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MDL – theory



1.1 the problem

The paradox of overfitting:

Complex models contain more
information on the training data

but less information on future data.
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1.2 model selection

Machine learning uses models

to describe reality.
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1.2 model selection

Models can be

• statistical distributions

• polynomials

• Markov chains

• neural networks

• decision trees

• etc.
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1.2 model selection

This work uses polynomial models.

mk = pk(x) = a0 + · · · + ak xk (1)

Polynomials are

• well understood

• used throughout mathematics

• suffer badly from overfitting
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1.3 mean squared error

The mean squared error of a model m on a sample

s = {(x1, y1) . . . (xn, yn)} (2)

of size n is

σ2
f =

1

n

n∑
i=0

(
m(xi) − yi

)2
(3)
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1.3 mean squared error

The error on the training sample is called

training error.

The error on future samples is called

generalization error.

We want to minimize the generalization error.
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1.4 an example of overfitting

An example of overfitting:

regression in the

two-dimensional plane
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1.4 an example of overfitting

Continuous signal + noise,
300 point sample.
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1.4 an example of overfitting

6 degree polynomial, σ2 = 13.8
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1.4 an example of overfitting

17 degree polynomial, σ2 = 5.8
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1.4 an example of overfitting

43 degree polynomial, σ2 = 1.5
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1.4 an example of overfitting

100 degree polynomial, σ2 = 0.6
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1.4 an example of overfitting

3,000 point test sample. σ2
t = 1012
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1.4 an example of overfitting

Generalization error on this 3,000 point test sample.

6 degree: σ2 = 16, 17 degree: σ2 = 8.6,
43 degree: σ2 = 2.7, 100 degree: σ2 = 1012.
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1.5 Minimum Description Length

Rissanens hypothesis:

Minimum Description Length

prevents overfitting.
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1.5 Minimum Description Length

MDL minimizes the code length

min
m

[
l(s|m) + l(m)

]
(4)

This is a two-part code:

l(m) is the code length of the model

and l(s|m) is the code length of the data given the model.
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1.5 Minimum Description Length

We only look at the least square model per degree

min
k

[
n log σ̂mk

+ l(m)

]
(5)

Rissanen’s original estimation:

min
k

[
n log σ̂mk

+ k log
√

n
]

(6)

This is too weak.
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1.5 Minimum Description Length

Mixture MDL is a modern version of MDL.

min
k

[
− log

∫
mk∈Mk

p(Mk = mk) p(s|mk) d mk

]
(7)

p(Mk = mk) is a prior distribution over models in Mk.

Barron & Liang provide a simple algorithm based on the
uniform prior (2002).

- 19 -



Experimental Verification



2.1 the problem

Problems with experiments on model selection:

• shortage of appropriate data

• inefficient setup of experiments

• insufficient visualization

• few tangible results
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2.2 the solution

Solution:

The Statistical Data Viewer

an advanced tool
for statistical experiments.
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2.3 A simple experiment

A simple experiment:

the sinus wave
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2.3 A simple experiment

A new project
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2.3 A simple experiment

A new process and sample
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2.3 A simple experiment

Selecting a method for a model
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2.3 A simple experiment

Analyzing the generalization error
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2.3 A simple experiment

Analysis, cross validation, mixture MDL
and Rissanen’s MDL. Optimum at 0 degrees.
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2.3 A simple experiment

150 point sample. Optimum at 17 degrees.
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2.3 A simple experiment

300 point sample. Optimum at 18 degrees.
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Results



3.1 achievements

Achievements:

• generic problem space (files, broad selection

of online signals, drawing by hand)

• graphical object oriented setup of experiments

(no scripting)

• graphics integrated into the control structure

• simple programming interfaces
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3.2 Conclusion

Conclusion for all experiments:

• Rissanens original version usually overfits.

• Mixture MDL can prevent overfitting.

• smoothing is important for model selection.

• Mixture MDL cannot deal with non-uniform support.
(but cross validation can do it!)

• Mixture MDL can deal with different types of noise.
(i.i.d. assumption can be relaxed!)

• The structure of a prediction graph contains valuable
information by itself and MDL can reproduce it.
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3.3 further research

Further research:

• The structure of the generalization error

• Other types of data

• Other types of models

• Improved interfaces
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