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Abstract

We consider the scattering of elastic waves by an unbounded surface on which the
displacement vanishes. The wave field is assumed to be time-harmonic and the
propagation medium to be homogeneous and isotropic. The scattering surface is
assumed to be given as a graph of a bounded function f ∈ C1,α, but otherwise no
assumptions are made.

The problem is formulated as a boundary value problem for the scattered field in
the unbounded domain above the scattering surface. This boundary value problem
formulation includes a novel radiation condition characterising upward propagating
waves. The way in which this radiation condition generalises other radiation condi-
tions commonly employed in elastic wave scattering problems is discussed in detail.
It is then shown that the boundary value problem, and thus the scattering problem,
admits at most one solution for a general class of incident fields including plane and
cylindrical waves.

Existence of solution is established via the boundary integral equation method. The
properties of elastic single- and double-layer potentials on rough surfaces are studied
with an emphasis on obtaining estimates uniformly for classes of such surfaces. An
equivalent formulation of the scattering problem as a boundary integral equation of
the second kind is obtained. Since the scatterer is unbounded the integral operator
in this equation is not compact, and nor is the equation of a standard singular type
previously studied. Thus, a new solvability theory is developed, which establishes
solvability of the integral equation in the space of bounded and continuous functions,
and also in all Lp-spaces, 1 ≤ p ≤ ∞.
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Chapter 1

Introduction

The problem of scattering of waves by objects with features of a size comparable
to the wave-length has been of continuing interest to mathematicians for a long
time. The roots of the theory were developed by Lord Rayleigh, A. Sommerfeld and
others in the second half of the 19th century, but even today many questions remain
unanswered.

A problem that has attracted considerable attention over the last decade by both
mathematicians and engineers is the two-dimensional problem of scattering of a
wave by an effectively unbounded surface with features of a dimension comparable
to the wave-length. Mathematically such a surface is usually described as the graph
of bounded function and it is termed a rough surface.

In the case of an incident acoustic or electro-magnetic wave, there now exists a con-
siderable number of results for such scattering problems, mainly due to Chandler-

Wilde and Zhang. In the case of the total field vanishing on the scattering surface,
uniqueness of solution is proved in [20] making use of a novel radiation condition
first introduced in [11] and further investigated in [19].

To prove existence of solution, the well established boundary integral equation
method is employed. However, as opposed to the bounded obstacle case, the oper-
ators in the resulting boundary integral equation are no longer compact and thus
the Fredholm Alternative cannot be applied to establish surjectivity from injectiv-
ity. Thus, Chandler-Wilde, Ross and Zhang [15] had to employ a much more
sophisticated solvability theory (see [17] and references contained therein) to prove
existence of solution.

Similar uniqueness and existence results are known for acoustic or electromagnetic
scattering problems involving an impedance boundary condition on a rough sur-
face [47], inhomogeneous layers [19,48] or rough interfaces [21]. However, no results
have been established for the case of an incident elastic wave. This thesis is a contri-
bution towards filling this gap by rigorously establishing uniqueness and existence
of solution to the problem of scattering an elastic wave by a rough surface in the
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case of the total displacement vanishing on the surface, and establishing well posed
integral equation formulations for such problems.

1.1 The Problem of Elastic Wave Scattering by a

Rough Surface

The propagation of time harmonic waves with circular frequency ω in an elastic solid
with Lamé constants µ, λ (µ > 0, λ+ µ ≥ 0) is governed by the Navier equation,

µ∆ u + (λ+ µ) grad div u + ω2 u = 0. (1.1)

We will consider elastic waves propagating in an infinite domain Ω ⊂ R2, bounded
by a rough surface S, given as the graph of a function f ∈ C1,α(R). The following
scattering problem will be investigated:

Scattering Problem: Given an incident field uinc that is a solution to
(1.1) in Ω, find the scattered field u such that uinc + u = 0 on S.

Mathematically, we will formulate this scattering problem as a boundary value prob-
lem for a vector field u ∈ [C2(Ω) ∩ C(Ω̄)]2, consisting in the first instance of the
Navier equation and the Dirichlet boundary conditions on S. However, this for-
mulation will not be well posed without some further assumptions on the solution.
Additionally, a vertical growth condition has to be imposed, and, more importantly,
a suitable radiation condition. How this condition is to be formulated is far from
clear a priori and the question will be investigated in some detail in Chapter 4.
This discussion eventually leads to the complete formulation of the boundary value
problem for u as Problem 4.15.

To establish existence of solution to the scattering problem, the boundary integral
equation method will be used. We will make an ansatz for the scattered field as a
potential of the form

u(x) =

∫
S

K(x,y)φ(y) ds(y), x ∈ Ω, (1.2)

where φ ∈ [BC(S)]2, the space of bounded and continuous vector valued functions
on S. This ansatz then leads to an integral equation for φ, solvability of which
has to be proved. However, a number of difficulties arise: The first of these is the
suitable choice of the matrix kernel K in (1.2). For the integral to be well defined
for every bounded and continuous vector-valued density φ, we have to require that

K(x,y) = O(|y|−p), y ∈ S, |y| → ∞, (1.3)
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for every x ∈ Ω and some p > 1. Thus the free field Green’s tensor, the standard
kernel in potential theory, which satisfies (1.3) only for p ≤ 1/2, is not an appropriate
choice.

The second difficulty is that the integral operators in the arising integral equation
cannot be expected to be compact operators on the space of bounded and continuous
functions. To be able to still deduce existence of solution to the integral equation
from uniqueness of solution thus requires a much more sophisticated argument than
in the bounded obstacle case.

1.2 Main Results

The discussion starts in Chapter 2 with a presentation of linearized elasticity the-
ory, the foundation of much of what is to follow. Subsequently, the regularity of
solutions to the Navier equation (1.1) up to the boundary is investigated, making
use of regularity results for weak solutions to systems of elliptic partial differential
equations which are presented in the appendix.

The last two sections of Chapter 2 are devoted to the topic of matrices of fundamen-
tal solutions to the Navier equation. The fundamental solutions presented are the
free field Green’s tensor Γ and the Green’s tensor, ΓD,h, for a half plane with a rigid
boundary. The most important result of this discussion is the proof, in Theorem
2.13, that ΓD,h satisfies (1.3) with p = 3/2.

The object of Chapter 3 is the investigation of the properties of elastic single- and
double-layer potentials on rough surfaces defined using the fundamental solution
ΓD,h. We will start by showing that when using the pseudo stress operator to define
the kernel of the double-layer potential, this kernel is weakly singular. As the next
step we review regularity results for elastic single- and double-layer potentials on
a bounded, closed surface defined using the free field Green’s tensor, Γ. These
results are, in principle, well known. However, the presentation given is novel in
the sense that emphasis is laid on the uniformity of the regularity estimates with
respect to boundary curves sharing certain elementary geometrical properties. This
uniformity property is the key to applying the results for closed boundary curves
to prove similar results for potentials defined on rough surfaces, using ΓD,h as the
matrix kernel. These regularity results, presented as Theorems 3.11 and 3.12, are
the main results of this chapter.

Full attention can then finally be paid to the rough surface scattering problem. The
first goal here is to find an appropriate radiation condition for such a problem. This
condition, termed the upward propagating radiation condition (UPRC), is intro-
duced in Definition 4.9 and, subsequently, a thorough investigation of its properties
is undertaken. The most important results are given in Theorem 4.12, stating a
number of equivalent formulations of the UPRC and establishing how it generalises
and can be characterised in terms of other, standard radiation conditions.
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The UPRC is then used in the boundary value problem formulation of the rough
surface scattering problem as Problem 4.15. Apart from the Navier equation, the
Dirichlet boundary conditions and the UPRC, this boundary value problem formu-
lation also includes a growth condition ensuring that the solution remains bounded
in all horizontal strips. The remainder of Chapter 4 is then devoted to proving
uniqueness of solution to Problem 4.15. After some long and difficult arguments,
this goal is finally accomplished in Theorem 4.22, one of the central results of the
present thesis.

Chapter 5 is devoted to proving existence of solution to Problem 4.15, thus showing
that the problem is well posed. The boundary integral equation method is employed
for this purpose: Making a Brakhage/Werner [8] type ansatz for the solution
as a combined double- and single-layer potential the problem is reduced to proving
solvability of the resulting integral equation (5.2). Equation (5.2) is of the second
kind and the matrix kernel has a weak singularity but the range of integration is
infinite and so the integral operators are not compact.

The proof is based on a solvability theory for operator equations developed by
Chandler-Wilde, Ross and Zhang [10,16,17,22,42]. However, differing signif-
icantly from the approach in these papers, solvability is first shown for the adjoint
equation, first in the space of bounded and continuous functions and then in sub-
spaces obtained by introducing a weighted norm. From this result, solvability of
equation (5.2) is deduced by a duality argument, yielding existence of solution to
Problem 4.15 in Theorem 5.24. In the framework of the solvability theory employed,
this approach is new. As a valuable consequence, it is shown in the last section of
Chapter 5 how the approach can be used to prove solvability of the integral equation
not only in the space of bounded and continuous functions but also in all Lp spaces.

1.3 Notes on Notation

Throughout this thesis, all vectors and vector fields will be denoted either in bold
type or, in the case of surface densities, by Greek letters. Matrices or matrix func-
tions will be denoted either by bold capital letters or by capital Greek letters.

For any set S ⊂ Rm (m ∈ N) denote by BC(S) the set of bounded and continu-
ous, complex valued functions on S. The set BC(S) is a Banach space under the
supremum norm ‖ · ‖∞;S .

Let u denote a scalar function defined on a bounded domain D ⊂ Rn. For α ∈ (0, 1],
we introduce the quantity

[u]α;D := sup
x,y∈D

|u(x)− u(y)|
|x− y|α

,

which, in general, may be infinite. The space of Hölder continuous functions is
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defined as

Cα(D̄) := {u ∈ C(D̄) : [u]α;D <∞}.

It is a Banach space with the norm

‖u‖α;D := ‖u‖∞;D + [u]α;D.

We obtain similar spaces of k-times continuously differentiable functions by the
definitions

Ck,α(D̄) := {u ∈ Ck(D̄) : [Dku]α;D <∞}

and

‖u‖k,α;D :=
k∑
j=0

‖Dju‖∞;D + [Dku]α;D, (1.4)

where Dku, k ∈ N, denotes that the maximum of the corresponding norm or semi-
norm is to be taken with respect to all k-th partial derivatives of u.

We extend this notion to unbounded domains in the following way: For S ⊂ Rn,
define

Vk,α(S) := {u : u ∈ Ck,α(D̄) for any domain D ⊂⊂ S},

and

Ck,α(S) := {u : u ∈ Vk,α(S) and sup
D⊂⊂S

‖u‖k,α;D <∞}.

Here, the notation D ⊂⊂ S denotes that the closure of D is a compact subset of S.
We also introduce a norm on Ck,α(S), by defining, for u ∈ Ck,α(S),

‖u‖k,α;S := sup
D⊂⊂S

‖u‖k,α;D,

and remark that Ck,α(S) is a Banach space with this norm. For an equivalent
definition of this norm, (1.4) can be extended to S for all functions u ∈ Ck,α(S).

We will also make use of the standard Sobolev space H1(D) for any open set D ⊂ Rn
and H1/2(∂D) provided, the boundary of D is smooth enough (see [30, pp. 114] for

details). The notations H1
loc(S) and H

1/2
loc (S) will denote functions that elements of

H1(D) and H1/2(D) for any D ⊂⊂ S, respectively.

All these definitions generalise to m-vectors ([BC(S)]m, . . . ) by requiring all m
components to be in the corresponding scalar set. In the vector case, the norms are
to be understood as sums of the scalar norms of the components.

Mostly vectors and vector fields in R2 will be considered. For such vector fields, in
addition to the usual differential operators grad· and div·, we will make use of

grad⊥ u := (
∂u

∂x2

,− ∂u

∂x1

)> and div⊥ u :=
∂u1

∂x2

− ∂u2

∂x1

.
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We remark that these are related to the differential operator curl · in the following
way: define v := (0, 0, u)> and w := (u1, u2, 0)>. Then (grad⊥ u, 0)> = curl v and
div⊥u = −(curl w)3.

The scattering surface will be represented throughout as the graph of a function
f ∈ C1,α(R). The domain above this surface will be denoted by

Ω := {x = (x1, x2)> ∈ R2 : x2 > f(x1)},

and we set S := ∂Ω = {x ∈ R2 : x2 = f(x1)}. For A > 0, we also introduce

S(A) := {x ∈ S : |x1| < A}.

The normal n on S will always be assumed to be pointing into Ω.

Throughout the thesis, the letters h and H will frequently be used to denote certain
real numbers. As a convention, there will then usually hold h < inf f and H > sup f .

For a ∈ R, we also introduce the sets

Ua := {x ∈ R2 : x2 > a},
Ta := {x ∈ R2 : x2 = a},
Da := {x ∈ Ω : x2 < a},

γ(a,A) := {x ∈ Ω : |x1| = A, x2 < a}.

Furthermore, the sets Ta(A) and Da(A) are defined analogously to S(A). The
normals on Ta and Ta(A) are assumed to be pointing into Ua, those on ∂Da as well
as ∂Da(A) and γ(a,A) to be pointing out of Da and Da(A) respectively.

Throughout the thesis, use will be made of the Hankel functions of the first kind
and order n ∈ N,

H(1)
n (t) := Jn(t) + i Yn(t), t ∈ (0,∞),

where Jn and Yn denote the Bessel functions of first and second kind respectively.
The asymptotic decay rate of the Hankel functions and their derivatives as t→∞
is, for example, as given in [23]: For fixed n ∈ N,

H
(1)
n (t) =

√
2

π t
ei(t−nπ/2−π/4)

{
1 +O

(
1

t

)}
,

H
(1)
n

′
(t) =

√
2

π t
ei(t−nπ/2+π/4)

{
1 +O

(
1

t

)}
,

t→∞ (1.5)

From the definitions of the Bessel functions as given in [23], it is clear that the

singular behaviour of H
(1)
0 (t) as t→ 0 is

H
(1)
0 (t) =

2i

π

(
log

t

2
+ C

)
+ 1 +O

(
t2 log t

)
, t→ 0, (1.6)
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Figure 1.1: Property Aδ for a domain with a boundary closing back in on itself

where C denotes Euler’s constant.

We close this section with some remarks on domains of class C1,α, α ∈ (0, 1]. Adopt-
ing the definition given in [23, page 15], a domain D ⊂ R2 is said to be of class
C1,α if for any point x ∈ ∂D there exists neighbourhood Vx with the following
properties: the intersection Vx ∩ D̄ can be mapped bijectively onto the half circle
{y ∈ R2 : |y| < 1, y2 ≥ 0}; this mapping and its inverse are continuously differen-
tiable and the derivatives are α-Hölder continuous; and the intersection Vx ∩ ∂D is
mapped onto the line {y ∈ R2 : |y| < 1, y2 = 0}. Obviously, the domain Ω is in this
class.

If we restrict our attention to a bounded, simply connected domain D, then the
surface can be parametrised in terms of the arc length s by a function ψ : R →
R

2, with ψ ∈ [C1,α(R)]2, and ψ |∂D|-periodic, where |∂D| :=
∫
∂D

ds denotes the
circumference of D. We define the quantity

Hα(D) := sup
s,s′∈R

|ψ′(s)− ψ′(s′)|
|s− s′|α

.

We note that, in the case α = 1, the second distributional derivative of ψ is in
[L∞(R)]2 and thus the curvature κ(x) at x ∈ ∂D is defined almost everywhere on
∂D. In this case, |κ(x)| ≤ H1(D) holds almost everywhere on ∂D.

For x, y ∈ ∂D close enough, let ∂D(x,y) denote the shorter arc of ∂D connecting
x and y. Then, if D is of class C1,α, it will have the following property for some
parameter δ > 0:

Property Aδ: For all x, y ∈ ∂D with |x−y| < δ there holds |x′−y| < δ
for all x′ ∈ ∂D(x,y).
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In Figure 1.1, this property is illustrated for a domain with a boundary that closes
back in on itself. Particularly, the parameter δ has to be chosen such that a circle
of radius δ around any point x ∈ ∂D contains only one connected part of ∂D.

At certain points in the arguments, we will want to show certain estimates hold
with the same constants for all bounded, simply connected domains of class C1,α

that share certain geometrical properties. For this purposes, for α ∈ (0, 1], and κ0,
δ, M > 0 define

Dα,κ0,δ,M := {D ⊂ R2 of class C1,α, simply connected and bounded,

D satisfies Aδ, Hα(D) < κ0, |∂D| < M}.

Similarily, certain results will be shown uniformly with respect to classes of functions
f defining the boundary ∂Ω. Thus, for α ∈ (0, 1], c ∈ R and M > 0, define

Bα,c,M := {f ∈ C1,α(R) : ‖f‖1,α;R ≤M and inf f ≥ c}.



Chapter 2

Time Harmonic Waves in
Linearized Elasticity

The basis of the present investigation into scattering of elastic waves by rough
surfaces is the theory of linearized elasticity. In this chapter, we will present the
fundamental equations of this theory and derive the Navier equation which governs
the propagation of time-harmonic waves in an elastic medium. The study of so-
lutions to this equation is then continued by deriving regularity results up to the
boundary based on regularity estimates for systems of elliptic partial differential
equations.

Subsequently we will introduce the matrices of fundamental solutions for the Navier
equation in free field conditions and for a half space with a rigid boundary. These
fundamental solutions will have a prominent role in all later chapters of this thesis,
as they are at the heart of the definition of elastic potentials and also of the new
radiation condition to be introduced in Chapter 4.

2.1 Linearized Elasticity Theory

The propagation of waves in an elastic solid with Lamé constants µ, λ (µ > 0,
λ+ µ ≥ 0) and density ρ in three-dimensional space is governed by Hooke’s law

σjk = λ div u δjk + µ

(
∂uj
∂xk

+
∂uk
∂xj

)
, j, k = 1, 2, 3, (2.1)

and, in the absence of exterior forces, by the equations of motion

3∑
k=1

∂σjk
∂xk

− ρ ∂
2uj
∂t2

= 0, j = 1, 2, 3. (2.2)
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Here, the vector field u denotes the displacement and (σjk) the stress tensor in R3.
We will assume that the density ρ is constant throughout the medium, say ρ ≡ 1.

Throughout, only time-harmonic waves with circular frequency ω > 0 will be con-
sidered, i. e. all fields are assumed to have a time dependence e−iωt. It is common to
suppress this time dependence and then, using the same symbols as before, equation
(2.2) can be rewritten as

3∑
k=1

∂σjk
∂xk

+ ω2 uj = 0, j = 1, 2, 3. (2.3)

Inserting the components of (σjk) as given by (2.1) into (2.3) then yields the Navier
equation

µ∆u + (λ+ µ) grad div u + ω2 u = 0. (2.4)

Throughout this thesis, we will be considering scattering surfaces which are invariant
in one coordinate direction, say in the direction of the x3-axis, and we will also
assume that all waves are propagating perpendicular to that direction, i. e. the
fields do not depend on x3. In these situations, the system (2.4) separates into a
two-dimensional system and a scalar equation: Defining ũ := (u1, u2)>, we obtain

µ∆ũ + (λ+ µ) grad div ũ + ω2 ũ = 0, (2.5)

∆u3 +
ω2

µ
u3 = 0. (2.6)

Equation (2.6) is, of course, the Helmholtz equation; the analysis of this equation
is well understood and we shall not consider it here. For the special case of 2D
scattering by rough surfaces we refer the reader to the papers [15, 19, 20] and the
references contained therein.

