< std::endl;
std "Settlement 2: " << settlement2.settlement ()<< std::endl;
std "Settlement 1 Days: " << settlementl.settlementDays ()<< std::endl;
std:: "Settlement 2 Days: " << settlement2.settlementDays ()<< std::endl;

}

The output of the function is

Settlement 1: 2009-Sep-20
Settlement 2: 2009-Sep-23
Settlement 1 Days: O
Settlement 2 Days: 3

Of course there is a much easier way to achieve the same result, by doing the appropriate
calculations in the constructor. However, one can think of other cases where the optional
framework is appropriate. We note that the optional class can provide the framework for a
Null class which holds a not initialized object of any type.

Boost Intro December 2010 60 / 98

Serialization

Boost Intro December 2010 61 / 98

The serialization library allows to store classes and objects in binary format. The original
objects can later be reconstructed from the binary files. The binary format can be a text file,
xml file or bin file. The library allows to incorporate serialization of existing classes and
provides serialization for some standard STL objects. We will demonstrate the last case first.
Let us assume that you want to generate 5.000.000 normal random variables once, store them
in a std::vector and reuse it in other classes later. This will obviously save time as you just
have to read in the vector without generating the numbers again. We will store the vector in
a bin file which is in this case smaller than an equivalent text file. To do this, we initialize
the standard interface to write data to files as output streams by creating a std::ofstream
object with the std::ios::binary flag.

m std::ofstream ostr("filepath”, std::ios::binary)
There are different headers for different serialization formats, in our case we include

<boost/archive/binary_oarchive.hpp>
since we are interested in a bin serialization. The ”0” in ”oarchive” indicates that this is an
output. Next, we open a binary output archive, which needs an output stream in its
constructor

B boost::archive::binary_oarchive oa(ostr);

Given a vector called myVec the vector can be serialized with

m oa << myVec;

That’s it!

Dimitri R c Boost Intro December 2010 62 / 98

We will demonstrate the example by saving the resulting file in the folder
C:\Boost\Serialization The file name will include the seed with which the numbers were
created. The boost random number library will be used and we will print the time which is
needed to run the code.

#include <boost/archive/binary_oarchive.hpp>
#include <boost/serialization/vector.hpp>
#include <boost/foreach.hpp>

#include <boost/random.hpp>

#include <fstream>

#include <ostream>

#include <sstream>

#include <boost/timer.hpp>

void testingSerializationl (){
// start timer

// Random Number generator setup

unsigned long seed=89210;

std::stringstream stream; stream << seed;

// create and open an archive for output
std::string filename("C:\\Boost\\Serialization\\");
filename+= "normal_mt_"+stream.str(O)+".bin";

std::ofstream ostr(filename.c_str(),std::ios::binary);
boost::archive::binary_oarchive oa(ostr)

// setup random number generators
boost::mt19937 rng(seed);
boost::normal_distribution<> norm;

t19937&, boost::normal_distribution<>> normGen(rng,norm)

boos
/7 -
int numVars=5000000;

std::vector<double> myVec (numVars);

BOOST_FOREACH (double& x, myVec) x=normGen () ;

// serialize myVec

oa << myVec;

// close file

ostr.close();

std::cout << "Elapsed time:" << t.elapsed() << std::endl

variate_generator <boost

Boost Intro December 2010 63 / 98

The output of the program is

Elapsed time:8.937

The program creates a file called normal_mt_89210.bin in the C:\Boost\Serialization folder. In
the next step we will setup a different program which reconstructs the original std::vector
from this file. To do this, we create an instream file with

B std::ifstream istr(filename.c_str(), std::ios::binary);

where we need again to pass the std::ios::binary flag. Then, the

<boost/archive/binary_iarchive.hpp>

header needs to be included. This time, it is an ”in archive”, which we initialize with
B boost::archive::binary_iarchive ia(istr);

Finally, we will read in the vector called myVecLoaded with
B ia >> myVecLoaded;

The vector is now ready for usage. The whole example is shown below, we print the first 10
components to check that the vector is not empty.