Equation (2.5) is again of the same form as (2.4), only now in two dimensions. It is
in the form (2.5) that we will consider the Navier equation from now on, replacing
the notation ũ by u again, for convenience: the scattering problem will be treated
as a problem of plane strain. For simplicity, we also introduce the notation

∆∗u := µ∆u + (λ+ µ) grad div u.

Because of the assumptions on the Lamé constants (µ > 0 and λ + µ ≥ 0), it is
easy to show that the Navier equation is uniformly strictly elliptic in any domain
in R2. Thus we have the following regularity result, which shall be used extensively
without further reference:

Lemma 2.1 Let Ω denote a domain in R2 and u ∈ [C2(Ω)]2 a solution to the
Navier equation. Then u ∈ [C∞(Ω)]2.
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Proof: The assertion follows from L2-estimates in [26] and subsequent applications
of Sobolev’s imbedding theorem.

An important tool in the analysis of the Navier equation are the Lamé potentials.
We introduce the wave numbers for compressional and shear waves,

kp :=
ω√

2µ+ λ
and ks :=

ω
√
µ

respectively and define the Lamé potentials by

Ψp := − 1

k2
p

div u and Ψs := − 1

k2
s

div⊥ u. (2.7)

Some important properties of these potentials are listed in the following lemma.

Lemma 2.2 Let Ω denote a domain in R2 and u ∈ [C2(Ω)]2 a solution to the
Navier equation. Then,

∆ Ψp + k2
pΨp = 0,

∆ Ψs + k2
sΨs = 0,

and
u = grad Ψp + grad⊥Ψs.

Proof: We recall
div ∆u = ∆ div u = div grad div u.

Thus, by applying div · to (2.4), we obtain

(2µ+ λ) ∆ div u + ω2 div u = 0.

The analogous equation for Ψs is obtained by applying div⊥ · and noting that
div⊥ grad div u = 0 for any three times continuously differentiable vector field. Fi-
nally, we have that

∆u− grad div u = grad⊥ div u,

and thus, by (2.4),

u = − µ

ω2
∆u− λ+ µ

ω2
grad div u

= − 1

k2
s

∆ u− 1

k2
p

grad div u +
1

k2
s

grad div u

= − 1

k2
p

grad div u− 1

k2
s

grad⊥ div⊥ u.

This completes the proof.
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Remark 2.3 The vector fields up := grad Ψp and us := grad⊥Ψs are called the
compressional and shear parts of u respectively. This terminology is justified by
observing that div⊥ up = 0 and div us = 0, i.e. up is irrotational and us is divergence
free.

We follow Kupradze [35] in introducing a generalised stress tensor (πjk) by

πjk := λ̃ div u δjk + µ
∂uj
∂xk

+ µ̃
∂uk
∂xj

,

where µ̃, λ̃ are real numbers satisfying µ̃+ λ̃ = λ+µ. In the case µ = µ̃ and λ = λ̃,
the generalised stress tensor is identical to the standard stress tensor (σjk).

Given a curve Λ ⊂ R2 with unit normal n, the generalised stress vector on Λ is
defined by

Pu := (πjk) n = (µ+ µ̃)
∂u

∂n
+ λ̃n div u− µ̃n⊥ div⊥ u.

This notion has also been used in the papers [25, 38] and its 3D equivalent in [31].
Its significance and its properties for a special choice of µ̃ and λ̃ will be discussed in
detail in Chapter 3 when we discuss the properties of elastic single- and double-layer
potentials. For now, we only point out that Pu is equal to the physical stress vector
Tu for the choice µ̃ = µ and λ̃ = λ.

Using the generalised stress vector, the generalised Betti formulae result as a con-
sequence of the divergence theorem:

Lemma 2.4 Let B ⊆ R2 be a domain in which the divergence theorem holds and
let n denote the outward drawn normal on ∂B. Then, for vector fields v ∈ [C1(B̄)]2

and w ∈ [C2(B̄)]2, the first generalised Betti formula holds:∫
B

v ·∆∗w dx =

∫
∂B

v ·Pw ds−
∫
B

Eµ̃,λ̃(v,w) dx, (2.8)

where

Eµ̃,λ̃(v,w) := (2µ+ λ)

(
∂v1

∂x1

∂w1

∂x1

+
∂v2

∂x2

∂w2

∂x2

)
+ µ

(
∂v1

∂x2

∂w1

∂x2

+
∂v2

∂x1

∂w2

∂x1

)
+ λ̃

(
∂v1

∂x1

∂w2

∂x2

+
∂v2

∂x2

∂w1

∂x1

)
+ µ̃

(
∂v1

∂x2

∂w2

∂x1

+
∂v2

∂x1

∂w1

∂x2

)
.

For v ∈ [C2(B̄)]2 the second generalised Betti formula holds:∫
B

v ·∆∗v dx =

∫
∂B

v ·Pv ds−
∫
B

Eµ̃,λ̃(v,v) dx. (2.9)

Finally, for v, w ∈ [C2(B̄)]2 the third generalised Betti formula holds:∫
B

(v ·∆∗w −∆∗ v ·w) dx =

∫
∂B

(v ·Pw −Pv ·w) ds. (2.10)

Proof: As in Kupradze [35] for the three-dimensional case.
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2.2 Regularity of Solutions

For many of the subsequent considerations, we will need regularity results for solu-
tions to the Navier equation and their derivatives in domains with smooth bound-
aries. Appendix A gives proofs of such results for weak solutions to elliptic systems.
In this section, we will use these results to obtain regularity estimates up to the
boundary for classical solutions to the Navier equation that are also weak solutions.

Let us start with a simple interior estimate, however:

Lemma 2.5 Given a domain G ⊂ R2, let u ∈ [L∞(G)]2 be a solution to the Navier
equation (2.4) in G in a distributional sense. Assume G′ ⊂⊂ G and set d :=
d(∂G′, ∂G). Then, u ∈ [C1(G′)]2 and for all x ∈ G′,

|graduk(x)| ≤ C (1 + d−1) ‖u‖∞;G (k = 1, 2),

where C is only dependent on µ, λ and ω.

Proof: Application of estimates in Fichera [26] and Sobolev’s Imbedding Theorem.

By applications of this result we immediately obtain the following corollary:

Corollary 2.6 Given a domain G ⊂ R
2, let (vn) ⊂ [L∞(G)]2 be a sequence of

solutions to the Navier equation in G and, for some vector field v, suppose that
vn(x) → v(x) uniformly on compact subsets of G. Then v ∈ [C2(G)]2 and is a
solution to the Navier equation in G.

Now we want to establish regularity up to the boundary, using the results of Ap-
pendix A. Given a compact subdomain D of Ω and following Definition A.1, a
vector field u ∈ [H1(D)]2 is said to be a weak solution to the Navier equation if, for
any test field v ∈ [H1

0 (D)]2, the equation

∫
D

{
µ

2∑
j=1

graduj · grad vj + (λ+ µ) div u div v − ω2 u · v

}
dx = 0

holds (see also [46]).

To apply the regularity results derived in the appendix to classical solutions to the
Navier equation in Ω, we now construct a set of bounded sub-domains of class C1,α

by the following procedure (illustrated in Figure 2.1). We set , for some H > sup f ,

ρ :=
H − sup f

3
.
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n−2 n−1 n n+1 n+2

DH,n

x1

x2

S̃

S

sup f + ρ

H

Figure 2.1: Construction of the domain DH,n

We also introduce a C∞ function χ with the following properties: χ(s) = 0 for
s ≤ ε, χ(s) = 1 for s ≥ 1− ε for some ε, 1/2 > ε > 0. We now define the function
χn ∈ C1,α(R) by

χn(s) :=


χ(s− n+ 2), s < n− 1,

1, n− 1 ≤ s ≤ n+ 1,
χ(n+ 2− s), n+ 1 < s,

and finally the function f̃ by

f̃(s) := χn(s) f(s) + (1− χn(s)) (sup f + ρ).

We now define the domain DH,n, n ∈ Z, as the set of points inside the boundary
curve ∂DH,n constructed in the following way:

• between the points (n−2, f̃(n−2))> and (n+2, f̃(n+2))>, ∂DH,n is identical
to S̃ := {x ∈ R2 : x2 = f̃(x1)},

• outside this section, ∂DH,n is continued as two half circles with radius ρ,

• the two half circles are connected by a straight line.

Thus, DH,n has the portion of S between n − 1 and n + 1 as part of its boundary,
DH,n ⊂ DH for all n ∈ Z, DH =

⋃
n∈ZDH,n and there exist numbers κ0, δ, M such
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that DH,n ∈ Dα,κ0,δ,M for all n ∈ Z. Moreover, as for x, y ∈ DH with |x − y| ≤ 1
there always exists a number n0 ∈ Z such that x, y ∈ DH,n0 , it follows that there is
a constant C, only depending on α, such that

‖u‖1,α;DH ≤ C sup
n∈Z
‖u‖1,α;DH,n

for any u ∈ C1,α(DH). Thus we can now apply the regularity results stated in
Theorem A.12 to classical solutions of the Navier equation.

Theorem 2.7 Let u ∈ [C2(Ω)∩C(Ω̄)∩H1
loc(Ω)]2 be a solution to the Navier equation

in Ω, bounded in DH for all H > sup f , and u = 0 on S. Then u ∈ V1,α(Ω̄) and,
for any H > sup f , u ∈ C1,α(DH) with

‖u‖1,α;DH ≤ C ‖u‖0;DH , (2.11)

where C is a constant only depending on λ, µ, ω, H, α, κ0, δ and M .

Proof: Apply Theorem A.12 with D′ = DH,n for all n ∈ Z.

2.3 The Free-Field Green’s Tensor

Central to potential theory is the idea of fundamental solutions; in the case of the
Navier equation, matrices of fundamental solutions (MFS) fulfill the same role. The
k-th column of an MFS, M, to the Navier equation is a solution to the equation

∆∗xM·k(x,y) + ω2M·k(x,y) = −δ(x− y) ek, k = 1, 2,

for x, y ∈ D for some domain D ⊂ R2, where δ denotes Dirac’s delta distribution
and ek the k-th cartesian unit coordinate vector. The MFS most commonly used in
conjunction with the Navier equation is the free field Green’s tensor Γ given by

Γ(x,y) :=
i

4µ
H

(1)
0 (ks|x− y|) I +

i

4ω2
∇>x∇x

(
H

(1)
0 (ks|x− y|)−H(1)

0 (kp|x− y|)
)
,

(2.12)

with x, y ∈ R2, x 6= y, where H
(1)
n (·) denotes the Hankel function of the first kind

and of order n.

As, for example, Kress points out [34], with the help of the Bessel differential
equation it is easy to see that the components of this matrix can be written as

Γjk(x,y) =
i

4µ

{
Φ1(|x− y|) δjk + Φ2(|x− y|) (xj − yj)(xk − yk)

|x− y|2

}
(j, k = 1, 2),

(2.13)



16 The Scattering of Elastic Waves by Rough Surfaces

where, introducing the constant τ = kp/ks,

Φ1(t) := H
(1)
0 (kst)−

1

ks t

(
H

(1)
1 (kst)− τ H(1)

1 (kpt)
)
,

Φ2(t) :=
2

ks t
H

(1)
1 (kst)−H(1)

0 (kst)−
2τ

ks t
H

(1)
1 (kpt) + τ 2 H

(1)
0 (kpt).

This formulation is very convenient to analyse the singular behaviour of Γ as |x −
y| → 0 by applying (1.6). This behaviour and some other well known basic proper-
ties of Γ are given in the following theorem.

Theorem 2.8 The MFS Γ is analytic for x 6= y. It is symmetric, its columns and
rows are solutions to the Navier equation with respect to x in R2 \ {y} and with
respect to y in R2 \ {x}. Furthermore, it satisfies, for some constant C > 0, the
estimate

max
j,k=1,2

|Γjk(x,y)| ≤ C (1 + | log |x− y| |) . (2.14)

The Lamé potential representation of the columns of Γ is given by

Γ·k(x,y) = gradx Ψ(k)
p (x,y) + grad⊥x Ψ(k)

s (x,y), k = 1, 2, (2.15)

where

Ψ(1)
p (x,y) := − i

4ω2

∂

∂x1

H
(1)
0 (kp|x− y|), (2.16)

Ψ(2)
p (x,y) := − i

4ω2

∂

∂x2

H
(1)
0 (kp|x− y|), (2.17)

Ψ(1)
s (x,y) := − i

4ω2

∂

∂x2

H
(1)
0 (ks|x− y|), (2.18)

Ψ(2)
s (x,y) := +

i

4ω2

∂

∂x1

H
(1)
0 (ks|x− y|). (2.19)

Using Fourier transforms, we can obtain an alternative representation of Γ which
will be useful in the next section. For functions f depending on x1 and y1 through
the difference X1 = x1 − y1, we will temporarily denote by F [f ] or alternatively by
f̂ the Fourier transform with respect to X1 := x1 − y1, i.e.

F [f ](t) = f̂(t) =

∫ ∞
−∞

f(X1) eiX1t dX1.

It is well known that

F [H
(1)
0 (k|x− y|) ](t) =

2 ei
√
k2−t2|x2−y2|
√
k2 − t2

, (2.20)
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where the branches of the square root function in the complex plane are chosen such
that the imaginary part is non-negative. This will be the convention throughout
the thesis. We introduce the notations

γp :=
√
k2
p − t2 and γs :=

√
k2
s − t2.

Calculating the Fourier transforms of (2.16)–(2.19) using (2.20) and inserting the
result in (2.15) then yields

F [ Γ(x,y) ](t) =
i

2ω2

{(
t2/γp −t sgn(x2 − y2)

−t sgn(x2 − y2) γp

)
eiγp|x2−y2|

+

(
γs t sgn(x2 − y2)

t sgn(x2 − y2) t2/γs

)
eiγs|x2−y2|

}
. (2.21)

By applying the generalised stress operator P to Γ, we obtain matrix functions Π(1)

and Π(2):

Π
(1)
jk (x,y) :=

(
P(x)(Γ·k(x,y))

)
j
,

Π
(2)
jk (x,y) :=

(
P(y)(Γj·(x,y))>

)
k
.

The properties of these matrix functions, very similar to those of Γ, are listed in the
following theorem.

Theorem 2.9

(a) For y ∈ R2, the columns of Π(2)(·,y) are solutions to the Navier equation (2.4)
in R2 \ {y}.

(b) For x ∈ R2, the rows of Π(1)(x, ·) are solutions to the Navier equation (2.4)
in R2 \ {x}.

(c) For x, y ∈ R2, x 6= y, there holds

Π(2)(x,y) = Π(1)(y,x)>.

(d) Let B ⊆ R2 be a bounded domain in which the divergence theorem holds. Then
any solution u ∈ C2(B̄) to the Navier equation can be represented as

u(x) =

∫
∂B

Γ(x,y) Pu(y)− Π(2)(x,y) u(y) ds(y)

for all x ∈ B.
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Proof: Part (c) follows directly from the definitions of Π(j) (j = 1, 2) and P together
with Theorem 2.8. The same argument yields that the columns of Π(2)(·,y) are
solutions to the Navier equation in R2 \ {y}.

Part (b) is now a direct consequence of parts (a) and (c).

Part (d) is finally seen by applying the 3rd generalised Betti formula (2.10) and a
standard potential theoretic argument, using the fact that Γ(x,y) has a logarithmic
singularity for |x− y| → 0.

2.4 The Green’s Tensor for the First Boundary

Value Problem in a Half Space

As was pointed out in the introduction, and can be proven rigorously from (2.13),
the free field Green’s tensor Γ satisfies (1.3) only for p = 1/2. This asymptotic decay
rate as |x− y| → ∞ is not sufficient to ensure that integrals of the type∫

S

Γ(x,y)φ(y) ds(y)

exist for all φ ∈ [BC(S)]2. Therefore, we will derive and analyse the Green’s tensor
ΓD,h for the first boundary value problem of elasticity in a half space Uh (h ∈ R).
This Green’s tensor was first introduced in [4]; this section gives a more detailed
presentation of the results of that paper.

Motivated by the form of the corresponding Green’s function for acoustical wave
propagation, we make an ansatz of the form

ΓD,h(x,y) = Γ(x,y)− Γ(x,y′h) + U(x,y), x,y ∈ Uh,x 6= y, (2.22)

with a yet unknown matrix function U. In fact, we will assume that U only depends
on x and y through the variables X1 = x1 − y1, x2 and y2. For fixed y ∈ Uh, the
columns of U(·,y) have to satisfy

∆∗xU·,k(x,y) + ω2U·,k(x,y) = 0, x ∈ Uh \ {y},
U·,k(x,y) = −Γ·k(x,y) + Γ·k(x,y

′
h), x ∈ ∂Uh,

and they also have to be bounded and represent a wave field propagating away from
Th (this notion will be made mathematically precise in Chapter 4 when we discuss
radiation conditions).

We represent U by its Lamé potentials,

U·k(x,y) = gradx Ψ
(k)
U,p(x,y) + grad⊥x Ψ

(k)
U,s(x,y), k = 1, 2, (2.23)
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and conclude by Lemma 2.2 that

∆xΨ
(k)
U,p(x,y) + k2

pΨ
(k)
U,p(x,y) = 0 and ∆xΨ

(k)
U,s(x,y) + k2

sΨ
(k)
U,p(x,y) = 0.

Taking the Fourier transform with respect to X1, we obtain the two ordinary differ-
ential equations

d2

dx2
2

Ψ̂
(k)
U,p + γ2

p Ψ̂
(k)
U,p = 0 (2.24)

and
d2

dx2
2

Ψ̂
(k)
U,s + γ2

s Ψ̂
(k)
U,s = 0 (2.25)

As it is assumed that U be bounded and represent an outgoing wave field, we select
solutions to these equations of the form

Ψ̂
(k)
U,p = A(k)

p (t, y2) eiγp(x2−h) and Ψ̂
(k)
U,s = A(k)

s (t, y2) eiγs(x2−h). (2.26)

The coefficient functions A
(k)
p and A

(k)
s can now be calculated from the boundary

conditions. Using (2.21), we obtain, for x2 = h,

−itΨ̂(1)
U,p +

d

dx2

Ψ̂
(1)
U,s = 0,

d

dx2

Ψ̂
(1)
U,p + itΨ̂

(1)
U,s =

it

ω2

(
eiγp(y2−h) − eiγs(y2−h)

)
,

−itΨ̂(2)
U,p +

d

dx2

Ψ̂
(2)
U,s =

it

ω2

(
eiγp(y2−h) − eiγs(y2−h)

)
,

d

dx2

Ψ̂
(2)
U,p + itΨ̂

(2)
U,s = 0.

Inserting the solutions (2.26) yields, after some elementary calculations,(
A

(1)
p A

(1)
s

A
(2)
p A

(2)
s

)
(t, y2) = − 1

ω2 (γpγs + t2)

(
tγs t2

−t2 tγp

)(
eiγp(y2−h) − eiγs(y2−h)

)
.