Dimitri R c Boost Intro December 2010 64 / 98

#include <fstream>
#include <ostream>

#include <sstream>

#include <boost/timer.hpp>

#include <boost/serialization/vector.hpp>
#include <boost/archive/binary_iarchive.hpp>

void testingSerialization2(){

boost::timer t;

// create and open a character archive for input
std::string filename("C:\\Boost\\Serialization\\");
filename+= "normal_mt_89210.bin";

std::ifstream istr(filename.c_str(), std::ios::binary);

std::vector<double> myVecLoaded;

// create and open an archive for input
boost::archive::binary_iarchive ia(istr);
ia >> myVecLoaded;

istr.close();
for(int i=0; i<10;i++) std::cout << myVecLoaded[i] << std

std::icout << M----m-mm-mmmmoooooo " << std::endl;
std: " << t.elapsed() << std::endl;

icout << "Elapsed:

Boost Intro

::endl;

December 2010

65 / 98

The output of the function is

-0.0316076
0.585161
-0.00298983
1.83834
-1.12767
0.327939
0.531909
0.57683
1.39802
-0.0913574

Elapsed:0.187

Obviously, the time to read in the vector is much smaller than the equivalent generating
routine of new random numbers.

Dimitri R ic Boost Intro December 2010 66 / 98

The next example shows how a whole class can be serialized. We will serialize again in a bin
file, since the reconstruction in the example below works faster with the bin version.
However, we will show how to serialize in a text file too, without reconstructing the class.

The example discusses the class SimpleGenericMonteCarloClass. The constructor accepts a seed
variable called seed and a numSim variable which is the number of simulations. The
constructor will then trigger a function called constructNormalVec() which constructs a
std::vector with numSim standard normal random variables. The simulation is performed by
calling the performSimulation(...) function. The function accepts the

B boost::function<double (double)> discountedPayoff
B boost::function<double (double)> pathGen

variables. The function pointer discountedPayoff accepts the value St and returns the
discounted payoff. The pathGen variable accepts a standard normal variable and returns the
asset at time T'. The function performSimulation(...) will calculate the mean_ variable which
can be returned by calling the getMean() function.

Boost Intro December 2010 67 / 98

The example shows that the library can serialize boost: :shared_ptr objects, an important
functionality since many classes will have such objects as members. The corresponding
header has to be included with

<boost/serialization/shared_ptr.hpp>

The standard normal variables will be saved in a boost: :shared_ptr<std: :vector<double>>
object, which will be serialized since it is a class member. The serialization is invoked by
defining a template member function called

template<class Archive> void serialize(Archive & ar, const unsigned int vers)

The function accepts the archive (e.g. a text, xml, binary archive) and a version number. A
member variable myDbl of type double can be serialized by calling

m ar & myDbl;

This needs to be performed on each member variable manually. The generic Monte Carlo
class is an example of a possible serialization scenario. The Monte Carlo setup can be
performed once and the class can be serialized, such that all important variables (i.e. mean)
are available after reconstruction. Also, the vector with the normal variables is available after
reconstruction such that we can call performSimulation(...) with some other payoff function
which will not trigger any new random number generation. The code for the class is shown
below.

Boost Intro December 2010 68 / 98

#include
#include
#include
#include
#include

class Si
private:

public:

<boost/function.hpp>
<boost/serialization/shared_ptr.hpp>
<boost/serialization/vector.hpp>
<boost/foreach.hpp>
<boost/random.hpp>

mpleGenericMonteCarloClass{

boost::shared_ptr<std::vector<double>> normVec_;
double mean_;
unsigned long numSims_,seed_;
// setup normal vec;
void constructNormalVec (){
mt19937 rng(seed_);
normal_distribution<> norm;
variate_generator <boost::mt19937&, boost::normal_distribution<>> normGen(rng,norm);
BOOST_FOREACH (double& x, *normVec_) x=normGen();
¥
SimpleGenericMonteCarloClass (){};
SimpleGenericMonteCarloClass (unsigned long numSims, unsigned long seed):mean_(0.0),
numSims_(numSims),seed_(seed), normVec_(new std::vector<double>(numSims)){
constructNormalVec ();
};
double getMean()const{return mean_;};
double getNumberSimulations()const{return numSims_;};
void performSimulation(boost::function<double (double)> pathGen,
boost::function<double (double)> discountedPayoff){
mean_=0.0;
double pathVal;
BOOST_FOREACH (double x, *normVec_){
pathVal=pathGen(x);
mean_+=discountedPayoff (pathVal);
¥
mean_=mean_/((double)numSims_);
¥

template<class Archive> void serialize(Archive & ar, const unsigned int version){
ar & mean_;
ar & numSims

e Boost Intro S ——

69 / 98

The following functions will assist in the function pointer setup

double gbmPath(double spot, double rd, double rf, double vol, double tau, double rn){
double res=spot*std::exp((rd-rf-0.5*%vol*vol)*tau+vol*std::sqrt(tau)*rn);
return res;

}

double discountedCallPayoff (double assetValue, double strike, double rd, double tau){
double res=std::max(assetValue-strike,0.0)*std::exp(-rd*tau);
return res;

¥

double discountedPutPayoff (double assetValue, double strike, double rd, double tau){
double res=std::max(strike-assetValue,0.0)*std::exp(-rd*tau);
return res;

Boost Intro December 2010 70 / 98

The serialization can be performed with the same syntax which was used during the
serialization of the std::vector class

#include <boost/archive/text_oarchive.hpp>

#include <boost/archive/binary_oarchive.hpp>

#include <boost/foreach.hpp>

#include <boost/function.hpp>

#include <boost/bind.hpp>

#include <boost/random.hpp>

#include <fstream>

#include <ostream>

#include <sstream>

#include "Serialization3.h" // Header with SimpleGenericMonteCarloClass
#include "Serialization.h" // Header with payoffs and gbm functions

void testingSerialization3(){

unsigned long numSims=1000000, seed=20424;
double spot=100.0, strike=102.0, rd=0.02, rf=0.03, vol=0.124, tau=1.0;

boost::function<double (double)> pathGen, discountedPayoff;
pathGen=boost::bind (gbmPath,spot,rd,rf,vol,tau,_1);
discountedPayoff=boost::bind(discountedCallPayoff,_1,strike,rd,tau);

SimpleGenericMonteCarloClass mc(numSims, seed);

mc.performSimulation (pathGen,discountedPayoff);

std::string filenameTxt("C:\\Boost\\Serialization\\monteCarloTest.tzt");
std::string filenameBin("C:\\Boost\\Serialization\\monteCarloTest.bin");

std::ofstream ostrTxt(filenameTxt.c_str());
std::ofstream ostrBin(filenameBin.c_str(), std::ios::binary);

boost::archive::text_oarchive oaTxt(ostrTxt);
boost::archive::binary_oarchive oaBin(ostrBin);

oaTxt << mc; oaBin << mc;

ostrTxt.close();ostrBin.close();

Boost Intro December 2010 71 / 98

We have serialized an instance of the Monte Carlo class in a textfile by including
B <boost/archive/binary_oarchive.hpp>
and using

B boost::archive::text_oarchiv

similar to the binary output archive case. After running the programm, a monteCarloTest.txt
and monteCarloTest.bin file is created in the folder C:\Boost\Serialization. In the example we
use the bind function to bind all relevant market variables to the payoff and path generation
functions. In the next example, we will load the class and print the mean. This should return
the Monte Carlo call value. Afterwards, we will call performSimulation(...) with a put payoff
to check if the vector with the normal variables is recovered correctly. The mean (the put
value) is printed again.