Now, taking inverse Fourier transforms and using (2.23), we finally arrive at

U(x,y) = − i

2πω2

∫ ∞
−∞

(Mp(t, γp, γs;x2, y2) +Ms(t, γp, γs;x2, y2)) e−iX1t dt, (2.27)

with

Mp(t, γp, γs;x2, y2) :=
eiγp(x2+y2−2h) − ei(γp(x2−h)+γs(y2−h))

γpγs + t2

(
−t2γs t3

tγpγs −t2γp

)
,

Ms(t, γp, γs;x2, y2) :=
eiγs(x2+y2−2h) − ei(γs(x2−h)+γp(y2−h))

γpγs + t2

(
−t2γs −tγpγs
−t3 −t2γp

)
.

From the construction of U, we immediately have the following theorem, listing
some basic properties of ΓD,h:
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Theorem 2.10 For y ∈ Uh, ΓD,h(·,y) − Γ(·,y) ∈ [C∞(Uh) ∩ C1(Uh)]
2×2, and the

columns of ΓD,h(·,y) are solutions to the Navier equation (2.4) in Uh \ {y}. Fur-
thermore, ΓD,h(x,y) = 0 for x ∈ ∂Uh.

We will now address the main advantage of using ΓD,h over Γ in rough surface
scattering applications, its faster asymptotic decay rate as |x1| → ∞ in horizontal
layers above ∂Uh. For the first two terms in its representation, this is shown in the
following lemma:

Lemma 2.11 For x, y ∈ Uh, |x− y| ≥ 1 the estimate

max
j,k=1,2

|Γjk(x,y)− Γjk(x,y
′
h)| ≤

H(x2 − h, y2 − h)

|x− y|3/2
,

holds, where H ∈ C(R2).

Proof: Using (2.13) and the notations r = |x− y| and r′ = |x− y′h|, there holds

Γ(x,y)− Γ(x,y′h) =
i

4µ

{
(Φ1(r)− Φ1(r′)) I

+

(
0 2(2h− y2)(x1 − y1)

2(2h− y2)(x1 − y1) 0

)
Φ2(r)

r2

+

(
(x1 − y1)2 (x1 − y1)(x2 + y2 − 2h)

(x1 − y1)(x2 + y2 − 2h) (x2 + y2 − 2h)2

)(
Φ2(r)

r2
− Φ2(r′)

r′2

)}
.

So it obviously suffices to show the estimate for the functions

Φ1(r)− Φ1(r′),
(x1 − y1)Φ2(r)

r2
, and (x1 − y1)2

(
Φ2(r)

r2
− Φ2(r′)

r′2

)
.

Using the mean value theorem yields

|Φ1(r)− Φ1(r′)| ≤ |r − r′| max
r≤t≤r′

|Φ′1(t)| = 4(x2 − h)(y2 − h)

r + r′
max
r≤t≤r′

|Φ′1(t)|

and thus the asymptotic decay rate of Hankel functions and their derivatives (1.5)
yields the asserted estimate in the first case because of the assumption |x− y| ≥ 1.

In the second case, x1−y1

r
is bounded and Φ2(r)

r
has the required decay rate. For the

last function, we rewrite

Φ2(r)

r2
− Φ2(r′)

r′2
=

(
Φ2(r)− Φ2(r′) + 4(x2−h)(y2−h)

r2 Φ2(r)
)

r2 + 4(x2 − h)(y2 − h)
.
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−kp−ks 0

kp ks

branch cuts

path of integration

C1 C2 C3 C4

Im(t)

Re(t)

Figure 2.2: The path of integration

Now, (x1−y1)2

r2+4(x2−h)(y2−h)
is bounded, Φ2(r)− Φ2(r′) can be estimated in the same way

as Φ1(r)− Φ1(r′) above and Φ2(r)
r2 decays even faster than required.

To prove a similar estimate for U, a more lengthy analysis is required. To obtain
alternative representations of the integrals used in (2.27), we deform the path of
integration in the complex plane. To this end, branch cuts from ±kp and ±ks,
respectively to ±kp ± i∞ and ±ks ± i∞, are introduced. Recall that the branches
of the analytic extensions of γp and γs were chosen such that their imaginary part is
non-negative. Note also that the integrands in (2.27) do not have any singularities
on the chosen branches of γp and γs. Restricting ourselves to the case x1 > y1 for the
moment, we deform the path of integration into the lower half plane as illustrated
in Figure 2.2.

It is easily seen that the integrals over the arcs vanish as their radius tends to
infinity, so only the branch line integrals remain. Denoting the paths of integration
along the branch cuts by C1 ∪ C2 and C3 ∪ C4, as indicated in Figure 2.2, we rewrite
U as

U(x,y) = I1 + I2 + I3 + I4, (2.28)
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with

I1 := − i

2πω2

∫
C1∪C2

Mp(t, γp, γs;x2 − h, y2 − h) e−iX1t dt,

I2 := − i

2πω2

∫
C1∪C2

Ms(t, γp, γs;x2 − h, y2 − h) e−iX1t dt,

I3 := − i

2πω2

∫
C3∪C4

Mp(t, γp, γs;x2 − h, y2 − h) e−iX1t dt,

I4 := − i

2πω2

∫
C3∪C4

Ms(t, γp, γs;x2 − h, y2 − h) e−iX1t dt.

More explicitly, there holds

I1 = − i

2πω2
eiX1ks

∫ ∞
0

{Mp(−ks−is, γp|C2 , γs|C2 ;x2 − h, y2 − h)

−Mp(−ks−is, γp|C1 , γs|C1 ;x2 − h, y2 − h)}e−X1s ds,

and similar formulae for the other three integrals. Note that γs|C2 = −γs|C1 , and
γp|C1 = γp|C2 . Using the mean-value theorem, we thus conclude

Mp(−ks−is, γp|C2 , γs|C2 ;x2, y2)−Mp(−ks−is, γp|C1 , γs|C1 ;x2, y2)

= 2 Re(γs|C1)
∂Mp

∂γs
(−ks−is, γp|C1 , ξ;x2, y2)

for some ξ on the line between γs|C1 and γs|C2 . Now, ∂Mp

∂γs
(−ks−is, γp|C1 , ξ;x2, y2) is seen

to be continuously dependent on s in [0,∞) and, for some constant C continuously
dependent on x2 and y2, there holds∣∣∣∣s−1/2 Re(γs|C2)

∂M

∂γs
(−ks−is, γp|C1 , ξ;x2, y2)

∣∣∣∣ ≤ C

for s ∈ [0, 1]. Therefore, we can estimate the asymptotic decay rate of I1 by em-
ploying the following lemma with r = 1

2
.

Lemma 2.12 Assume q ∈ C([0,∞)) such that C1 :=
∫∞

0
|q(s)|e−s ds exists. For

X > 1, set

I(X) :=

∫ ∞
0

q(s) e−Xs ds.

Further assume that for some r > −1 there exists C2 > 0 with |s−rq(s)| ≤ C2 for
all s ∈ [0, 1]. Then, for X ≥ 1 + (r + 1) logX,

|I(X)| ≤ (C1 + Γ(r + 1)C2)
1

Xr+1
.
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Proof: We can estimate∣∣∣∣∫ 1

0

q(s) e−Xs ds

∣∣∣∣ ≤ C2

∫ 1

0

sre−Xs ds ≤ C2
Γ(r + 1)

Xr+1
.

On the other hand, we have∣∣∣∣∫ ∞
1

q(s) e−Xs ds

∣∣∣∣ ≤ e−(X−1)

∫ ∞
1

|q(s)|e−s ds ≤ C1

Xr+1

for all X ≥ 1 + (r + 1) logX. Adding these two estimates yields the assertion.

An identical analysis yields this decay rate for the other three integrals in (2.28)
and also for the case x1 < y1. In the latter case the path of integration has to be
deformed into the upper half plane. Thus, also recalling Lemma 2.11, the following
theorem is proved:

Theorem 2.13 For x,y ∈ Uh, ε > 0 and |x1 − y1| ≥ ε, the estimate

max
j,k=1,2

|ΓD,h,jk(x,y)| ≤ H(x2 − h, y2 − h)

|x1 − y1|3/2

holds, where H ∈ C(R2).

Remark 2.14 We also note that from (2.14) together with Theorem 2.13, we see
that there exists some constant C > 0 such that

max
j,k=1,2

|ΓD,h,jk(x,y)| ≤ C |1 + log |x− y| | (2.29)

for x, y ∈ Uh. As a consequence, together with an application of Theorem 2.13, we
have, for h < inf f and h′ > sup f , that

sup
x∈Dh′

∫
S

max
j,k=1,2

|ΓD,h,jk(x,y)|2 ds(y) <∞.

For much of the subsequent arguments, the following lemma will be useful:

Lemma 2.15 For x, y ∈ Uh, x 6= y, the following reciprocity relation holds:

ΓD,h(x,y) = ΓD,h(y,x)>.
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Proof: From (2.22) and (2.27) by tedious but elementary calculations.

Similarly to the case of the free-field’s Green’s tensor, we can now apply the gen-
eralised stress operator to ΓD,h, thus introducing the matrix functions Π

(1)
D,h and

Π
(2)
D,h:

Π
(1)
D,h,jk(x,y) :=

(
P(x)(ΓD,h,·k(x,y))

)
j
,

Π
(2)
D,h,jk(x,y) :=

(
P(y)(ΓD,h,j·(x,y))>

)
k
.

Theorem 2.16 Assume x, y ∈ Uh, x 6= y. Then,

(a) Theorem 2.13 holds with ΓD,h replaced by Π
(1)
D,h and Π

(2)
D,h respectively,

(b) Π
(1)
D,h(x,y) = Π

(2)
D,h(y,x)>,

(c) the columns of Π
(2)
D,h(·,y) are solutions to the Navier equation in Uh \ {y},

(d) the rows of Π
(1)
D,h(x, ·) are solutions to the Navier equation in Uh \ {x},

(e) Let B ⊂ Uh be a bounded domain in which the divergence theorem holds. Then
any solution u ∈ [C2(B̄)]2 to the Navier equation can be represented as

u(x) =

∫
∂B

ΓD(x,y) Pu(y)− Π
(2)
D (x,y) u(y) ds(y)

for all x ∈ B.

Proof: Part (a) follows from Lemma 2.5. Part (b) is an immediate consequence of
Lemma 2.15. Part (c) follows from the definition of the generalised stress vector.
Part (d) follows from parts (b) and (c). Finally, (e) holds because of the corre-
sponding relation for Γ (Theorem 2.9) together with Theorem 2.10 and the third
generalised Betti formula (2.10).

Remark 2.17 Similarly to (2.29), we also prove that Π
(2)
D,h(x,y) remains bounded

for |x − y| ≥ ε > 0. Thus, and using Theorem 2.13 and Lemma 2.5, we see for

H ′ > H > h and any derivative with respect to x, G, of Π
(2)
D,h that

sup
x∈UH\UH′

∫
Th

max
j,k=1,2

|Gjk(x,y)| ds(y) <∞.



Chapter 3

Elastic Potentials on Rough
Surfaces

It is the object of this chapter to establish regularity results for elastic poten-
tials defined on the surface S and mapping properties of related integral operators.
Throughout this chapter, we will limit ourselves to surfaces given as the graph of
functions f ∈ C1,1(R). To be able to establish our final results, we will point out a
special choice of the values µ̃ and λ̃ in the definition of the generalised stress vector,
for which the kernel in the definition of the double-layer potential only has a weak
singularity for x→ y on S. We will then restate some well known properties of the
elastic potentials in the case of a closed boundary curve. These results will differ
from the usual formulation, however, in that emphasis will be laid on uniformity
with respect to a certain class of boundary curves. Returning to the case of the
unbounded surface S, the results for the closed boundary curve will be applied by
decomposing the potentials into a smooth part defined on all of S and a singular
part with support only on a compact subset of S. Thus we derive similar regularity
results for the rough surface potentials.

3.1 Basic Properties of Elastic Potentials

We will start this chapter by introducing the elastic potentials of interest to us. For
a vector valued density φ ∈ [BC(S)]2, we define an elastic single-layer potential on
the rough surface S by

v(x) :=

∫
S

ΓD,h(x,y)φ(y) ds(y) for x ∈ Uh \ S, (3.1)
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and a double-layer potential on S by

w(x) :=

∫
S

Π
(2)
D,h(x,y)φ(y) ds(y) for x ∈ Uh \ S. (3.2)

If we assume D to be a bounded, simply connected domain of class C1,1, we similarly
can, for φ ∈ [C(∂D)]2, define a single-layer potential on ∂D by

vD(x) :=

∫
∂D

Γ(x,y)φ(y) ds(y), x ∈ R2 \ ∂D, (3.3)

and the elastic double-layer potential

wD(x) :=

∫
∂D

Π(2)(x,y)φ(y) ds(y), x ∈ R2 \ ∂D. (3.4)

From the properties of the fundamental solutions Γ and ΓD,h as well as their deriva-

tives Π(2) and Π
(2)
D,h, it is clear that all the integrals exist as improper integrals.

Furthermore, the following theorem is a standard result:

Theorem 3.1 The potentials v and w are solutions to the Navier equation in Uh\Ω̄
and in Ω. The potentials vD and wD are solutions to the Navier equation in D and
in R2 \ D̄.

3.2 The Pseudo Stress Operator

In Section 2.1 the generalised stress operator P was introduced. We will now inves-
tigate what influence the parameters µ̃ and λ̃ in its definition have on the singular
behaviour of the derivatives of the fundamental solution, Π(j)(x,y), j = 1, 2, for
|x − y| → 0. We will find that for the special choice µ̃ = µ (µ + λ)/(3µ + λ) and
λ̃ = (2µ + λ)(µ + λ)/(3µ + λ), these matrix functions become weakly singular. In
this case, P is called the pseudo stress operator (Kupradze [35]).

To simplify the investigations, we introduce Kelvin’s matrix, the matrix of funda-
mental solutions for elasto-static problems, i.e. boundary value problems involving
the Navier equation with ω = 0:

ΓK(x,y) :=
3µ+ λ

4π µ (2µ+ λ)
log

1

|x− y|
I +

µ+ λ

4π µ (2µ+ λ)
J(x− y),

for x, y ∈ R2, x 6= y, with

J(z) :=
z z>

|z|2
.

As the following theorem shows, the matrix function ΓK has the same singular
behaviour as Γ itself.
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Theorem 3.2 The matrix function ∆ defined by

∆(x,y) := Γ(x,y)− ΓK(x,y), x 6= y,

belongs to [C1(R2 × R2)]2×2.

Proof: It is only necessary to show that ∆ is well-defined and continuously differ-
entiable for x = y. From (2.13) and asymptotic expansions for Φ1, Φ2 given in [34],
we see that

∆(x,y) = Φ̃1(|x− y|) I + Φ̃2(|x− y|) J(x− y),

with

Φ̃1(t) = β1 t
2 log t+ γ + log t O(t4) +O(t2),

Φ̃2(t) = β2 t
2 log t+ log t O(t4) +O(t2)

as t→ 0, with complex constants β1, β2 and γ.

We further introduce the matrix function H(l) by

H(l)(z) := −2 zl
z z>

|z|4
+

el z
> + z e>l
|z|2

, l = 1, 2,

for z ∈ R2, where el denotes the l-th cartesian unit coordinate vector. An easy
calculation then shows

∂

∂xl
∆(x,y) = Φ̃′1(|x− y|) xl − yl

|x− y|
I + Φ̃′2(|x− y|) xl − yl

|x− y|
J(x− y)

+ Φ̃2(|x− y|) H(l)(x− y).

As

Φ̃′1(t) = 3β1 t log t+ log t O(t3) +O(t),

Φ̃′2(t) = 3β2 t log t+ log t O(t3) +O(t)

as t→ 0, the assertion follows.

We will now apply the generalised stress operator P(x) to the columns of ΓK . Denote
by Λ a curve of class C1,1 in R2 and by n(x) its normal at x ∈ Λ. For x ∈ Λ, y ∈ R2

and setting r := |x− y| as well as C := (3µ+ λ)/(4πµ(2µ+ λ)), we obtain

ΓK,jk(x,y) = C

{
δjk log

1

r
+

µ+ λ

3µ+ λ

∂r

∂xj

∂r

∂xk

}
.



28 The Scattering of Elastic Waves by Rough Surfaces

Thus, after some calculation,

∂ΓK,jk(x,y)

∂n(x)
= C

{
δjk

∂

∂n(x)
log

1

r
+

µ+ λ

3µ+ λ

2∑
l=1

nl
∂

∂xl

(
∂r

∂xj

∂r

∂xk

)}
= C

{
∂

∂n(x)
log

1

r

(
δjk + 2

µ+ λ

3µ+ λ

∂r

∂xj

∂r

∂xk

)
− µ+ λ

3µ+ λ

(
nj

∂

∂xk
log

1

r
+ nk

∂

∂xj
log

1

r

)}
.

Similarly, we obtain

divxΓK,·k =
2µ

3µ+ λ

∂

∂xk
log

1

r
,

and thus

(n(x) divxΓK,·k)j =
2µ

3µ+ λ
nj

∂

∂xk
log

1

r
.

Finally, there holds

(
n⊥(x) div⊥x ΓK,·k

)
j

=
2∑
l=1

nl

(
∂ΓK,jk(x,y)

∂xl
− ∂ΓK,lk(x,y)

∂xj

)
= 2C

2µ+ λ

3µ+ λ

{
δjk

∂

∂n(x)
log

1

r
− nk

∂

∂xj
log

1

r

}
.

Combining these results yields

(
P(x)(ΓK,·k(x,y))

)
j

= C
∂

∂n(x)
log

1

r

(
(µ+ µ̃− 2µ̃

2µ+ λ

3µ+ λ
) δjk

+ 2 (µ+ µ̃)
µ+ λ

3µ+ λ

∂r

∂xj

∂r

∂xk

)
+ C nk

∂

∂xj
log

1

r

(
2µ̃

2µ+ λ

3µ+ λ
− (µ+ µ̃)

µ+ λ

3µ+ λ

)
+ Cnj

∂

∂xk
log

1

r

(
λ̃

2µ

3µ+ λ
− (µ+ µ̃)

µ+ λ

3µ+ λ

)
. (3.5)

We thus immediately obtain the following lemma:

Lemma 3.3 Let Λ denote a curve of class C1,1 in R2 and assume x ∈ Λ, y ∈ R2.
For the choice µ̃ = µ (µ+λ)/(3µ+λ) and λ̃ = (2µ+λ)(µ+λ)/(3µ+λ), there holds

(
P(x)(ΓK,·k(x,y))

)
j

=
1

2π

(
2µ+ λ

3µ+ λ
δjk + 2

µ+ λ

3µ+ λ

∂r

∂xj

∂r

∂xk

)
∂

∂n(x)
log

1

r
.
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Proof: Immediate from (3.5) by inserting the given expressions for µ̃ and λ̃.

Remark 3.4 Let Λ denote a curve of class C1,1 in R2 and assume x, y ∈ Λ. Then,
as a consequence of Theorem 3.2 and Lemma 3.3 and also observing Theorem 2.9
(c), we have that the estimate (2.14) holds with Γ replaced by Π(j), j = 1, 2.

3.3 Uniform Regularity Results for Elastic Poten-

tials on Bounded Surfaces

It is the goal of this section to state regularity results and jump relations for elastic
potentials defined on smooth, bounded, closed surfaces. These results are in princi-
ple well known [24,35]. In our presentation here, we will rely heavily on the proofs
given in [24], but the results will be generalised in two important aspects. Firstly,
we shall consider boundary curves of class C1,1 instead of those of class C2. This
extension is important for the solvability theory presented in Chapter 5 as this the-
ory requires a compactness property of bounded families of such surfaces in a weak
topology. This property would not be satisfied without additional equicontinuity
assumptions by families of C2 surfaces.