Dimitri R Boost Intro December 2010 72 / 98

#include <boost/archive/text_iarchive.hpp>

#include <boost/archive/binary_iarchive.hpp>

#include <boost/function.hpp>

#include <boost/bind.hpp>

#include <fstream>

#include <ostream>

#include "Serialization3.h" // Header with SimpleGenericMonteCarloClass
#include "Serialization4.h” // Header with payoffs and gbm functions

void testingSerialization4 (){
std::string filenameBin("C:\\Boost\\Serialization\\monteCarloTest.bin")

std::ifstream istrBin(filenameBin.c_str(), std::ios::binary);
boost::archive::binary_iarchive iaBin(istrBin);

SimpleGenericMonteCarloClass mc;

iaBin >> mc;

istrBin.close();

std::cout << "Mean 0ld (Call):" << mc.getMean() << std::endl;

double spot=100.0,strike=102.0, rd=0.02,tau=1.0, rf=0.03, vol=0.124
boost::function<double (double)> discountedPayoff,pathGen;

discountedPayoff=boost::bind(discountedPutPayoff,_1,strike,rd,tau);
pathGen=boost : : bind (gbmPath ,spot ,rd,rf,vol,tau,_1);

mc.performSimulation(pathGen,discountedPayoff);
std::cout << "Mean New (Put):" << mc.getMean() << std::endl;

Boost Intro December 2010 73 / 98

The output of the function is

Mean 01d (Call):3.53694
Mean New (Put):6.4885

The analytical values for the given market parameters are 3.5421 (Call) and 6.4778 (Put).
The discussed example is relatively simple. However, one can think of more complex
examples of serializing a class with a numerically intensive procedure which can be performed
once. We conclude the section by noting that inheritance can be incorporated by calling

B boost::serialization::base_object<baseClassName>(*this);

in the serialize function of the derived class. The details can be found in the library
documentation.

Dimitri R ic Boost Intro December 2010 74 / 98

Filesystem

Boost Intro December 2010 75 / 98

The filesystem library provides functionalities to iterate through folders, checking if a folder
exists or renaming a folder/file. A typical application is an installation procedure, where the
installer has to check if a previous version of the program exists. Also, the existence of
important files has to be checked before proceeding with the installation. The following
discussion will analyze the previously discussed C:\Boost\Serialization path where the
following three files are available from the previous examples

m monteCarloTest.bin
B monteCarloTest.txt
B normal_mt_89210.bin

Our first step is to write a function which lists the present files. This requires the definition
of a path. An instance of a path can be created with

® boost::filesystem::path myPath("C:/Boost/Serialization”);

We can check the existence of the path by calling the exists(myPath) function which returns a
boolean.

Dimitri R Boost Intro December 2010 76 / 98

Subpaths can be created by a convenient appending procedure. Assume that we have to
create a subpath called newPath to the folder TestFolder. Instead of calling

B boost::filesystem::path newPath("C:/Boost/Serialization/TestFolder");
we can equivalently use the base path to append the subfolder with
® boost::filesystem::path newPath=myPath /"TestFolder";

To create a folder, the function create_directory(path) has to be called. A complete function
which tests the introduced functionalities is shown below

#include <boost/filesystem.hpp>
namespace fs=boost::filesystem;

void testingFileSystem1 (){

fs::path myPath(“C:/Boost/Serialization”);
bool pathExists=fs::exists(myPath);
std::cout << pathExists << std::endl;

fs::path newPath=myPath / "test.tzt";
pathExists=fs::exists(newPath);

std::cout << pathExists << std::endl;
fs::path myPathCreated=myPath/"TestFolder"
f create_directory (myPathCreated);
pathExists=fs::exists(myPathCreated);
std::cout << pathExists << std::endl;

}

The output of the function is

O =

Boost Intro December 2010 77 / 98

There are various functions which return informations for the path, such as
m root_path() which returns the upper level root, i.e. C:\
m parent_path() which returns the next upper level, i.e. C:\Boost
m filename() returns the filename, i.e. monteCarloTest.bin

Other functions will be introduced below. To iterate through a folder, a directory_iterator
has to be created. There are mainly two constructors for this iterator

m basic_directory_iterator(const Path& dp): constructs an iterator pointing to the first
entry in the directory dp.

m basic_directory_iterator(): constructs the end iterator, equivalent to the STL end
iterators