Secondly, we shall identify the properties of the boundary curves that determine the
constants in the regularity estimates. We are thus able to formulate these results
uniformly for classes of domains sharing these properties.

Let us address the generalisation to C1,1 boundary curves first. For a detailed
analysis of potentials defined on Lyapunov surfaces, see e.g. [29]. For a boundary
∂D of class C1,1, the curvature κ(x) can be defined for allmost all x ∈ ∂D. Moreover,
recalling the remarks on C1,α domains in Section 1.3, there holds κ ∈ L∞(∂D) and
‖κ‖L∞(∂D) ≤ H1(D).

A careful review of the proof of the regularity estimates in [24] reveals that the
assumption of a C2 boundary is only used to obtain certain geometrical estimates
through Taylor expansions up to second order. In the proof of the following lemma
(Lemma 1.1 in [24]) we indicate how these results can be proved in the case of a
boundary of class C1,1.

Lemma 3.5 For some numbers κ0, δ, M > 0, assume D ∈ D1,κ0,δ,M . Then

|n(x) · (x− y)| ≤ q |x− y|2,
|n(x)− n(y)| ≤ q |x− y|
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for all x, y ∈ ∂D, with the constant q given by

q = max

{√
2κ0, 2(min{δ, 1

2κ0

})−1, (min{δ, 1

2κ0

})−2M

}
.

Proof: Let ∂D be parametrised in terms of its arc length and denote by t(s) and
n(s) the tangent and normal vectors at s, respectively, and by κ(s) the curvature
at s, for all s where it is defined. Then

∂

∂s
|x(s)− x(s0)|2 = 2 t(s) · (x(s)− x(s0)),

∂2

∂s2
|x(s)− x(s0)|2 = 2 [1− κ(s) n(s) · (x(s)− x(s0))],

where the second equation holds for almost all s. Thus

|x(s)− x(s0)|2 = 2

∫ s

s0

∫ t

s0

[1− κ(t′) n(t′) · (x(t′)− x(s0)] dt′ dt,

n(s0) · (x(s)− x(s0)) = −
∫ s

s0

∫ t

s0

κ(t′) n(t′) · n(s0) dt′ dt.

First suppose that |x(s) − x(s0)| ≤ min{δ, (2κ0)−1}. Then an easy estimate of the
double integral in the first equation yields

|x(s)− x(s0)|2 ≥ 1

2
(s− s0)2,

and consequently, from the second equation,

|n(s0) · (x(s)− x(s0))| ≤ κ0 |x(s)− x(s0)|2.

For |x(s)− x(s0)| > min{δ, (2κ0)−1}, there trivially holds

|n(s0) · (x(s)− x(s0))| ≤ (min{δ, (2κ0)−1})−2M |x(s)− x(s0)|2.

Similarly, we have

n(s)− n(s0) =

∫ s

s0

κ(t) t(t) dt.

The same reasoning as above now yields

|n(s)− n(s0)| ≤ max
{√

2κ0, 2 (min{δ, (2κ−1
0 })−1

}
|x(s)− x(s0)|.

For the following arguments, let κ0, δ, M > 0. For any D ∈ D1,κ0,δ,M and φ ∈
[C(∂D)]2, we define the elastic single-layer potential vD and double-layer potential
wD by (3.3) and (3.4), respectively. Subsequently, let a superscript − denote vector
fields defined in D and a superscript + vector fields defined in R2 \ D̄.

The following theorem states regularity results for the elastic single layer potential.
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Theorem 3.6 Assume D ∈ D1,κ0,δ,M .

(a) For φ ∈ [C(∂D)]2 and α ∈ (0, 1), there hold vD ∈ [C0,α(R2)]2 and

‖vD‖0,α;R2 ≤ C ‖φ‖∞;∂D,

where the constant C depends only on α, κ0, δ and M .

(b) For φ ∈ [C0,α(∂D)]2, α ∈ (0, 1), the first order derivatives of v±D in R2 \D̄ and
in D have C0,α-extensions to R2 \ D and D̄ respectively. Furthermore, there
holds

‖v−D‖1,α;D̄, ‖v+
D‖1,α;R2\D ≤ C‖φ‖0,α;∂D,

where the constant C depends only on α, κ0, δ and M . For µ̃ = µ (µ+λ)/(3µ+
λ) and λ̃ = (2µ+ λ)(µ+ λ)/(3µ+ λ), there holds

Pv±D(x) = ∓1

2
φ(x) +

∫
∂D

Π(1)(x,y)φ(y) ds(y), x ∈ ∂D, (3.6)

where the integral exists as an improper integral.

(c) For φ ∈ [C(∂D)]2 and α ∈ (0, 1), there holds∫
∂D

Γ(·,y)φ(y) ds(y) ∈ [C0,α(∂D)]2,

where the integral exists as an improper integral. Furthermore,∥∥∥∥∫
∂D

Γ(·,y)φ(y) ds(y)

∥∥∥∥
0,α;∂D

≤ C ‖φ‖∞;∂D,

where the constant C depends only on α, κ0, δ and M .

Proof: The Theorem is proved in the same way as Theorem 2.19 and Theorem 2.21
in [24].

For the dependence of the constant C on the parameters, a review of the proof
in [24] shows that all constants depend on κ0, δ and M in a similar way as the
constant q in Lemma 3.5.

Applying the arguments of [24] it follows that (3.6) holds for all λ̃ and µ̃, with the
integral defined in a Cauchy principal value sense. That the integral exists as an
improper integral for µ̃ = µ (µ + λ)/(3µ + λ) and λ̃ = (2µ + λ)(µ + λ)/(3µ + λ)
follows from Theorem 3.2 and Lemma 3.3.

Note that (c) is implied by (a).

The corresponding theorem for the double-layer potential is as follows:
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Theorem 3.7 Assume D ∈ D1,κ0,δ,M .

(a) For φ ∈ [C(∂D)]2, µ̃ = µ (µ+ λ)/(3µ+ λ) and λ̃ = (2µ+ λ)(µ+ λ)/(3µ+ λ),
the double layer potential w±D in R2 \ D̄ and in D has continuous extensions
to R2 \D and D̄ respectively. Furthermore, there holds

‖w−D‖∞;D̄, ‖w+
D‖∞;R2\D ≤ C ‖φ‖∞;∂D,

where the constant C depends only on κ0, δ and M , and

w±D(x) = ±1

2
φ(x) +

∫
∂D

Π(2)(x,y)φ(y) ds(y), x ∈ ∂D,

where the integral exists as an improper integral.

(b) For φ ∈ [C(∂D)]2, µ̃ = µ (µ+ λ)/(3µ+ λ) and λ̃ = (2µ+ λ)(µ+ λ)/(3µ+ λ)
and α ∈ (0, 1), there holds∫

∂D

Π(j)(·,y)φ(y) ds(y) ∈ [C0,α(∂D)]2, j = 1, 2,

where the integral exists as an improper integral. Furthermore,∥∥∥∥∫
∂D

Π(j)(·,y)φ(y) ds(y)

∥∥∥∥
0,α;∂D

≤ C ‖φ‖∞;∂D, j = 1, 2,

where the constant C depends only on α, κ0, δ and M .

Proof: Observing also Lemma 3.3, the assertion is deduced analogously to [24,
Theorem 2.20], but making use of the fact that the integral kernel is weakly singular.
Also note Theorem 2.9 (c) to show the assertion on the integral in the formula for
w±D(x), x ∈ ∂D.

It is also possible to study the regularity of the elastic surface potentials if the
density is in a Sobolev space of fractional order. Such investigations have e.g. been
carried out in [25]. We will only make use of the following result:

Remark 3.8 Assume D ⊂ R
2 to be of class C1,1, µ̃ = µ (µ + λ)/(3µ + λ) and

λ̃ = (2µ + λ)(µ + λ)/(3µ + λ) and φ ∈ [H1/2(∂D)]2. Then there holds vD, wD ∈
[H1

loc(R
2 \ ∂D)]2.
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a-1 a-1+δ a-δ a sb+1b+1-δb+δb

1

f(s)

0

χ[a,b]

Figure 3.1: The function χ[a,b]

3.4 The Regularity of Elastic Potentials defined

on Rough Surfaces

To obtain similar regularity results for elastic potentials defined on an unbounded
surface, the kernel functions will be separated into localised singular parts and the
remainders which are smooth. The regularity estimates obtained will be uniform
with respect to certain classes of boundaries.

To this end, fix h ∈ R and also c > h and M > 0. Recalling the definition of the set
B1,c,M in Section 1.3, we will show the regularity of the potentials uniformly with
respect to functions f ∈ B1,c,M .

Also fix H > M ≥ sup
f∈B1,c,M

‖f‖∞;R and introduce the domains

Vn := {x ∈ Uh : n− 1 < x1 < n+ 1, x2 < H}, n ∈ Z.

It now follows that for each x, y ∈ Uh \ UH there either exists n ∈ Z such that x,
y ∈ Vn or |x− y| ≥ 1 must hold.

We also introduce a C∞ function χ with the following properties: χ(s) = 0 for s < ε,
χ(s) = 1 for s ≥ 1− ε for some ε, 1/2 > ε > 0. For a < b, we now define (see also
Figure 3.1)

χ[a,b](s) :=


1, a ≤ s ≤ b,

χ(s− a+ 1), a− 1 < s < a,
χ(b− s+ 1), b < s < b+ 1,

0 otherwise

.

Then χ[a,b] ∈ C∞0 (R).

In the following arguments, we will indicate dependence of a function or set on the
boundary function f ∈ B1,c,M by a sub- or superscript f . Recalling definition (3.1)
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of the elastic single layer potential on a rough surface, we define for f ∈ B1,c,M and
φ ∈ [BC(Sf )]

2

vf1,n(x) :=

∫
Sf

(
ΓD,h(x,y)− χ[n−1,n+1](y1) Γ(x,y)

)
φ(y) ds(y), x ∈ Vn \ Sf ,

and

vf2,n(x) :=

∫
Sf

Γ(x,y)χ[n−1,n+1](y1)φ(y) ds(y), x ∈ Vn \ Sf .

On Vn \ Sf there obviously holds vf = vf1,n + vf2,n. We now analyse the regularity
of these two vector fields.

Lemma 3.9 For f ∈ B1,c,M and α ∈ (0, 1), there holds vf1,n ∈ C0,α(Vn) and

‖vf1,n‖0,α;Vn ≤ C‖φ‖∞;Sf ,

where the constant C only depends on α, c, M , h and H.

Proof: For x ∈ Vn, y ∈ Sf , set

Kjk(x,y) := ΓD,h,jk(x,y)− χ[n−1,n+1](y1) Γjk(x,y), j, k = 1, 2.

From Theorems 2.10 and 2.13 as well as Theorem 2.16 we know Kjk is continuously
differentiable in Vn × Sf and that there exists a function κ ∈ L1(R) ∩ BC(R),
dependent only on c, M , h and H such that

|Kjk(x,y)|
|gradxKjk(x,y)|

}
≤ κ(x1 − y1), x ∈ Vn,y ∈ Sf . (3.7)

Thus, we immediately obtain, for x ∈ Vn,

|vf1,n(x)| ≤ 4 (1 +M) ‖κ‖L1(R) ‖φ‖∞;Sf , x ∈ Vn. (3.8)

Now, for some ε > 0, set

Sx,ε := {y ∈ Sf : |x1 − y1| < ε}, x ∈ Vn.

Then, letting x, x′ ∈ Vn and assuming |x− x′| < ε, from (3.7) and the Mean Value
Theorem it follows that∣∣∣∣∣

∫
Sx,2ε

(K(x,y)−K(x′,y))φ(y) ds(y)

∣∣∣∣∣
≤ 16 (1 +M) ‖κ‖∞;R ε

2−α ‖φ‖∞;Sf |x− x′|α. (3.9)
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On the other hand, we also have the estimate∣∣∣∣∣
∫
Sf\Sx,2ε

(K(x,y)−K(x′,y))φ(y) ds(y)

∣∣∣∣∣
≤ 4 (1 +M) ‖κ‖L1(R) ε

1−α ‖φ‖∞;Sf |x− x′|α. (3.10)

Combining (3.8)–(3.10) yields the assertion for |x−x′| < ε. In the case |x−x′| > ε,
from (3.8) we trivially obtain

|vf1,n(x)− vf1,n(x′)| ≤ 8 (1 +M) ε−α ‖κ‖L1(R) ‖φ‖∞;Sf |x− x′|α.

Lemma 3.10 For f ∈ B1,c,M , α ∈ (0, 1), there holds vf2,n ∈ C0,α(Vn) and

‖vf2,n‖0,α;Vn ≤ C‖φ‖∞;Sf ,

where the constant C only depends on α, c, M , h and H.

Proof: We define domains Df
n, f ∈ B1,c,M , in a manner very similar to the con-

struction described in Chapter 2, just before Theorem 2.7. Choosing ρ > 0, we
define

χn(s) :=


χ(s− n+ 3), s < n− 2,

1, n− 2 ≤ s ≤ n+ 2,
χ(n+ 3− s), n+ 2 < s,

where χ is the same cut-off function used earlier in this section, and set

f̃(s) := χn(s) f(s) + (1− χn(s)) (M + ρ).

A closed C1,1 boundary curve ∂Df
n will now be constructed as indicated below and

illustrated in Figure 3.2.

• between the points (n− 3, f̃(n− 3))> and (n+ 3, f̃(n+ 3))>, ∂Df
n is identical

to S̃f := {x ∈ R2 : x2 = f̃(x1)},

• outside this section, ∂Df
n is continued by two half circles with radius ρ,

• ∂Df
n is closed by a straight line connecting the two half circles.

The domain Df
n is thus a bounded, simply connected domain of class C1,1. Moreover,

there are constants κ0, δ and M̃ only dependent on c, M and ρ such that Df
n ⊂

D1,κ0,δ,M̃
for all n ∈ Z and all f ∈ B1,c,M . Also, between (n − 2, f(n − 2)) and

(n+ 2, f(n+ 2)), ∂Df
n is identical to Sf .
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n−3 n−1 n n+1 n+3
suppχ[n−1,n+1]

Df
n

x1

x2

S

M + ρ

M + 3ρ

Figure 3.2: Construction of the domain Df
n

As suppχ[n−1,n+1] ⊂⊂ (n− 2, n+ 2) we can define the density ψ ∈ [BC(∂Df
n)]2 by

ψ(x) :=

{
χ[n−1,n+1](x1)φ(x), x ∈ ∂Df

n ∩ Sf ,
0 otherwise.

Then

vf2,n(x) =

∫
∂Dfn

Γ(x,y)ψ(y) ds(y).

An application of Theorem 3.6 (a) now completes the proof.

The two previous lemmas are the building blocks for the proof of the next theorem
in which the regularity results for the elastic single layer potential on a rough surface
are stated. In its formulation, and also in the subsequent arguments in this chapter,
let a superscript denote + vector fields defined in Ωf and a superscript − denote
vector fields defined in Uh \ Ωf .

Theorem 3.11 Assume f ∈ B1,c,M .

(a) For φ ∈ [BC(Sf )]
2 and α ∈ (0, 1), there holds vf ∈ [V0,α(Uh)]

2 and

‖vf‖0,α;Uh\UH ≤ C ‖φ‖∞;Sf ,

where the constant C depends only on α, c, M , h and H.
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(b) For φ ∈ [C0,α(Sf )]
2, α ∈ (0, 1), the first order derivatives of v±f in Ωf and

in Uh \Ωf have C0,α-extensions to Ωf and Uh \Ωf respectively. Furthermore,
there holds

‖v−f ‖1,α;Uh\Ωf , ‖v
+
f ‖1,α;Ωf\UH ≤ C ‖φ‖0,α;Sf ,

where the constant C depends only on α, c, M , h and H. For µ̃ = µ (µ +
λ)/(3µ+ λ) and λ̃ = (2µ+ λ)(µ+ λ)/(3µ+ λ), there holds

Pv±f (x) = ∓1

2
φ(x) +

∫
Sf

Π
(1)
D,h(x,y)φ(y) ds(y), x ∈ Sf ,

where the integral exists as an improper integral.

(c) For φ ∈ [BC(Sf )]
2 and α ∈ (0, 1), there holds∫

Sf

ΓD,h(·,y)φ(y) ds(y) ∈ [C0,α(Sf )]
2,

where the integral exists as an improper integral. Furthermore,∥∥∥∥∥
∫
Sf

ΓD,h(·,y)φ(y) ds(y)

∥∥∥∥∥
0,α;Sf

≤ C ‖φ‖∞;Sf ,

where the constant C depends only on α, c, M and h.

Proof: We immediately conclude from Lemmas 3.9 and 3.10 that vf ∈ C(Uh) and
that

‖vf‖∞;Uh\UH ≤ C‖φ‖∞;Sf (3.11)

where the constant C only depends on α, c, M , h and H. For x, y ∈ Uh \UH , there
either exists n ∈ Z with x, y ∈ Vn or |x − y| ≥ 1. In the second case, we trivially
obtain from (3.11) that

|vf (x)− vf (y)| ≤ C‖φ‖∞;Sf |x− y|α.

In the first case, however, the same estimate follows from Lemmas 3.9 and 3.10.
This concludes the proof of part (a).

As the kernel function in the definition of vf1,n is infinitely smooth, we can exchange
the order of integration and differentiation. Thus, in a way directly analogous to
the proof of Lemma 3.9 we obtain the same estimate for any first derivative of vf1,n.
To see (b), we now proceed as in the proof of Lemma 3.10, only applying Theorem
3.6 (b), and use the same arguments as for part (a).

Part (c) is an immediate consequence of part (a).

The same arguments as for Theorem 3.11 can be applied to prove regularity for the
double-layer potential. We only have to employ Theorem 3.7 to obtain the following
theorem.
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Theorem 3.12 Assume f ∈ B1,c,M .

(a) For φ ∈ [BC(Sf )]
2, µ̃ = µ (µ+λ)/(3µ+λ) and λ̃ = (2µ+λ)(µ+λ)/(3µ+λ),

the double layer potential w±f in Ωf and in Uh \Ωf has continuous extensions

to Ωf and Uh \ Ωf respectively. Furthermore, there holds

‖w−f ‖∞;Uh\Ωf , ‖w
+
f ‖∞;Ωf

≤ C‖φ‖∞;Sf ,

where the constant C depends only on c, M , h and H, and

w±f (x) = ±1

2
φ(x) +

∫
Sf

Π
(2)
D,h(x,y)φ(y) ds(y), x ∈ Sf ,

where the integral exists as an improper integral.

(b) For φ ∈ [BC(Sf )]
2, µ̃ = µ (µ+λ)/(3µ+λ), λ̃ = (2µ+λ)(µ+λ)/(3µ+λ) and

α ∈ (0, 1), there holds∫
Sf

Π
(j)
D,h(·,y)φ(y) ds(y) ∈ [C0,α(Sf )]

2, j = 1, 2,

where the integral exists as an improper integral. Furthermore,∥∥∥∥∥
∫
Sf

Π
(j)
D,h(·,y)φ(y) ds(y)

∥∥∥∥∥
0,α;Sf

≤ C ‖φ‖∞;S, j = 1, 2,

where the constant C depends only on α, c, M and h.

For certain arguments, it will also be necessary to study the elastic layer potentials
in the Sobolev space [H1

loc(Uh)]
2. Making use of Remark 3.8 and using similar

arguments as in Lemmas 3.9 and 3.10, we obtain the following result:

Remark 3.13 Assume µ̃ = µ (µ + λ)/(3µ + λ) and λ̃ = (2µ + λ)(µ + λ)/(3µ + λ)

and φ ∈ [H
1/2
loc (S)]2. Then there holds v, w ∈ [H1

loc(Uh \ S)]2.



Chapter 4

Radiation Conditions and
Uniqueness

In this chapter, the rough surface scattering problem will be formulated mathemati-
cally as a boundary value problem in the domain Ω. To ensure well-posedness of this
boundary value problem, a radiation condition has to be included in the formula-
tion. We will thus begin by investigating some of the radiation conditions that have
been used in elastic wave scattering problems. We then proceed to define a new
radiation condition, termed the upward propagating radiation condition (UPRC)
and analyse its properties, in particular how it generalises some of the more conven-
tional conditions. We will then present the formulation of the scattering problem as
a boundary value problem and, eventually, prove that this problem admits at most
one solution.

4.1 Radiation Conditions for Elastic Waves

From the perspective of physics, it is clear that the scattered field ought to be
made up of waves travelling along or away from the scattering obstacle. When
formulating the problem as a boundary value problem, uniqueness of solution can
only be ensured if a mathematical characterisation of such fields is included in the
formulation. Such a characterisation is termed a radiation condition.

Probably the best known radiation condition in scattering theory was that intro-
duced by A. Sommerfeld in his Habilitation thesis [44] in 1896. A modern pre-
sentation of this condition and its role for scattering problems involving bounded
obstacles is given by Colton/Kress [23]. The formulation of Sommerfeld’s radi-
ation condition for the elastic wave case is due to Kupradze [35], and a modern
version of this formulation is given here:
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Definition 4.1 Let D ⊂ R2 be a bounded domain. A solution u ∈ [C2(R2 \ D̄)]2

to the Navier equation in the exterior of D is said to satisfy Kupradze’s radiation
condition if

∂up
∂r
− ikpup = o(r−1/2) and

∂us
∂r
− iksus = o(r−1/2) (4.1)

uniformly in x/r as r := |x| → ∞.

In the case of scattering problems involving an effectively unbounded scatterer, it
is not clear that (4.1) necessarily implies a specific decay rate for u(x) as |x| → ∞.
Thus, for scattering problems of this type, we introduce the following notion of a
radiating wave:

Definition 4.2 Let H ∈ R. A solution u ∈ [C2(UH)]2 to the Navier equation is
said to be radiating if

up = O(r−1/2),
∂up
∂r
− ikpup = o(r−1/2)

and

us = O(r−1/2),
∂us
∂r
− iksus = o(r−1/2)

uniformly in x/r for x ∈ UH as r := |x| → ∞.

Remark 4.3 A vector field satisfying Kupradze’s radiation condition in the sense
of Definition 4.1 for some D ⊂ R2 is also radiating in the sense of Definition 4.2
for any H such that D ∩ UH = ∅ (see, e.g., formula (3.63) in [23]).

As is to be expected, Γ also satisfies Kupradze’s radiation condition:

Theorem 4.4 The columns of the matrix functions Γ(·,y) and Π(2)(·,y) as well as
the rows of Γ(x, ·) and Π(1)(x, ·), x, y ∈ R2, satisfy Kupradze’s radiation condition.

Proof: For Γ, the assertion is proved as in [35] for the three dimensional case.
For Π(1), Π(2), it can be seen by an application of Lemma 2.5 together with the
corresponding result for Γ.

In Section 2.4 when deriving the matrix of fundamental solutions ΓD,h, it was for-
mulated as a requirement that the columns of the matrix function U represent wave
fields propagating away from Th. We will now make this statement mathematically
precise, by showing they represent radiating solutions to the Navier equation:
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Theorem 4.5 For x, y ∈ Uh and H > max{x2, y2}, the columns of the matrix
function ΓD,h(·,y) and the rows of the matrix function ΓD,h(x, ·) are radiating solu-
tions to the Navier equation in UH .

Proof: As Γ is symmetric, the assertion for the first two terms in (2.22) is proved
in Theorem 4.4 together with Remark 4.3. Thus, it suffices to show the assertion
for U.

Observe that the terms in (2.27) involving Mp represent the longitudinal and the
terms involving Ms the transversal part of U; these will be denoted by U(p) and
U(s), respectively. For fixed y, an entry U

(p)
jk (·,y), j, k = 1, 2, satisfies the scalar

Helmholtz equation

∆z U
(p)
jk (z,y) + k2

p U
(p)
jk (z,y) = 0, z ∈ Uh,

and the boundary condition

U
(p)
jk (z,y) = g(z) := −Γjk(z,y) + Γjk(z,y

′
h)−U

(s)
jk (z,y), z ∈ Th.

From (2.27) we see, using arguments presented in [11], that U
(p)
jk satisfies the upward

propagating radiation condition of [11, 19], given here as Definition 4.8 and, more
precisely, that

U
(p)
jk (z,y) = 2

∫
Th

∂Φ

∂z̃2

(z, z̃) g(z̃) ds(z̃), z ∈ Uh,

where Φ(z, z̃) = i/4H
(1)
0 (kp|z − z̃|). Reviewing the proof of Theorem 2.13, we see

that g(z) = O(|z1|−3/2) as |z1| → ∞. We can thus use the argument presented
in [14, Section 5] to conclude

|U(p)
jk (z,y)| ≤ C(1 + z2 − h)(1 + r)−3/2

and
∂U

(p)
jk

∂r
(z,y)− ikpU(p)jk(z,y) = o(r−1/2),

where the derivative can be taken with respect to either z or y. The same argument
can be applied to U(s)(·,y) and the proof is now completed by recalling Lemma
2.15.

Corollary 4.6 For x, y ∈ Uh, H > max{x2, y2}, the columns of Π
(2)
D,h(·,y) and the

rows of Π
(1)
D,h(x, ·) are radiating solutions to the Navier equation in UH .
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Proof: A direct consequence of the previous theorem by application of Lemma 2.5.

Much attention has also been paid to the special case of scattering by a periodic
surface, i.e. a diffraction grating. In this case, one usually imposes a radiation
condition using the Rayleigh expansion [5,27,36,37].

Definition 4.7 Assume f to be 2π-periodic. Then u ∈ BC(Ω) is said to satisfy
the Rayleigh expansion radiation condition (RERC) if, for x2 > max f it has an
expansion of the form

u(x) =
∑
n∈Z

{
up,n

(
αn
βn

)
ei(αnx1+βnx2) + us,n

(
γn
−αn

)
ei(αnx1+γnx2)

}
,

where α ∈ R, α 6= 0, up,n, us,n ∈ C (n ∈ Z), αn := α + n,

βn :=

{ √
k2
p − α2

n, α2
n ≤ k2

p

i
√
α2
n − k2

p, α2
n > k2

p

, γn :=

{ √
k2
s − α2

n, α2
n ≤ k2

s

i
√
α2
n − k2

s , α2
n > k2

s

.

A field u satisfying the RERC is quasi-periodic with phase-shift α in Umax f and
thus also, by analytic continuation, in Ω, that is, for all x = (x1, x2)> ∈ Ω,

u(x1 + 2π, x2) = eiα2π u(x1, x2).

As a periodic surface is a special case of a rough surface, the problem of scattering
by a diffraction grating can be seen as a special case of the problem of scattering by
a rough surface. The radiation condition that will be introduced subsequently for
scattering problems involving a rough surface will thus have to be satisfied by vector
fields satisfing the RERC as well as by radiating fields in the sense of Definition 4.2.
It will be shown that this is indeed the case.

4.2 A New Radiation Condition for Scattering by

Rough Surfaces

We will start this section with a brief review of some results for the scalar case. In
this case, the governing equation is the Helmholtz equation,

∆u+ k2 u = 0.
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Its free field Green’s function is

Φ(x,y) :=
i

4
H

(1)
0 (k |x− y|).

There has been considerable progress on such scalar wave scattering problems in-
volving rough surfaces and inhomogeneous layers [11,15,19–21,48]. The foundation
of much of these results is a new radiation condition, termed the upward propagating
radiation condition:

Definition 4.8 A solution u : G→ C to the Helmholtz equation in G ⊂ R2 is said
to satisfy the upwards propagating radiation condition (UPRC), if, for some H ∈ R
and φ ∈ L∞(TH), UH ⊂ G and

u(x) = 2

∫
TH

∂Φ

∂y2

(x,y)φ(y) ds(y), x ∈ UH .

For the elastic wave case, a similar approach will be adopted. For the definition of
a UPRC, we will employ the matrix of fundamental solutions ΓD,h:

Definition 4.9 A solution u : G → C
2 to the Navier equation (2.4) in G ⊂ R2

is said to satisfy the upward propagating radiation condition (UPRC), if, for some
H ∈ R and φ ∈ [L∞(TH)]2, UH ⊂ G and

u(x) =

∫
TH

Π
(2)
D,H(x,y)φ(y) ds(y), x ∈ UH . (4.2)

Remark 4.10 Note that from Theorem 2.16 (a) it follows that for arbitrary φ ∈
[L∞(Th)]

2 the integral in (4.2) exists as an improper integral.

Remark 4.11 Apparently the definition of the upward propagating radiation con-
dition depends on the choice of the parameters λ̃ and µ̃ in the definition of the
generalised stresses. However, Theorem 4.12 below shows that the definition and the
density φ itself are in fact independent of these numbers.

The following theorem characterises the UPRC further and also establishes, through
the equivalence of (a) and (c), that it is satisfied by any radiating solution (c.f. the
charactarisation of the scalar UPRC in [19, Theorem 2.9]):

Theorem 4.12 Given a ∈ R and u : Ua → C
2, the following statements are equiv-

alent:
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(a) u ∈ [C2(Ua)]
2
, u ∈ [L∞(Ua \ UH)]2 for all H > a, ∆∗ u + ω2u = 0 in Ua, and

u satisfies the UPRC in Ua.

(b) u ∈ [C2(Ua)]
2
, u ∈ [L∞(Ua \ UH)]2 for all H > a, ∆∗ u + ω2u = 0 in Ua, and

for some H > a and φ1, φ2 ∈ L∞(TH),

u(x) = 2 grad

∫
TH

∂Φp

∂y2

(x,y)φ1(y) ds(y) + 2 grad⊥
∫
TH

∂Φs

∂y2

(x,y)φ2(y) ds(y)

for all x ∈ UH where Φp and Φs denote the fundamental solutions for the
Helmholtz equation with k replaced by kp and ks, respectively.

(c) u ∈ [L∞(Ua \ UH)]2 for all H > a and there exists a sequence (un) of radiating
solutions such that un(x)→ u(x) uniformly on compact subsets of Ua and

sup
x∈UH\Uh′ ,n∈N

|un(x)| <∞ (4.3)

for all H, h′ ∈ R satisfying h′ > H > a.

(d) u satisfies (4.2) for H = a and some φ ∈ [L∞(Ta)]
2.

(e) u ∈ [L∞(Ua \ UH)]2 for some H > a and u satisfies (4.2) for each H > a with
φ = u|TH .

(f) u ∈ [C2(Ua)]
2
, u ∈ [L∞(Ua \ UH)]2 for all H > a, ∆∗ u + ω2u = 0 in Ua, and

for every H > a and radiating solution in Ua, w, such that the restrictions of
w and Pw to TH are in [L1(TH)]

2
, there holds∫

TH

(u ·Pw −w ·Pu) ds = 0. (4.4)

Proof: (a) ⇒ (b): With H chosen so that (4.2) holds, we introduce the functions

Ψp,k(x,y) := − 1
k2
p

divx Π
(2)
D,H,·k(x,y)

Ψs,k(x,y) := − 1
k2
s

div⊥x Π
(2)
D,H,·k(x,y)

k = 1, 2,

and rewrite u(x) for x ∈ UH as

u(x) = up(x) + us(x)

= grad

∫
TH

2∑
k=1

Ψp,k(x,y)φk(y) ds(y)

+ grad⊥
∫
TH

2∑
k=1

Ψs,k(x,y)φk(y) ds(y). (4.5)
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Limiting our attention to the first integral for the moment, we define

vN(x) =

∫
TH(N)

2∑
k=1

Ψp,k(x,y)φk(y) ds(y),

v(x) =

∫
TH

2∑
k=1

Ψp,k(x,y)φk(y) ds(y).

For H ′ > H, the vector fields vN are solutions to the Helmholtz equation ∆ vN +
k2
pvN = 0 in UH′ . By Corollary 4.6 and one applications of Lemma 2.5 we see that

they are furthermore radiating in UH′ . By Theorem 2.13 together with Lemma 2.5,
there also holds vN(x)→ v(x) uniformly on compact subsets of UH′ . For h′ > H ′,
by Remark 2.17, we finally see that

sup
x∈UH′\Uh′ ,n∈N

|vN(x)| <∞.

So by Theorem 2.1 in [19], v satisfies the UPRC for the Helmholtz equation (see
Definition 4.8), which is the assertion. The argument for the second integral in (4.5)
is identical.

(b) ⇒ (c): Set Ψ1 := −1/k2
p div u and Ψ2 := −1/k2

s div⊥ u. Then (b) implies, that
for all x ∈ UH there holds

Ψ1(x) = 2

∫
TH

∂Φp

∂y2

(x,y)φ1(y) ds(y),

Ψ2(x) = 2

∫
TH

∂Φs

∂y2

(x,y)φ2(y) ds(y).

From the equivalence of (i) and (ii) in Theorem 2.9 in [19], it follows that there exist

sequences (Ψ
(n)
j ) (j = 1, 2) of radiating solutions to the Helmholtz equation with

k = kp and k = ks respectively such that Ψ
(n)
j (x) → Ψj(x) uniformly on compact

subsets of Ua and
sup

x∈Ua\Uh,n∈N,j=1,2

|Ψ(n)
j (x)| <∞

for all h > a. Set
un(x) := grad Ψ

(n)
1 (x) + grad⊥Ψ

(n)
2 (x).

Lemma 2.5 then implies (4.3) and that un(x) converges to u(x) uniformly on com-
pact subsets of Ua.

(c) ⇒ (f): Suppose H > a and set D := UH ∩ BR(0) for some R > H, where
BR(0) denotes the open ball with centre 0 and radius R. Further assume w to be
a radiating solution in Ua, such that the restrictions of w and Pw to TH are in
[L1(TH)]

2
. Then ∫

∂D

un ·Pw −w ·Pun ds = 0



46 The Scattering of Elastic Waves by Rough Surfaces

follows by the third generalised Betti formula (2.10). Letting R→∞ and using the
fact that w and un are radiating solutions to the Navier equation, we conclude∫

TH

un ·Pw −w ·Pun ds = 0.

Taking the limit as n→∞, recalling (4.3) and using Lemma 2.5, we see that (4.4)
holds. The remaining assertion follows from Corollary 2.6.

(f) ⇒ (a),(e): It suffices to show that (4.2) holds for all H > a with φ = u|TH .

Given H > a and x ∈ UH , choose h′, A ∈ R with h′ > x2 > H and A > |x1|. Set
B := {y ∈ UH \ Uh′ : |y1| < A}. Then, by Theorem 2.16 (e),

u(x) =

∫
∂B

{
ΓD,H(x,y) Pu(y)− Π

(2)
D,H(x,y) u(y)

}
ds(y).

Letting A→∞ and recalling u ∈ [L∞(Ua \Uh′)]2 as well as Theorems 2.10 and 4.5
as well as Theorem 2.16 (a), we obtain that

u(x) =

∫
Th′

{
ΓD,H(x,y) Pu(y)− Π

(2)
D,H(x,y) u(y)

}
ds(y)

+

∫
TH

Π
(2)
D,H(x,y) u(y) ds(y).

By applying (4.4) with w equal to each of the rows of ΓD,H(x, ·) in turn, the integral
over Th′ is seen to vanish.

(e) ⇒ (d): Introducing, for α ∈ R, the mapping

ηα(z) := (z1, z2 + α)>,

we have from (e) that

u(x) =

∫
Ta

Π
(2)
D,H(x, ηH−a(z)) u(ηH−a(z)) ds(z), x ∈ UH . (4.6)

As u ∈ [L∞(Ua \ UH) ∩ C(Ua)]
2 for some H > a, the densities u(ηH−a(·)) are all

in some ball in [L∞(Ta)]
2 for H close enough to a. Recalling that the unit ball in

[L∞(Ta)]
2 is weak∗ sequentially compact, there thus exists a sequence (Hn) with

Hn → a and u(ηHn−a(·)) → φ ∈ [L∞(Ta)]
2. Taking the limit as H → a, through

this sequence in (4.6) we now conclude that (4.2) holds for H = a with this φ.

(d) ⇒ (c): As (4.2) is satisfied with h = a, it follows from Theorem 2.16 (a) that

|u(x)| ≤ ‖φ‖∞ g(x2), x ∈ Ua, (4.7)
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where g ∈ C(R). Setting

un(x) :=

∫
Ta(n)

Π
(2)
D,a(x,y)φ(y) ds(y), x ∈ Ua,

u ∈ [L∞(Ua \ Uh)]2 for all h > a and (4.3) follow from (4.7). That un(x) converges
to u(x) uniformly on compact subsets of Ua and that un is radiating, is also easily
seen from Theorem 2.16 (a).

Remark 4.13 From Remark 2.14 in [19] and the equivalence of statements (a) and
(b) in Theorem 4.12, it follows that any bounded solution to the Navier equation u
in Ω that satisfies the UPRC in Ω and is quasi-periodic in Ω also satisfies the RERC
of Definition 4.7. Conversely, applying the same results, a bounded, quasi-periodic
solution to the Navier equation in Ω, satisfying the RERC, also satisfies the UPRC.

It remains to be shown that the elastic single- and double-layer potentials v defined
by (3.1) and w defined by (3.2) satisfy the UPRC. To this end, assume f ∈ C1,1(R),
φ ∈ [BC(S)]2 and introduce the vector fields vN and wN , N ∈ N, by

vN(x) :=

∫
S(N)

ΓD,h(x,y)φ(y) ds(y),

wN(x) :=

∫
S(N)

Π
(2)
D,h(x,y)φ(y) ds(y),

x ∈ Ω.

As SN is a bounded set, applications of Theorem 4.5 and Corollary 4.6 now yield that
vN and wN are radiating solutions to the Navier equation in the sense of Definition
4.2 for any H > sup f . From Theorems 2.13 and 2.16 (a), the sequences (vN(x)) and
(wN(x)) converge to v(x) and w(x), x ∈ Ω, respectively, and this convergence is
uniform on compact subsets of Ua for any a > sup f . We can finally apply Theorem
3.11 (a) and Theorem 3.12 (a) to see that (4.3) holds with a > sup f . Thus, the
equivalence of (a) and (c) in Theorem 4.12 yields the following result:

Theorem 4.14 Assume f ∈ C1,1(R). Then, the elastic single-layer potential v and
the elastic double-layer potential w satisfy the UPRC.

4.3 Formulation as a Boundary Value Problem

and Uniqueness of Solution

Recall the formulation of the rough surface scattering problem from Section 1.1:
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Scattering Problem: Given an incident field uinc that is a solution to the
Navier equation (2.4) in Ω, find the scattered field u such that uinc+u =
0 on S.