The iterator can be increased via the usual ++ operator. In the next example we will iterate
through the example folder and print the whole path as well as the filename. Furthermore,
we will print the size of the file by calling

m file_size(const Path& p)

which returns the size in bytes. Additional functions allow to test if the current path is a
directory or a file. The corresponding functions are

® is_directory(path)

B is_regular_file(path)

Dimitri R Boost Intro December 2010 78 / 98

#include <boost/filesystem.hpp>
namespace fs=boost::filesystem;

void testingFileSystem2 (){

:path myPath("C:\\Boost\\Serialization")
directory_iterator itr(myPath);
::directory_iterator end_itr;

cout << myPath.root_path() << std::endl;
cout << myPath.parent_path() << std::endl;

while (itr!=end_itr && !fs

is_directory (itr->path())){

"<< std::endl;

"Path: "<< itr->path()<< std::endl;

"Filename: "<< itr->path().filename ()<< std::endl;

"Is File: "<< fs::is_regular_file(itr->path()) << std::endl;
"File Size file_size(itr->path())<< std::endl;

Boost Intro December 2010 79 / 98

The output

of the function is

c:/
c:/

:/Boost

Path: C:/Boost/Serialization/monteCarloTest.bin
Filename: monteCarloTest.bin

Is Regular File: 1

File Size :8000069

Path: C:/Boost/Serialization/monteCarloTest.txt
Filename: monteCarloTest.txt

Is Regular File: 1

File Size :20161485

Path: C:/Boost/Serialization/normal mt_89210.bin
Filename: normal mt_89210.bin

Is Regular File: 1

File Size :40000043

Boost Intro

December 2010

80 / 98

The next steps will explain the copy, rename and remove functions:
m fs::copy_file(toBeCopiedPath,copyPath)
® fs::rename(oldName,newName)

m fs::remove(fileName)

To test the functions, we will copy the monteCarloTest.bin from C:\Boost\Serialization to
C:\Boost\Serialization\TestFolder. The new file will be called monteCarloTestCopied.bin. We
will then rename the file to monteCarloTestRenamed.bin and delete it afterwards. The directory
contents at each stage will be printed to assess if the operations were successful. The code is
shown below.

Boost Intro December 2010 81 / 98

#include <boost/filesystem.hpp>
namespace fs=boost::filesystem;

void testingFileSystem3 (){

try{

path originalFile("C:/Boost/Serialization/monteCarloTest.bin");
::path copiedFile("C:/Boost/Serialization/TestFolder/monteCarloTestCopied.bin");
:path newFileName("C:/Boost/Serialization/TestFolder/monteCarloTestRenamed.bin");

fs::directory_iterator itr(copiedFile.parent_path());
fs::directory_iterator end_itr;

while(itr!=end_itr){

std::cout << "Directory files begin: "<< itr->path()<< std::endl;
Std:1cout << Mmmm oo "<< std::endl;
itr++;

¥

if (Ifs::exists(copiedFile)){
fs::copy_file(originalFile,copiedFile);
}

fs::directory_iterator itri(copiedFile.parent_path());
while(itri!=end_itr){
std::cout << "Directory files ater copy: "<< itrl->path()<< std::endl;
Std:1cout << Mommmm oo "<< std::endl;
itri++;

¥
fs::rename (copiedFile ,newFileName);

fs::directory_iterator itr2(copiedFile.parent_path());
while(itr2!=end_itr){

std::cout << "Directory files after rename: "<< itr2->path()<< std::endl;
std:iicout << Mmmmooommoomo oo o—ooooo oo "<< std::endl;
itr2++;

}

fs::remove (newFileName);
fs::directory_iterator itr3(copiedFile.parent_path());
while(itr3!=end_itr){
std::cout << "Directory files after remove: "<< itr2->path()<< std::endl;
e "<< istd::endl;

e TP Ttri Helgwich, | Boost Intro S ——

82 / 98

The output of the function is

Directory files ater copy:
C:/Boost/Serialization/TestFolder/monteCarloTestCopied.bin

Directory files after rename:
C:/Boost/Serialization/TestFolder/monteCarloTestRenamed.bin

Note that the first and last iterations do not print anything since the directory is empty.
Furthermore, the code shows that the class throws exceptions of type
fs::filesystem_error const & fe which can be caught for error handling.