We will now formulate this scattering problem as a boundary value problem. In
fact, the assumptions can be formulated slightly more generally: we only require
that uinc is a solution to the Navier equation in some neighborhood of S = ∂Ω and
that g := −uinc|S ∈ [BC(S) ∩H1/2

loc (S)]2.

Problem 4.15 Find a vector field u ∈ [C2(Ω) ∩ C(Ω) ∩H1
loc(Ω)]2 that satisfies

1. the Navier equation ∆∗ u + ω2u = 0 in Ω,

2. the Dirichlet boundary condition u = g on S for some vector field g ∈
[BC(S) ∩H1/2

loc (S)]2,

3. the vertical growth rate condition

sup
x∈Ω

xβ2 |u(x)| <∞ (4.8)

for some β ∈ R and

4. the UPRC in Ω.

Remark 4.16 A solution of Problem 4.15 satisfies statement (a) of Theorem 4.12
with any a > sup f .

The remaining part of this chapter will be devoted to proving that Problem 4.15 has
at most one solution. The question of existence of solution will be postponed until
Chapter 5. However, it is worth pointing out at this stage, that it is clear a priori
that Problem 4.15 is well posed in certain, non-trivial cases: From Remark 4.13 we
see that, in the case when f is periodic and the Dirichlet data g is quasi-periodic,
Problem 4.15 reduces to the diffraction grating problem considered in [4, 5], if we
assume additionally that the solution u is quasi-periodic. The diffraction grating
problem was shown in [4, 5] to be uniquely solvable. Thus we know that Problem
4.15 admits solutions, in the case when f is periodic and g quasi-periodic.

Let us also point out that, as we will now proceed to show that Problem 4.15 has
at most one solution in every case, we will in fact prove for the diffraction grating
problem that the additional requirement that the solution be quasi-periodic can be
dropped.

In all of what follows, let h denote a real number with h < inf f . The first step in
the uniqueness proof will be the following representation theorem:
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Theorem 4.17 Let u be a solution to Problem 4.15 with g ≡ 0. Then u ∈ [C1(Ω̄)]2,
its first derivatives are bounded in DH for any H > sup f and

u(x) = −
∫
S

ΓD,h(x,y) Pu(y) ds(y)

holds for all x ∈ Ω.

Proof: That u ∈ [C1(Ω̄)]2 and its first derivatives are bounded in DH , H > sup f ,
is a consequence of Theorem 2.7. For x ∈ Ω, choose h′, A ∈ R and ε > 0 with
h′ > max{x2, sup f} and A > |x1|. Define DA

ε,h′ := {x ∈ Dh′(A) : x2 > f(x1) + ε}.
Then, by Theorem 2.16 (e), there holds

u(x) =

∫
∂DA

ε,h′

{
ΓD,h(x,y) Pu(y)− Π

(2)
D,h(x,y) u(y)

}
ds(y).

By applying Theorem 2.7, we see that the growth rate condition (4.8) for u also
holds for any first derivative of u. Letting A→∞ and recalling Theorems 2.13 and
2.16 (a) then yields

u(x) =

∫
Th′

{
ΓD,h(x,y) Pu(y)− Π

(2)
D,h(x,y) u(y)

}
ds(y)

−
∫
Sε

{
ΓD,h(x,y) Pu(y)− Π

(2)
D,h(x,y) u(y)

}
ds(y),

where Sε := {x ∈ Ω : x2 = f(x1) + ε}. Note here, that the normal n to Sε is
assumed to be pointing upwards. The proof is now completed by recalling Remark
4.16 and the equivalence of (a) and (f) in Theorem 4.12, by which the integral over
Th′ vanishes, and letting ε→ 0.

Let us now introduce some functionals that will be of importance in the following
arguments. Let h′ > sup f , A > 0 and u ∈ C1(Ω̄). We define

I(h′, A)[u] :=

∫
Th′ (A)

(2µ+ λ)

(∣∣∣∣∂u2

∂x2

∣∣∣∣2 − ∣∣∣∣∂u1

∂x1

∣∣∣∣2
)

+µ

(∣∣∣∣∂u1

∂x2

∣∣∣∣2 − ∣∣∣∣∂u2

∂x1

∣∣∣∣2
)

+ ω2|u|2 ds,

J1(h′, A)[u] := 2 Re

∫
γ(h′,A)

∂ū

∂x2

·Pu ds,

J2(h′, A)[u] := Im

∫
γ(h′,A)

ū ·Pu ds,

K(h′, A)[u] := Im

∫
Th′ (A)

ū ·Pu ds,
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where we recall the assumptions on the direction of the normal vectors in Section
1.3. We will now investigate the properties of these functionals.

Lemma 4.18 Suppose u satisfies statement (b) in Theorem 4.12 with H > sup f
and some densities φj ∈ L2(TH) ∩ L∞(TH) (j = 1, 2). Then, for all h′ > H, there
holds

I(h′,∞)[u] = 2ω2

{∫ kp

−kp
|φ̃1|2γ2

p dt+

∫ ks

−ks
|φ̃2|2γ2

s dt

}
,

where φ̃1(t) := e−iγpH φ̂1(t), φ̃2(t) := e−iγsH φ̂2(t) and φ̂j denotes the Fourier trans-
form of φj(y1, y2) with respect to y1 (j = 1, 2), i.e.

φ̂j(t) =

∫ ∞
−∞

φj(y1, y2) eiy1t dy1.

Proof: Choose H > sup f so that the representation for u in UH according to state-
ment (b) of Theorem 4.12 holds. Then the argument presented for the derivation
of equation (29) in [11] yields

u(x) =
i

2π

∫ ∞
−∞

φ̃1(t)

(
t

γp

)
ei(tx1+γpx2) + φ̃2(t)

(
γs
−t

)
ei(tx1+γsx2) dt, x ∈ UH .

By an application of Parseval’s Theorem we derive from this representation, for any
h′ > H, ∫

Th′

|u1|2ds =

∫ ∞
−∞
|tφ̃1 + γsφ̃2|2dt,∫

Th′

|u2|2ds =

∫ ∞
−∞
|γpφ̃1 − tφ̃2|2dt,∫

Th′

∣∣∣∣∂u1

∂x1

∣∣∣∣2 ds =

∫ ∞
−∞
|it2φ̃1 + itγsφ̃2|2dt,∫

Th′

∣∣∣∣∂u1

∂x2

∣∣∣∣2 ds =

∫ ∞
−∞
|itγpφ̃1 + iγ2

s φ̃2|2dt,∫
Th′

∣∣∣∣∂u2

∂x1

∣∣∣∣2 ds =

∫ ∞
−∞
|itγpφ̃1 − it2φ̃2|2dt,∫

Th′

∣∣∣∣∂u2

∂x2

∣∣∣∣2 ds =

∫ ∞
−∞
|iγ2

p φ̃1 − itγsφ̃2|2dt.
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From these formulae, the following three identities are easily obtained:∫
Th′

{
|u1|2 + |u2|2

}
ds =

∫ ∞
−∞
|φ̃1|2 (t2 + |γp|2) + φ̃1 φ̃2 (tγs − tγp)

+φ̃1 φ̃2 (tγs − tγp) + |φ̃2|2 (|γs|2 + t2) dt,(4.9)∫
Th′

{∣∣∣∣∂u2

∂x2

∣∣∣∣2 +

∣∣∣∣∂u1

∂x1

∣∣∣∣2
}
ds =

∫ ∞
−∞
|φ̃1|2 (γ4

p − t4) + φ̃1 φ̃2 (−tγ2
pγs − t3γs)

+φ̃1 φ̃2 (−tγ2
pγs − t3γs) dt, (4.10)∫

Th′

{∣∣∣∣∂u1

∂x2

∣∣∣∣2 +

∣∣∣∣∂u2

∂x1

∣∣∣∣2
}
ds =

∫ ∞
−∞

φ̃1 φ̃2 (tγpγ
2
s + t3γp) + φ̃1 φ̃2 (tγpγ

2
s − t3γp)

+|φ̃2|2 (γ4
s − t4) dt. (4.11)

Combining (4.9)–(4.11) and observing k2
p − t2 + |γp|2 = 0 for |t| > kp as well as

k2
s − t2 + |γs|2 = 0 for |t| > ks now yields the assertion.

Lemma 4.19 Suppose all the assumptions of Lemma 4.18 are satisfied. Then, for
all h′ > H, we have the identity

K(h′,∞)[u] = ω2

{∫ kp

−kp
|φ̃1|2γp dt+

∫ ks

−ks
|φ̃2|2γs dt

}
.

Proof: Recalling the remarks at the beginning of the proof of Lemma 4.18 and
adopting the same notation, we easily see that∫

Th′

ū ·Pu ds =

∫ ∞
−∞

{
|φ̃1|2(iµt2γp + iµ̃t2γp + iλ̃t2γp + i(2µ+ λ)γpγ

2
p)

+ φ̃1φ̃2(iµtγpγs + iµ̃tγpγs − iλ̃t3 − i(2µ+ λ)tγ2
p)

+ φ̃1φ̃2(iµtγ2
s − iµ̃t3 + iλ̃tγpγs − i(2µ+ λ)tγpγs)

+ |φ̃2|(iµγ2
sγs − iµ̃t2γs − iλ̃t2γs + i(2µ+ λ)t2γs)

}
dt.

(4.12)

Taking the imaginary part, straightforward calculations show that all the terms

involving φ̃1φ̃2 and its complex conjugate cancel. On the other hand,

Im

∫ ∞
−∞
|φ̃1|2(iµt2γp + iat2γp + ibt2γp + i(2µ+ λ)γpγ

2
p) dt
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=
1

2

∫ ∞
−∞
|φ̃1|2 (µt2γp + µt2γp + µ̃t2γp + µ̃t2γp

+λ̃t2γp + λ̃t2γp + (2µ+ λ)γpγ
2
p + (2µ+ λ)γ3

p dt

=
1

2

∫ ∞
−∞

(2µ+ λ) |φ̃1|2 (t2γp + γ3
p + t2γp + γpγ

2
p) dt

=

∫ kp

−kp
(2µ+ λ)k2

pγp|φ̃1|2 dt

A similar calculation for the remaining term in the expression (4.12) now yields the
lemma.

The following corollary to the previous two lemmas is of fundamental importance:

Corollary 4.20 Suppose all the assumptions of Lemma 4.18 are satisfied. Then,
for all h′ > H, there holds

I(h′,∞)[u] ≤ 2ksK(h′,∞)[u].

Proof: The assertion follows from Lemmas 4.18 and 4.19 by noting kp ≥ γp on
[−kp, kp], ks ≥ γs on [−ks, ks] and ks > kp.

Another, simpler relation involving these functionals which is much easier to prove
is stated in the following lemma:

Lemma 4.21 Let u be a solution to Problem 4.15 with g ≡ 0. Further assume
h′ > max f and A > 0. Then

K(h′, A)[u] = −J2(h′, A)[u].

Proof: Apply the third generalised Betti formula (2.10) to u and ū in Dh′(A).

Assume now that u is a solution to Problem 4.15 with g ≡ 0. As u and its tangential
derivatives vanish on S, Pu has the simple form

Pu = µ
∂u

∂n
+ (λ+ µ) n div u on S, (4.13)

and thus∫
S(A)

∂ū

∂x2

·Pu ds =

∫
S(A)

{
µn2

∣∣∣∣∂u

∂n

∣∣∣∣2 + (λ+ µ)n2 |div u|2
}
ds (4.14)
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for any A > 0. In a similar fashion, we also show that

Eµ̃,λ̃(ū,u) = µ

∣∣∣∣∂u

∂n

∣∣∣∣2 + (λ+ µ) |div u|2 on S. (4.15)

Combining (4.14) and (4.15), we conclude by an integration by parts that

0 ≤
∫
S(A)

{
µn2

∣∣∣∣∂u

∂n

∣∣∣∣2 + (λ+ µ)n2|div u|2
}
ds

= 2 Re

∫
S(A)

∂ū

∂x2

·Pu ds−
∫
S(A)

n2 Eµ̃,λ̃(ū,u)− n2 ω
2|u|2 ds

= 2 Re

∫
S(A)

∂ū

∂x2

·Pu ds+ 2 Re

∫
Dh′ (A)

Eµ̃,λ̃(
∂ū

∂x2

,u)− ω2 ∂ū

∂x2

· u dx

−
∫
Th′ (A)

Eµ̃,λ̃(ū,u)− ω2|u|2 ds (4.16)

On the other hand, for any h′ > sup f , by the first Betti formula (2.8) there also
holds ∫

∂Dh′ (A)

∂ū

∂x2

·Pu ds =

∫
Dh′ (A)

Eµ̃,λ̃(
∂ū

∂x2

,u)− ω2 ∂ū

∂x2

· u dx. (4.17)

It is also not difficult to see that

Re

∫
Th′ (A)

{
2
∂ū

∂x2

·Pu + ω2|u|2 − Eµ̃,λ̃(ū,u)

}
ds = I(h′, A)[u],

Combining this identity with (4.16) and (4.17), we conclude finally that

0 ≤
∫
S(A)

{
µn2

∣∣∣∣∂u

∂n

∣∣∣∣2 + (λ+ µ)n2|div u|2
}
ds = I(h′, A)[u] + J1(h′, A)[u]. (4.18)

The rest of the derivation of the uniqueness result is now a rather straightforward
adaption of the method presented in [20] for the Helmholtz equation case. Let us
introduce the vector fields vA defined for A > 0 by

vA(x) := −
∫
S(A)

ΓD,h(x,y) Pu(y) ds(y).

Using the Cauchy-Schwarz inequality and Theorem 2.13, we find that vA|h′ ∈
[L2(Th′) ∩ BC(Th′)]

2 for all h′ > sup f . As vA is a radiating solution to the Navier
equation for every A ∈ R, it is seen to satisfy statement (c) of Theorem 4.12 and
thus also statement (b) of that theorem. Thus, by Corollary 4.20,

I(h′,∞)[vA] ≤ 2ksK(h′,∞)[vA]. (4.19)
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Now set w(x1) := |Pu(x1, f(x1))| for x1 ∈ R. Then∫ A

−A
|w(x1)|2 dx1 ≤

∫
S(A)

|Pu|2 ds ≤ (1 + ‖f ′‖2
∞;R)1/2

∫ A

−A
|w(x1)|2 dx1 (4.20)

follows. Using Theorem 2.13 and Lemma 2.5 we obtain the estimates

|ΓD,h(x,y)|, | ∂
∂xj

ΓD,h(x,y)| ≤ C(1 + |x1 − y1|)−3/2 (j = 1, 2)

for x ∈ Th′ , y ∈ S, where C is some positive constant depending only on h′ and h.
This yields the estimates

|vA(x)|, |∂vA
∂xj

(x)| ≤ CWA(x1)

|u(x)− vA(x)| ≤ C (W∞(x1)−WA(x1))

| ∂u
∂xj

(x)− ∂vA
∂xj

(x)| ≤ C (W∞(x1)−WA(x1))

(4.21)

for x ∈ Th′ , j = 1, 2, with certain generic constants C, where

WA(x1) :=

∫ A

−A
(1 + |x1 − y1|)−3/2 w(y1) dy1, x1 ∈ R.

Recalling (4.13), we can estimate by (4.18)–(4.20) and Lemma 4.21∫ A

−A
|w(x1)|2 dx1 ≤ C

∫
S(A)

{
µn2

∣∣∣∣∂u

∂n

∣∣∣∣2 + (λ+ µ)n2|div u|2
}
ds

≤ C
{
|I(h′, A)[u]− I(h′, A)[vA]|

+|I(h′, A)[vA]− I(h′,∞)[vA]|

+2ks

[
|K(h′,∞)[vA]−K(h′, A)[vA]|

+|K(h′, A)[vA]−K(h′, A)[u]|
]

+|J1(h′, A)[u]|+ 2ks|J2(h′, A)[u]|
}
.

From (4.21), there now follows, with some positive constant C,

|I(h′, A)[vA]− I(h′,∞)[vA|,
|K(h′,∞)[vA]−K(h′, A)[vA]|

}
≤ C

∫
R\[−A,A]

W 2
A(x1) dx1

and

|I(h′, A)[u]− I(h′, A)[vA]|,
|K(h′, A)[vA]−K(h′, A)[u]|

}
≤ C

∫ A

−A
(W∞(x1)−WA(x1))W∞(x1) dx1,
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so that we finally conclude, for some constant c > 0 and all A > 0,∫ A

−A
|w(x1)|2 dx1 ≤ c

{∫
R\[−A,A]

W 2
A(x1) dx1

+

∫ A

−A
(W∞(x1)−WA(x1))W∞(x1) dx1

+|J1(h′, A)[u]|+ |J2(h′, A)[u]|
}
. (4.22)

Since (4.22) holds and we also have from Theorem 2.7 that w ∈ L∞(R), we can
apply Lemma A in [20] to obtain that w ∈ L2(R) and, noting (4.20), that for all
A0 > 0,

(1 + ‖f ′‖2
∞;R)−1/2

∫
S

|Pu|2 ds ≤
∫ ∞
−∞
|w(x1)|2 dx1

≤ c sup
A>A0

{|J1(h′, A)[u]|+ |J2(h′, A)[u]}|.(4.23)

For x ∈ Dh′ with |x1| > 0, we now deduce by Theorem 2.13, Theorem 4.17 and the
Cauchy-Schwarz inequality, that

|u(x)|2 ≤ 2

{∫
S\S(|x1|/2)

|ΓD,h(x,y) Pu(y)| ds(y)

}2

+ 2

{∫
S(|x1|/2)

|ΓD,h(x,y) Pu(y)| ds(y)

}2

≤ C1

∫
S\S(|x1|/2)

|Pu|2 ds+ C2

(
|x1|
2

)−2

,

where

C1 = 16 sup
x∈Dh′

∫
S

max
j,k=1,2

|ΓD,h,jk(x,y)|2 ds(y) <∞

by Remark 2.14 and

C2 = 32 ‖H‖2
C([0,h′−h]2) (1 + ‖f ′‖∞;R)1/2 ‖Pu‖[L2(S)]2 .

Thus, u(x) → 0 as |x1| → ∞ (x ∈ Dh′), uniformly in x2. From Lemma 2.5
and Theorem 2.7 it now follows that Jj(A)[u] → 0 as A → ∞ (j = 1, 2), and
consequently, by (4.23), that Pu = 0 on S. Recalling once more Theorem 4.17, we
conclude u ≡ 0 in Ω.

We have thus shown the following central theorem:

Theorem 4.22 Let u and v be solutions of Problem 4.15 with the same Dirichlet
data g. Then u ≡ v in Ω.
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Chapter 5

Existence of Solution

Existence of solution will be proved by the boundary integral equation method,
a well-established method to prove existence of solution for scattering problems.
As a first step, an equivalent integral equation formulation of Problem 4.15 will
be derived. However, as the integral operators in this equation are not compact,
surjectivity cannot be deduced from injectivity by the Fredholm Alternative, as
would be the usual approach in scattering by bounded obstacles. A new theory of
solvability of integral equations on unbounded domains will be presented that allows
this deduction for problems of scattering by infinite rough surfaces. This theory is
used to establish solvability in [BC(R)]2, first for the adjoint equation and then,
through a duality argument, for the orginal equation. As a final result, it is shown
how it is possible to establish solvability in all [Lp(R)]2 spaces.

5.1 An Integral Equation Formulation

The first stepping stone in the existence proof will be an equivalent integral equation
formulation of Problem 4.15. To derive this equation, we will seek a solution to
Problem 4.15 in the form of a combined single- and double layer potential,

u(x) =

∫
S

{
Π

(2)
D,h(x,y)− iη ΓD,h(x,y)

}
ψ(y) ds(y), x ∈ Ω, (5.1)

where ψ ∈ [BC(S)∩H1/2
loc (S)]2 and η is a complex number with Re (η) > 0. Through-

out, we assume µ̃ = µ (µ+ λ)/(3µ+ λ) and λ̃ = (2µ+ λ)(µ+ λ)/(3µ+ λ) and that
f ∈ C1,1(R).

From Theorem 3.1 we know that u is a solution to the Navier equation in Ω and
in Uh \ Ω̄. Note also Remark 3.13 to see u ∈ [H1

loc(Ω)]2. Furthermore, it satisfies



58 The Scattering of Elastic Waves by Rough Surfaces

the UPRC by Theorem 4.14. A review of the derivation of Theorem 2.13 further
reveals that the function H in this theorem satisfies H(x2, y2) = O(x2) as x2 →∞,
uniformly for bounded y2. Therefore, the growth condition (4.8) can be seen to hold
with β = −1/2.

Thus, from the jump relations for elastic single- and double-layer potentials stated
in Theorems 3.11 and 3.12 and the boundary condition, it follows that u is a solution
to the boundary value problem if ψ is a solution to the integral equation

1

2
ψ(x) +

∫
S

{
Π

(2)
D,h(x,y)− iη ΓD,h(x,y)

}
ψ(y) ds(y) = −g(x), x ∈ S. (5.2)

It suffices to study the solvability of this integral equation in the space [BC(S)]2,
as it follows from Theorems 3.11 (c) and 3.12 (b) that the integral operator maps

[BC(S)]2 into [H
1/2
loc (S)]2. Thus, for any right hand side g ∈ [BC(S) ∩ H1/2

loc (S)]2,
the solution has to be an element of this space as well.

We now introduce the three integral operators Sf , Df and D′f by

Sf φ(s) := 2

∫ ∞
−∞

ΓD,h((s, f(s)), (t, f(t))φ(t)
√

1 + f ′(t)2 dt, (5.3)

Df φ(s) := 2

∫ ∞
−∞

Π
(2)
D,h((s, f(s)), (t, f(t)))φ(t)

√
1 + f ′(t)2 dt, (5.4)

D′f φ(s) := 2

∫ ∞
−∞

Π
(1)
D,h((s, f(s)), (t, f(t)))φ(t)

√
1 + f ′(t)2 dt, (5.5)

where s ∈ R and φ ∈ [L∞(R)]2. From Theorem 3.11 (c) and Theorem 3.12 (b),
we know that each of these operators are bounded mappings of [BC(R)]2 into
[C0,α(R)]2. Furthermore, setting φ(s) = ψ(s, f(s)), the integral equation (5.2) is
equivalent to

(I + Df − iη Sf )φ(s) = −2 g(s, f(s)), s ∈ R. (5.6)

We explore the properties of these three integral operators more thoroughly in the
following lemmas:

Lemma 5.1 Let K denote any of the integral operators Sf , Df or D′f and K(s, t)

the corresponding matrix kernel, such that Kφ(s) =
∫∞
−∞K(s, t)φ(t) dt.

(a) There exists a function κ ∈ L1(R) such that

max
j,k=1,2

|Kjk(s, t)| ≤ κ(s− t) for almost all s, t ∈ R,

where κ = O(|s|−3/2) as |s| → ∞.
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(b) The matrix kernel K of K satisfies the properties

sup
s∈R

∫ ∞
−∞
|Kjk(s, t)| dt <∞, j, k = 1, 2, (5.7)

and, for all s, s′ ∈ R,

lim
s′→s

∫ ∞
−∞
|Kjk(s, t)−Kjk(s

′, t)| dt = 0, j, k = 1, 2. (5.8)

(c) K is a bounded mapping from [L∞(R)]2 to [BC(R)]2.

(d) K is a bounded mapping from [Lp(R)]2 to [Lp(R)]2 for any p ∈ [1,∞).

Proof: For s, t ∈ R, let x = (s, f(s)), y = (t, f(t)). Then, by (2.14) and Theorems
2.10 and 2.13, for ε > 0, j, k = 1, 2, there exists a constant C > 0 and H ∈ C(R2)
such that

|ΓD,h,jk(x,y)| ≤

{
C (1 + log |x− y|), |s− t| ≤ ε,

H(f(s)−h,f(t)−h)

|s−t|3/2 , |s− t| > ε.

The same estimate is valid for the fundamental matrices Π
(1)
D,h and Π

(2)
D,h by Theorem

2.16 and Remark 3.4. Thus (a) follows immediately.

Property (5.7) is a simple consequence of (a) while property (5.8) follows from the
dominated convergence theorem. (5.7) and (5.8) together imply statement (c).

Statement (d) follows from (a) using Young’s Theorem.

Lemma 5.2 The operator Sf is self-adjoint and the operators Df and D′f are
adjoint with respect to the non-degenerate duality < ·, · > defined on [Lp(R)]2 ×
[Lq(R)]2, by

< φ, ψ > :=

∫ ∞
−∞

φ(s) · ψ(s)
√

1 + f ′(s)2 ds, (5.9)

where either 1 < p, q <∞ with 1/p+ 1/q = 1 or p = 1 and q =∞.

Proof: The assertion follows from Lemma 5.1 (d) as well as Lemma 2.15 and
Theorem 2.16 (b).

As the operators Sf and Df are not compact on any suitable space, the Fredholm
Alternative is not available as a tool to deduce surjectivity of I + Df − iη Sf from
injectivity. We will nevertheless present a theory in the subsequent sections that
allows this deduction.

However, it is also not straightforward to show injectivity of I + Df − iη Sf . We
will therefore start by considering the adjoint operator:
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Theorem 5.3 The operator I + D′f − iη Sf is injective on [L∞(R)]2.

Proof: Because of Lemma 5.1 (c), any vector density φ ∈ [L∞(R)]2 in the kernel of
I + D′f − iη Sf has to be in [BC(R)]2. It is therefore enough to show injectivity on
this space.

Assume φ ∈ [BC(R)]2 to be a solution of

(I + D′f − iη Sf )φ = 0, (5.10)

and define the single layer potential u by

u(x) :=

∫
S

ΓD,h(x,y)φ(y1) ds(y) for x ∈ Uh \ S,

where h ∈ R with h < inf f . Let us introduce the notation u+ = u|Ω and u− =
u|Uh\Ω̄. From (5.10) and the mapping properties of Sf and D′f it follows that
φ ∈ [C0,α(R)]2. Thus, from Theorem 3.11, we have that u− and u+ have continuous
derivatives up to S and, moreover, that

‖u−‖1,α;Uh\Ω ≤ C ‖φ‖0,α;S, (5.11)

Pu− − iη u− = 0 on S, (5.12)

φ = Pu− −Pu+. (5.13)

Also, by the definition of ΓD,h, there holds u− = 0 on Th. Thus, by an application
of the first generalised Betti formula,

Re(η)

∫
S(A)

|u−|2 ds = − 1

2i

∫
S(A)

{
u− ·Pu− − u− ·Pu−

}
ds

=
1

2i

∫
R(A)

{
u− ·Pu− − u− ·Pu−

}
ds, (5.14)

where R(A) := {x ∈ Uh \ Ω̄ : |x1| = A}. Note that the right hand side of this
equation is bounded by (5.11), so u− ∈ [L2(S)]2 follows by taking the limit as
A→∞. Consequently, (5.12) yields Pu− ∈ [L2(S)]2 as well.

It is not difficult to see that

u−(x) =

∫
S

{
ΓD,h(x,y) Pu−(y)− Π

(2)
D,h(x,y) u−(y)

}
ds(y)

holds for all x ∈ Uh\Ω̄. Thus, by an argument very similar to that in the uniqueness
proof for the Dirichlet problem, it follows that |u−(x)| → 0 as |x1| → ∞. Applying
this in (5.14) and taking the limit for A→∞, then yields u− = 0 on S.

From the continuity of the elastic single-layer potential in Uh, there follows u+ = 0
on S and thus, by the uniqueness theorem for the Dirichlet problem, Pu+ = 0 on
S. Also, (5.12) implies Pu− = 0 on S. Thus, by (5.13), we conclude φ ≡ 0.
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5.2 Solvability results for a class of operator equa-

tions

To deduce the surjectivity of the integral operators from their injectivity, we will now
present a solvability theory developed by Chandler-Wilde, Zhang and Ross

[10,17,22] which generalises the collectively compact operator theory of Anselone

[1]. The operator equation approach presented here is that used in [16].

Let X denote a Fréchet space with a countable family of semi-norms {| · |n} that
generates the topology onX. This topology shall be labelled τ . We define a subspace
Y of X by

Y := {φ ∈ X : ‖φ‖∞ := sup
n∈N
|φ|n <∞}.

We note that ‖ · ‖∞ is a norm on Y and that Y becomes a Banach space under this
norm. The corresponding topology shall be termed the norm topology.

Example 5.4 In the context of the application of this theory to the integral equa-
tion (5.6), we will use X = [C(R)]2 with

|φ|n = sup
|t|≤n
|φ(t)|,

so that Y = [BC(R)]2.

On the space Y we now define a further topology as follows. Let S0 denote the
space of real sequences converging to 0,

S0 := {(an) : an ∈ R, n ∈ N, lim
n→∞

an = 0}.

For each a ∈ S0, we define a seminorm | · |a on Y by

|φ|a := sup
n∈N
|an φ|n.

Clearly, the family of seminorms {| · |a : a ∈ S0} is separating. Thus it induces a
locally convex topology on Y , which we will call the σ-topology.

Remark 5.5 The σ-topology is an abstraction of the strict topology introduced by
Buck in [9].

Remark 5.6 For (φn) ⊂ Y , we write φn −→ φ if ‖φn − φ‖∞ → 0 as n→∞, and
φn

σ−→ φ if (φn) converges in the σ-topology. It is easy to see that

φn
σ−→ φ =⇒ ‖φ‖∞ ≤ sup

n∈N
‖φn‖∞. (5.15)
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The following theorem explores the properties of the σ-topology and its relation to
the other two topologies.

Theorem 5.7

(a) The bounded sets in Y in the σ-topology and in the norm topology are the
same.

(b) Y is complete in the σ-topology.

(c) A sequence (φn) ⊂ Y is convergent in the σ-topology if and only if it is con-
vergent in the τ -topology and (φn) is bounded in the norm topology.

(d) The σ-topology is either identical to the norm topology or it is not metrizable.

(e) If K : Y → Y is a linear operator and K is bounded in the σ-topology then it
is also continuous in the norm topology.

Proof: Obviously any bounded set in the norm topology is bounded in the σ-
topology. Assume B ⊂ Y to be bounded in the σ-topology but not in the norm
topology. Then, there exists a sequence (φn) ⊂ B and a sequence (an) ∈ S0 such
that |φ|n ≥ a−2

n . But then,

|an φ|n ≥
1

|an|
−→ ∞, n→∞,

which is a contradiction. Thus (a) follows.

Next, we prove (c). Let (φn) ⊂ Y be convergent with limit φ ∈ Y in the σ-topology.
Then clearly, (φn) is bounded in the σ-topology and thus also bounded in the norm
topology by (a). If, for j ∈ N, we choose a ∈ S0 such that aj = 1, then there holds

|ψ|j ≤ |ψ|a, ψ ∈ Y. (5.16)

Thus φn → φ in the τ -topology as well. Conversely, assume (φn) ⊂ Y to be
bounded in the norm topology and convergent to φ ∈ X in the τ -topology. Let
M := supn∈N ‖φn‖∞. Then, for every k ∈ N there exists n(k) ∈ N such that
|φ− φn(k)|k ≤M . Thus,

|φ|k ≤ |φ− φn(k)|k + |φn(k)|k ≤ 2M,

and consequently φ ∈ Y . Therefore, now φn
σ−→ φ.

To prove (b), assume (φn) ⊂ Y to be a Cauchy sequence in the σ-topology. Then,
by (a), it is bounded in the norm topology and by (5.16), (φn) is also a Cauchy
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sequence in X with respect to the τ -topology and thus convergent. Therefore, (c)
now implies that (φn) is convergent in the σ-topology.

To prove (d), assume that the σ-topology is metrizable. Then, by Baire’s Theorem
[43, Theorem 2.2], (Y ,σ) is of second category in itself and thus, by the Open
Mapping Theorem [43, Theorem 2.11], the mapping id : (Y, ‖ ·‖∞)→ (Y, σ) is open.
But the σ-topology is weaker than the norm topology so both must be identical.

By (a), an operator K bounded in the σ-topology is also bounded in the norm
topology. As boundedness is equivalent to continuity on normed spaces, (e) follows.

Definition 5.8 A set B ⊂ Y is said to be relatively sequentially compact in the
σ-topology if any sequence in B has a subsequence that is convergent in the σ-
topology. A linear operator K is said to be relatively sequentially compact with
respect to (w.r.t.) the σ-topology if for any bounded set B ⊂ Y , K(B) is relatively
sequentially compact in the σ-topology. A family K of linear operators on Y is said
to be collectively sequentially compact w.r.t. the σ-topology if for any bounded set
B ⊂ Y the set

⋃
K∈KK(B) is relatively sequentially compact in the σ-topology.

In some of the subsequent arguments we will also make use of the following notion:

Definition 5.9 An operator L : Y → Y is said to be σ-norm-continuous, if it is
continuous as an operator from (Y, σ) to (Y, ‖ · ‖).

We also denote, as is usual, the set of Fredholm operators on a given topological
vector space V by Φ(V ) .

The following Lemma, in a less general form, is due to Haseloh [32,33] and in the
proof we follow the original argument.

Lemma 5.10 Let K, L be sequentially compact w.r.t the σ-topology and assume
additionally that L is σ-norm-continuous.

(a) LK is compact.

(b) I − L ∈ Φ(Y ) with ind (I − L) = 0.

(c) I −K − L ∈ Φ(Y ) if and only if I −K ∈ Φ(Y ). If one of these statements
hold then the index of both operators is the same.
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Proof: To see (a), let (φn) ⊂ Y be bounded. Then (Kφn) has a σ-convergent
subsequence. The image of this subsequence under L is convergent in Y with respect
to the norm topology.

Next we prove (b). There holds (I + L)(I − L) = I − L2, and L2 is compact by
(a). Thus I−L ∈ Φ(Y ) follows from standard operator theory. Moreover, the same
holds for I − αL with any α ∈ [0, 1] and the indices of all these operators are the
same, and thus identical to ind I = 0.

To see (c), we suppose that I−K ∈ Φ(Y ). As (I−L)(I−K) = I−L−K+LK, we
have, by Atkinson’s Theorem and also because LK is compact and ind (I −L) = 0,
that I−L−K ∈ Φ(Y ) with ind (I−L−K) = ind (I−K). Note that this argument
can be reversed.

For some of the arguments developed later, it is also necessary to develop a notion
of the convergence of operators.

Definition 5.11 Assume Kn, K to be linear operators in Y , n ∈ N. We will write
Kn

σ−→ K if

φn
σ−→ φ =⇒ Knφn

σ−→ Kφ.

Finally, let I be a set of isometries on Y . I will be said to be sufficient if, for some
j ∈ N and for each φ ∈ Y , there exists J ∈ I such that |Jφ|j ≥ (1/2) ‖φ‖∞.

We have now collected all the building blocks necessary for the proof of a uniform
bound for the inverse of operators I −K with K in certain collectively sequentially
compact families of operators:

Theorem 5.12 Suppose that K ⊂ B(Y ) is collectively sequentially compact with
respect to the σ-topology and that for every sequence (Kn) ⊂ K there exists a sub-
sequence (Knm) and K ∈ K such that Knm

σ−→ K. Further suppose that I is a
sufficient set of isometries on Y and that for all n ∈ N, K ∈ K and J ∈ I there
holds JKJ−1 ∈ K. Lastly, assume that I −K is injective for all K ∈ K. Then,

sup
K∈K
‖(I −K)−1‖ <∞.

Proof: Assume that the theorem is not true. Then there exists a sequence (φn) ⊂ Y
with ‖φn‖∞ = 1 and a sequence (Kn) ⊂ K with

‖(I −Kn)φn‖∞ −→ 0, n→∞.
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For some j ∈ N and for each φn, there exists Jn ∈ I such that |Jn φn|j ≥ 1/2.
Observing

(I −Kn)φn = J−1
n (I − JnKnJ

−1
n ) Jnφn,

we set K̃n := JnKnJ
−1
n and ψn = Jnφn and can assume, by using appropriate

subsequences, that there exist K̃ ∈ K and ψ ∈ Y such that K̃n
σ−→ K̃ and K̃nψn

σ−→
ψ. Note that also ψn − K̃nψn

σ−→ 0. Thus,

ψn = ψ − (ψ − K̃nψn)− (K̃nψn − ψn),

and by taking limits in the σ-topology it follows that ψn
σ−→ ψ. Since K̃n

σ−→ K̃,
it follows also that K̃nψn

σ−→ K̃ψ. We now conclude that ψ − K̃ψ = 0 and, as
K̃ ∈ K is injective, that ψ = 0. On the other hand, |ψn|j ≥ 1/2 for all n, which is a
contradiction.

The next theorem will establish conditions, additional to those in Theorem 5.12,
which will ensure that I − K is also surjective, so that (I − K)−1 is a bounded
operator in Y for all K ∈ K.

Theorem 5.13 Suppose that all the conditions of Theorem 5.12 are satisfied and
that, in addition, for every K ∈ K, there exists a sequence (Kn) ⊂ K such that
I −Kn is bijective, n ∈ N, and Kn

σ−→ K, then I −K is bijective for every K ∈ K.

Proof: Let ψ ∈ Y and K ∈ K. Then there exists (Kn) ⊂ K with I −Kn bijective
and Kn

σ−→ K. Set φn := (I −Kn)−1ψ. As (φn) is bounded, the sequence (Knφn)
has a σ-converging subsequence Knmφnm . Choose φ ∈ Y such that

Knmφnm
σ−→ φ− ψ, m→∞.

Then φnm = Knmφnm + ψ
σ−→ φ and thus Knmφnm

σ−→ Kφ. Combining the limits
for Knmφnm and for φnm now yields φ−Kφ = ψ. Thus I −K is surjective.

5.3 Solvability in [BC(R)]2

We will now tackle the task of applying the results of the preceding section to deduce
surjectivity from injectivity for the operators I + Df − iη Sf and I + D′f − iη Sf .
To this end it is necessary to provide the framework in which to prove that the
assumptions of Theorems 5.12 and 5.13 are satisfied.

We recall Example 5.4 for the relevant definitions of X and the family of semi-norms
{| · |n}. We now introduce, for c > h, M > 0, the set

B1,c,M := {f ∈ C1,1(R) : ‖f‖1,1;R ≤M,min f > c}
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and the families of operators

K1 := {iη Sf −Df : f ∈ B1,c,M},
K2 := {iη Sf −D′f : f ∈ B1,c,M}.