Dimitri R ic Boost Intro December 2010 83 / 98

Matrix operations with uBLAS

Boost Intro December 2010 84 / 98

uBLAS is a C++ version of the well known Fortran package BLAS with a STL conforming
iterator interface. The library provides code for dense, unit and sparse vectors. Furthermore,
dense, identity, triangular, banded, symmetric, hermitian and sparse matrices are part of the
library.

The library covers the usual basic linear algebra operations on vectors and matrices: different
norms, addition and subtraction of vectors and matrices, multiplication with a scalar, inner
and outer products of vectors, matrix vector and matrix matrix products and a triangular
solver.

Dimitri R Boost Intro December 2010 85 / 98

It is quite intuitive to construct matrices and vectors in uBLAS. A vector containing a double
variable is initialized via vector<double> myVec(unsigned int dim, double x) where dim is the
dimension and x is a default parameter. The default parameter doesn’t have to be initialized.
Clearly, the class is a template such that <double> can be replaced by some other class. The
vector components are accessed via myVec(i) or myVec[i]. Special vectors can be created too,
such as the unit vector unit_vector<double> myUnitVec(unsigned int dim) or the zero vector
zero_vector<double> myZeroVec(unsigned int dim). We can then perform operations on the
vector, such as summing the components or calculating some norm. This is summarized
below.

#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/io.hpp>
using namespace boost::numeric::ublas;

void vecOperationi (){

vector<double> myVec(3,2.2);
myVec [2]=-5.1;

::cout << myVec << std::endl;
cout << sum (myVec) << std::endl;
cout << norm_1 (myVec) << std::endl;
cout << norm_2 (myVec) << std::endl;
cout << norm_inf (myVec) << std::endl;
::cout << index_norm_inf (myVec) << std::endl;

Boost Intro December 2010 86 / 98

Here
norm-1(v) := Z [v[d]|
norm_2(v) := \/W

and

Finally
norm_inf[v] := max(|v[Z]|)

and index_norm_inf is the vector index where this is the case. The output of the previous

function is

[3](2.2,2.2,-5.1)
-0.7

7411

= ©o o,

N oo ©

Boost Intro December 2010 87 / 98

The library provides the usual vector operations, such as a function that returns the size, the
inner product, the sum of two vectors or multiplication of a vector with a scalar. Some
examples are given below:

#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/io.hpp>
using namespace boost::numeric::ublas;

void vecOperation2(){

vector<double> myVec1(3,2.2);myVecl [2]=-5.1;
vector<double> myVec2(3,-1.2);myVec2[2]=1.1;

double multiplier=2.0;

std::cout << myVecl.size()<<std::endl;

std::cout << myVecl<<std::endl;

std::cout << myVec2<<std::endl;

std::cout << inner_prod(myVeci,myVecQ)((std::endl;
std::cout << myVecl+myVec2<<std::endl;

std::cout << myVecl-myVec2<<std::endl;

std::cout << myVecl#*multiplier<<std
std::cout << myVecl/multiplier<<std

Boost Intro December 2010 88 / 98

A matrix can be created via matrix<T> myMat (unsigned int rows, unsigned int cols) where T is
a template class. The elements are accessed via myMat (row,col) where round brackets are
necessary. The matrix has a size1() and size2() function, which returns the rows and
columns respectively. Furthermore, one can create various special matrices, such as the
identity matrix via identity_matrix<double> or the zero matrix via zero_matrix<double>.
Additional operations are the transposed of the matrix, the real part of the matrix or the
conjugate. The resize function allows to resize the current matrix without loosing the
current components. Example code is shown below.

#include
#include
#include
#include

<boost/numeric/ublas/matrix.hpp>
<boost/numeric/ublas/io.hpp>
<boost/numeric/ublas/io.hpp>
<boost/numeric/ublas/matrix.hpp>

using namespace boost::numeric::ublas;

void mat

rixOperationl O{

matrix<double> myMat (3,3,2.5);
myMat (0,0)=myMat (2,2)=1.0;
myMat (0,2)=-3.6;myMat (2,0)=5.9;

std::cout << "My Mat:"<< myMat << std::endl;

st cout << "Num Rows:"<< myMat.sizel() << std::endl;
std::cout << "Num Cols:"<< myMat.size2() << std::endl;
std::cout << "My Mat Transp:"<< trans(myMat) << std::endl;
std::cout << "My Mat Real Part:"<< real(myMat) << std::endl;
myMat .resize (4,4);

std::cout << "My Resized Mat:'"<< myMat << std::endl;

Boost Intro December 2010 89 / 98

The output of the function is

[3] (My Mat:[3,3]((1,2.5,-3.6),(2.5,2.5,2.5),(5.9,2.5,1))
Num Rows:3
Num Cols:3
My Mat Transp:[3,3]1((1,2.5,5.9),(2.5,2.5,2.5),(-3.6,2.5,1))
My Mat Real Part:[3,3]1((1,2.5,-3.6),(2.5,2.5,2.5),(5.9,2.5,1))
My Resized Mat:[4,4]((1,2.5,-3.6,0),(2.5,2.5,2.

B

5,0),(5.9,2.5,1,0),(0,0,0,0))

The matrix provides iterators such as const_iteratorl and const_iterator2 to iterate through

the matrix which reflects the behavior of containers in the STL.

Boost Intro

December 2010

90 / 98

The standard matrix operations, such as the sum and difference will be shown for the special
case of a symmetric matrix. Other matrix classes such as banded or sparse matrices are part
of the library too. The symmetric matrix type can be initialized by

symmetric_matrix<double, upper> myCorrMat (unsigned int dim). The remaining part is to write
the upper triangular matrix only, the code takes care of filling the rest of the matrix. Matrix
operations, such as adding two matrices and multiplying a matrix with a scalar are
straightforward. The multiplication of a matrix with a matrix or a vector will be covered
separately. Example code is shown below.

#include <boost/numeric/ublas/symmetric.hpp>
#include <boost/numeric/ublas/io.hpp>

using namespace boost::numeric::ublas;

void matrixOperation2(){
// defining a symmetric correlation matrix
symmetric_matrix<double, upper> myCorrMat (3);
myCorrMat (0,0)=myCorrMat (1,1)=myCorrMat (2,2)=1.0;
myCorrMat (0,1)=0.4;myCorrMat (0,2)=-0.6;
myCorrMat (1,2)=0.1;
std::cout << “Initial Mat:" << myCorrMat << std::endl;

double multiplier=0.5;

symmetric_matrix <double, upper> myCorrMatl=myCorrMat;

std::cout << "Sum Mat:" << myCorrMatl+myCorrMat << std::endl;
std::cout << "Scalar Mult:" <<myCorrMatl*multiplier << std::endl;
std::cout << "Scalar Dev:" <<myCorrMatl/multiplier << std::endl;

Boost Intro December 2010 91 / 98

The output of the function is

Initial Mat:[3,3]((1,0.4,-0.6),(0.4,1,0.1),(-0.6,0.1,1))

Sum Mat:[3,3]((2,0.8,-1.2),(0.8,2,0.2),(-1.2,0.2,2))

Scalar Mult:[3,3]((0.5,0.2,-0.3),(0.2,0.5,0.05),(-0.3,0.05,0.5))
Scalar Dev:[3,3]((2,0.8,-1.2),(0.8,2,0.2),(-1.2,0.2,2))

Boost Intro December 2010 92 / 98

It is possible to extract single rows and columns from a matrix. Also, ranges and submatrices
can be extracted. The row and column case is shown in the function matrixOperation3()
below. The product of a matrix with some other matrix or some other vector is calculated
with prod. Example code is given in the function matrixOperation4().

#include <boost/numeric/ublas/matrix_proxy.hpp>

#include <boost/numeric/ublas/vector_proxy.hpp>

#include <boost/numeric/ublas/matrix.hpp>

#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/io.hpp>

using namespace boost::numeric::ublas;

void matrixOperation3 O){
matrix<double> myMat (3,3,2.5);
myMat (0,0)=myMat (2,2)=1.0;

myMat (0,2)=-3.6;myMat (2,0)=5.9;

matrix_row<matrix<double>> mr (myMat ,2);
matrix_column<matrix<double>> mc(myMat ,2);

std::cout << "Mat:" << myMat << std::endl;
st cout << "Row:" << mr
std::cout << "Col:" << mc

}
void matrixOperation4 (){

matrix<double> myMat(3,3,2.5);
myMat (0,0)=myMat (2,2)=1.0;
myMat (0,2)=-3.6;myMat (2,0)=5.9;

vector<double> myVec (3,2.0);
std::cout << prod(myMat,myMat) << std::endl;
std::cout << prod(myMat,myVec) << std::endl;

Boost Intro December 2010 93 / 98

The output of the first function is

Mat: [3,3]((1,2.5,-3.6),(2.5,2.5,2.5),(5.9,2.5,1))
Row:[3](5.9,2.5,1)
Col:[3]1(-3.6,2.5,1)

and the output of the second function is

[3,31((-13.99,-0.25,-0.95),(23.5,18.75,-0.25) , (18.05,23.5,-13.99))
(-0.2,15,18.8)

Dimitri R

Boost Intro December 2010 94 / 98

Currently, the uBLAS library does not seem to focus on common operations such as
calculating the inverse of a matrix, its determinant or the eigenvalues. Also, decompositions
such as the QR decomposition are not available. However, there is a LU decomposition
header in the library, which is not well documented at the current stage. Also, there is a
LUP decomposition class (LU decomposition with partial pivoting with P being a
permutation matrix) which is in my opinion not very intuitive to use. However, we provide
an example for solving the system Az = b with LUP on the next slide, where we have
commented each step. The output of calling the function is presented below. The uBLAS
library’s current focus seems to be the efficient performance of very basic operations on
special matrix classes. It is not a powerful Linear Algebra package in the current state.

Dimitri R Boost Intro December 2010 95 / 98

#include <boost/numeric/ublas/io.hpp>
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/lu.hpp>

using namespace boost::numeric::ublas;

void matrixOperation5(){
// our goal is to solve: A*x=b for the variable x;
matrix<double> A(3,3,-0.5);
A(0,0)=A(2,2)=1.8;
A(0,2)=-2.6;A(2,0)=1.9;

vector<double> b(3,0.4); b(0)=-0.3;

// define copies of A and b since the original
// objects will be overwritten in the code !!!
matrix<double> Al=
vector<double> x=b;

// define the permuation matrix, which is
// actually a vector
permutation_matrix<double> P1(Al.sizel1());

// do the LUP factorization, overwrite Al
// such that it summarizes L and U in At,
// also, P1 will be overwritten
lu_factorize (A1,P1);

// write x, our final solution with the
// overwritten objects Al and P1
lu_substitute (A1,P1,x);

std::cout << "g=" << x << std::endl;

// check if we receive our original b back?
std::cout << "A¥z=" << prod(A,x) << std::endl;
std::cout << "b=" << b<< std::endl;

Boost Intro

December 2010

96 / 98

The output of the function is

x=[3] (-0.155857,-0.806776,0.162633)
A*x=[31(-0.3,0.4,0.4)
b=[3](-0.3,0.4,0.4)

which shows that the original vector b is recovered correctly.

Boost Intro December 2010 97 / 98

Thank you!

Boost Intro December 2010 98 / 98

	Useful Macros
	Boost Shared Pointer
	Exercise

	Distribution Functions
	Random Numbers
	Exercise

	Function
	Bind
	Exercise

	The Any Class
	Optional
	Serialization
	Filesystem
	Matrix operations with uBLAS