For notational purposes, we note that any integral operator Kf ∈ Kj, j = 1, 2 can
be written in the form

Kf φ(s) :=

∫ ∞
−∞

Kf (s, t)φ(t) dt,

with some matrix kernel Kf . This notation will be used throughout the following
arguments.

The following Corollary is a consequence of Lemma 5.1:

Corollary 5.14 Let Kf ∈ Kj, j = 1, 2. Then Kf is continuous and sequentially
compact w.r.t. the σ-topology.

Proof: The proof of the corollary is identical to that of [32, Theorem 1.2.1] and [33,
Satz 2.16]. If φn

σ−→ φ, then (φn) is bounded by, say, M and thus

|Kf (φn − φ)(s)| ≤
∫ A

−A
|K(s, t) (φn(t)− φ(t))| dt+ 4M

∫
|t|>A
|κ(s− t)| dt

for any s ∈ R and A > 0, where κ is the function in Lemma 5.1 (a). Given ε > 0,
the second term on the right hand side can be made smaller than ε/2 by choosing
A large enough, and, for fixed A, the first term will also be smaller then ε/2 for
s in any compact set, for any n large enough. This shows that Kf is continuous
w.r.t. the σ-topology.

That Kf is sequentially compact w.r.t. the σ-topology follows from the fact that Kf

maps bounded sets into bounded, equicontinuous sets (see e.g. [2,41] for details).

To formulate the subsequent Lemmas more concisely, we adopt the following nota-
tion for uniform convergence of sequences in BC(R) on finite intervals:

fn
s−→ f iff

{
(fn) bounded in BC(R),

‖f − fn‖∞;I → 0 (n→∞) for any I ⊂⊂ R.

We now have all the necessary means to prove the assumptions made in the previous
section for the case of the operator families Kj:

Lemma 5.15
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(a) For every sequence (fn) ⊂ B1,c,M there exists a subsequence (fnm) and f ∈
B1,c,M such that fnm

s−→ f , f ′nm
s−→ f ′.

(b) Let (Kfn) ⊂ Kj and Kf ∈ Kj, j = 1, 2, such that fn
s−→ f , f ′n

s−→ f ′. Then,
for any ε > 0,

sup
(s,t)∈Dε

|Kfn,jk(s, t)−Kf,jk(s, t)| −→ 0, n→∞, j, k = 1, 2,

where Dε := {(s, t) ∈ D × R : ε < |s− t| < 1/ε} and D ⊂⊂ R.

Proof: Statement (a) is proven in [15, Lemma 4.4 (i)]. Statement (b) follows from

the regularity of the fundamental matrices ΓD,h, Π
(j)
D,h, j = 1, 2, on the compact set

Ωε = {(x,y) : x = (s, fn(s)),y = (t, fn(t)), (s, t) ∈ Dε, fn ∈ B1,c,M}.

Lemma 5.16 Assume that (φn) ⊂ [BC(R)]2 is a bounded sequence and that there
is a sequence (Kfn) ⊂ Kj and an operator Kf ∈ Kj, j = 1, 2 such that fn

s−→ f ,

f ′n
s−→ f ′. Then (Kfn −Kf )φn

σ−→ 0.

Proof: Assume D ⊂⊂ R and s ∈ D. Then

|(Kfn −Kf )φn(s)| ≤ 2 ‖φn‖∞
{

max
j,k=1,2

∫
ε<|s−t|<1/ε

|Kfn,jk(s, t)−Kf,jk(s, t)| dt

+ max
j,k=1,2

∫
|s−t|≤ε

or |s−t|≥1/ε

|Kfn,jk(s, t)−Kf,jk(s, t)| dt
}
.

Letting n → ∞, the first integral vanishes by Lemma 5.15 (b) while the second is
seen to be bounded independently of n and s ∈ D. Letting now ε → 0 shows that
this bound tends to 0. It is also not difficult to see that the sequence ((Kfn−Kf )φn)
is bounded, so the assertion follows by Theorem 5.7 (c).

Theorem 5.17 The sets Kj, j = 1, 2, are collectively sequentially compact with
respect to the σ-topology. Furthermore, for every sequence (Kfn) ⊂ Kj, there exists

a subsequence (Kfnm ) and Kf ∈ Kj such that Kfnm

σ−→ Kf .
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Proof: Let B ⊂ [BC(R)]2 be bounded and (ψn) ⊂
⋃
Kf∈Kj Kf (B), j = 1, 2. We

choose (Kfn) ⊂ Kj and (φn) ⊂ B with ψn = Kfnφn. By Lemma 5.15 (a), there exists

a subsequence (fnm) and f ∈ B1,c,M such that fnm
s−→ f , f ′nm

s−→ f ′. The sequence
(φnm) is bounded, so by Corollary 5.14 we can choose a subsequence, denoted for
notational simplicity by (φk), such that, with Kf ∈ Kj, Kfφk

σ−→ ψ ∈ [BC(R)]2.
But Kfkφk = Kfφk + (Kfk −Kf )φk, and the second term in this sum converges to 0

in the σ-topology by Lemma 5.16. Thus Kfkφk
σ−→ ψ. The second assertion of the

theorem is proved by very similar arguments and also the fact that Kf is continuous
w.r.t. the σ-topology.

As the next step in the argument, we now introduce the set of translation operators
T :

T := {Ta : [BC(R)]2 → [BC(R)]2, φ 7→ φ(· − a), a ∈ R.}

Obviously, T forms a sufficient subgroup of the group of isometries on [BC(R)]2.
Furthermore, as for f ∈ B1,c,M there also holds f(· − a) ∈ B1,c,M , it is not difficult
to see that for Kf ∈ Kj, Ta ∈ T , there holds T−aKTa ∈ Kj.

Let now Kf ∈ Kj, j = 1, 2, and denote by χ a C∞(R) function with |χ| ≤ 1 on R,
χ(t) = 0 for t ≤ 0 and χ(t) = 1 for t ≥ 1, we define

χn(t) :=

{
χ(t+ n+ 1), t < 0,

χ(n+ 1− t), t ≥ 0,
n ∈ N.

Now, also setting f̄ := (sup f + inf f)/2, we construct the sequence (fn) ⊂ B1,c,M

by
fn(t) := χn(t) f(t) + (1− χn(t)) f̄ .

Then fn
s−→ f , f ′n

s−→ f ′ follows, and using Lemma 5.16, for Kfn ∈ Kj also that

Kfn
σ−→ Kf .

We now split up the integral operators Kfn by

Kfn = Kf̄ + Lfn ,

where

Lfnφ(s) :=

∫ n+1

−n−1

(Kfn(s, t)−Kf̄ (s, t))φ(t) dt.

Lemma 5.18 The operators Lfn, n ∈ N, are compact.

Proof: We have that

max
j,k=1,2

∫ n+1

−n−1

|Kfn,jk(s, t)−Kf̄ ,jk(s, t))| dt ≤
∫ n+1

−n−1

κfn(s− t) + κf̄ (s− t) dt,



5. Existence of Solution 69

where κfn and κf̄ denote the functions in Lemma 5.1, respectively. Thus, each
component of the matrix kernel of Lfn satisfies condition C of [12]. Also observing
that conditions (5.7) and (5.8) hold for Lfn , we can apply [12, Lemma 2.1] to obtain
the assertion (see also [2, 3] for details on this argument).

Summing up the results so far, now yields a first solvability theorem for the integral
equations in question:

Theorem 5.19 Assume I −Kf to be injective for all Kf ∈ Kj, j = 1, 2. Then the
operators I −Kf are all bijective and there holds

sup
Kf∈Kj

‖(I −Kf )
−1‖ <∞.

Proof: The first part of the assertion follows from Theorem 5.12, also using Corol-
lary 5.14, Theorem 5.17 and the subsequent remarks on translation operators.

For a given Kf ∈ Kj, we now construct sequences (fn) and (Kfn) as indicated
above. The operator Kf̄ is now a convolution operator with a kernel in [L1(R)]2×2.
Thus, we can apply Theorem A.2 in [18] to see that I − Kf̄ is bijective and thus
a Fredholm operator of index 0 on [BC(R)]2. However, Lfn is compact by Lemma
5.18, so I −Kfn is also Fredholm with index 0, and thus has to be bijective as well.
We can now apply Theorem 5.13 to obtain finally that I −Kf is surjective.

Recalling Theorem 5.3, we immediately obtain the following result for operators in
K2:

Corollary 5.20 For the set K2, there holds

sup
Kf∈K2

‖(I −Kf )
−1‖ <∞.

Furthermore, for every Kf ∈ K2, I −Kf is surjective.

5.4 Weighted Spaces

The previous section has yielded solvability results for the operator family K2 in
[BC(R)]2. To obtain similar results for K1, it is necessary to study solvability for
operators in K2 in different spaces.

Let us introduce the weight functions wp, defined by

wp(s) = (1 + |s|)p, p ∈ R.
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We can define subsets of Y = [BC(R)]2 by

Yp := {φ ∈ Y : ‖wp φ‖∞ <∞}, p > 0.

The space Yp becomes a Banach space with the norm ‖ · ‖p defined by ‖φ‖p :=
‖wp φ‖∞. The operator Wp of premultiplication by wp is an isometric isomorphism
from Yp to Y . Its inverse W−p is an isometric isomorphism from Y to Yp.

In the following arguments, for any normed space E, let B(E) denote the space
of bounded linear operators in E. Assume now that K ∈ B(Y ) is such that also
K ∈ B(Yp) for p ∈ [0, q] for some q > 0. We will also assume that K is sequentially
compact w.r.t. the σ-topology. Define

K(p) := WpKW−p, p > 0.

Theorem 5.21 Suppose that K−K(p) is sequentially compact w.r.t. the σ-topology
and also σ-norm-continuous for all p ∈ [0, q]. Further suppose that I −K ∈ Φ(Yp)
for some p ∈ [0, q]. Then I −K ∈ Φ(Yp′) for all p′ ∈ [0, q] and the index of I −K
is the same in all these spaces.

Proof: From the definition of K(p) and Atkinson’s Theorem it follows that

I −K ∈ Φ(Yp)⇐⇒ I −K(p) ∈ Φ(Y ),

and that, if one of these statements is true, the indices of both operators are the
same. Now suppose I − K ∈ Φ(Yp) for some p ∈ [0, q]. We have I − K = I −
K(p) − (K −K(p)), so it follows from Lemma 5.10 and the equivalence above that
I −K ∈ Φ(Y ) and ind (I −K) = ind (I −K(p)) in Φ(Y ). Reversing this argument
yields I −K(p′) ∈ Φ(Y ) for all p′ ∈ [0, q] and thus the assertion.

In the following lemma we will study how Theorem 5.21 can be applied to an
operator K ∈ K2.

Lemma 5.22 Assume Kf ∈ K2 and p ∈ [0, 3/2). Then,

(a) Kf ∈ B(Yp),

(b) Kf − K
(p)
f is sequentially compact w.r.t. the σ-topology and also σ-norm-

continuous,

(c) I −Kf ∈ Φ(Yp) and ind (I −Kf ) = 0. Thus I −Kf is bijective as an operator
on Yp.
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Proof: From Lemma 5.1 (a) and [40, Theorem 3.5] it follows that K
(p)
f,jk satisfies the

properties (5.7) and (5.8) which in turn yields K
(p)
f ∈ B(Y ). This last statement is

obviously equivalent to Kf ∈ B(Yp).

As now both Kf and K
(p)
f satisfy properties (5.7) and (5.8), it follows that Kf−K(p)

f

is sequentially compact w.r.t. the σ-topology. Theorem 3.6 in [40] also yields that

Kf − K(p)
f is compact in Y , so an application of Theorem 1.2.4 and Lemma 1.2.3

in [32] yields that Kf −K(p)
f is σ-norm-continuous.

We are now in a position to apply Theorem 5.21. From Theorems 5.3 and 5.20 we
know that I−Kf ∈ Φ(Y ) with ind (I−Kf ) = 0. Thus it follows that I−Kf ∈ Φ(Yp)
with the same index. As it is an injective operator by Theorem 5.3, it follows that
I −Kf is in fact bijective on Yp.

Using the previous Lemma and the solvability theory developed in the previous
section now immediately yields the following corollary:

Corollary 5.23 For any Kf ∈ K1, the operator I − Kf is bijective on [BC(R)]2

and there holds
sup
Kf∈K1

‖(I −Kf )
−1‖ ≤ ∞.

Proof: Given Kf ∈ K1, we know that K ′f ∈ K2 and thus I − K ′f is bijective on
[BC(R)]2. Thus, by Lemma 5.22 it is also bijective on Yp for any 1 < p < 3/2. On
the other hand, Yp is dense in [L1(R)]2, so using a standard duality argument, it
follows that I −Kf is injective on [L∞(R)]2 and hence also on Y .

An application of Theorem 5.19 now yields that I − Kf is bijective on Y for all
Kf ∈ K1 and that the inverse operators are uniformly bounded.

In terms of the original formulation of the scattering problem as a boundary value
problem, Problem 4.15, we can now answer the question of existence of solution in
the affirmative:

Theorem 5.24 For any Dirichlet data g ∈ [BC(S) ∩ H1/2
loc (S)]2, there exists a

uniquely determined solution u ∈ [C2(Ω)∩C(Ω̄)∩H1
loc(Ω)]2 to Problem 4.15. More-

over, the solution u depends continuously on ‖g‖∞;S, uniformly in [C(Ω̄ \UH)]2 for
any H > sup f .

5.5 Solvability in [Lp(R)]2

The solvability results derived so far can be extended in a very interesting fashion;
it is in fact possible to prove solvability of equation (5.6) in all [Lp(R)]2 spaces,
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p ∈ [1,∞]. Let us start with the simplest case, [L∞(R)]2.

Lemma 5.25 Assume K to be a bounded linear operator in [L∞(R)]2 such that
I −K is bijective as an operator on [BC(R)]2 and its inverse is bounded. Further
assume that K([L∞(R)]2) ⊂ [BC(R)]2. Then I −K is bijective on [L∞(R)]2 and its
inverse is bounded, with

‖(I −K)−1‖[L∞(R)]2→[L∞(R)]2 ≤ 1 + ‖(I +K)−1‖[BC(R)]2→[BC(R)]2 ‖K‖[L∞(R)]2→[BC(R)]2 .

Proof: It was already pointed out in the proof of Theorem 5.3 that injectivity of
I −K on [BC(R)]2 implies injectivity on [L∞(R)]2.

Now assume ψ ∈ [L∞(R)]2. ThenKψ ∈ [BC(R)]2, so that there exists χ ∈ [BC(R)]2

with (I + K)χ = −Kψ. Set φ = ψ + χ. Then (I + K)φ = ψ follows. Moreover,
there holds

‖φ‖[L∞(R)]2 ≤ ‖ψ‖[L∞(R)]2(1 + ‖(I +K)−1‖[BC(R)]2→[BC(R)]2 ‖K‖[L∞(R)]2→[BC(R)]2).

Corollary 5.26 For Kf ∈ Kj, j = 1, 2, I − Kf is bijective as an operator on
[L∞(R)]2, its inverse is bounded and

sup
Kf∈Kj

‖(I −Kf )
−1‖ <∞.

Proof: The assertion follows immediately from the previous lemma, also observing
the estimate for its inverse.

We will now consider Kf ∈ K1 as an operator on [L1(R)]2. Making use of the
norm-isomorphism If : [L1(R)]2 → [L1(S)]2 defined by

Ifφ(x) := φ(x1) x ∈ S,

we obtain the operator K := If Kf I
−1
f on [L1(S)]2. In the same way we obtain from

K ′f ∈ K2 as an operator on [L∞(R)]2 the operator K ′ on [L∞(S)]2. Note that

‖If‖ ≤ (1 + ‖f ′‖2
∞;R)1/2 and ‖I−1

f ‖ ≤ 1,

so that these operators are uniformly bounded for all f ∈ B1,c,M . Note also that the
dual operator K∗ of K is given by

K∗ψ = K ′ψ̄, ψ ∈ [L∞(S)]2.
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As I −K ′f is bijective on [L∞(R)]2, the same holds for I −K∗ on [L∞(S)]2. Thus
we can apply [43, Theorem 4.12] to obtain that I −K is injective on [L1(S)]2 and
its range is dense. Moreover, [43, Theorem 4.14] states that the range of I −K is
closed in [L1(S)]2. For φ, ψ ∈ [L1(S)]2 satisfying (I − K)φ = ψ, we also obtain,
using the Cauchy-Schwarz inequality, that

‖φ‖ = sup
‖φ∗‖≤1

| < φ, φ∗ > | ≤ ‖ψ‖ ‖(I −K∗)−1‖.

Applying these results to the operator Kf ∈ K1 and also observing that the same
argument can be applied to Kf ∈ K2, we immediately have the following theorem:

Theorem 5.27 Assume Kf ∈ Kj, j = 1, 2. Then I−Kf is bijective as an operator
on [L1(R)]2, its inverse is bounded and

sup
Kf∈Kj

‖(I −Kf )
−1‖ <∞.

For the final step in our argument, we will now make use of an interpolation theorem
due to M. Riesz and Thorin which is also called Riesz Convexity Theorem. It
can be found, in more general form than stated here, in [45, Chapter V, Theorem
1.3] and also in [7].

Theorem 5.28 (Riesz-Thorin) Let L denote a linear operator that is bounded as
a mapping from [L1(R)]2 to [L1(R)]2 with norm N1 and as a mapping from [L∞(R)]2

to [L∞(R)]2 with norm N∞. Then L is also a bounded mapping from [Lp(R)]2 to
[Lp(R)]2, p ∈ (1,∞), with norm Np, where

Np ≤ N
1
p

1 N
1− 1

p
∞ .

Applying Theorem 5.28 to the operator I −Kf with Kf ∈ Kj, j = 1, 2, we obtain
the following general solvability result for the integral equation (5.6):

Theorem 5.29 Assume Kf ∈ Kj, j = 1, 2. Then I−Kf is bijective as an operator
on [Lp(R)]2, p ∈ [1,∞) ∪ {∞}, its inverse is bounded and

sup
Kf∈Kj

‖(I −Kf )
−1‖ <∞.

Thus the integral equation (5.6) and its adjoint equation are uniquely solvable in
[Lp(R)]2 for any righthand side g ∈ [Lp(R)]2 and the solution depends continuously
on the righthand side.
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Chapter 6

Concluding Remarks

The results presented in this thesis form a detailed investigation into the questions
of uniqueness and existence of solution for the elastic wave scattering problem for
a rough surface on which the displacement vanishes. It has been shown that for a
general class of incident fields, including the special cases of cylindrical and plane
waves, a unique solution exists. To obtain the uniqueness result, a novel radiation
condition has been proposed characterising upward propagating wave fields, and it
has been shown that this condition generalises Kupradze’s radiating condition as
well as the Rayleigh expansion radiation condition commonly used in diffraction
grating problems.

To prove existence of solution, the regularity of elastic single- and double-layer
potentials defined on bounded obstacles and on rough surfaces has been studied in
detail. The estimates obtained differ from conventional results in that they hold
uniformly for all surfaces sharing certain geometric properties. The rough surface
potentials have then been used in a combined single- and double-layer potential
ansatz for the scattering field. A novel solvability theory has been employed to prove
solvability of the resulting boundary integral equation in the space of bounded and
continuous functions as well as in the all Lp-spaces, 1 ≤ p ≤ ∞.

The results presented appear complete in the sense that they give an affirmative
answer to the question of unique solvability for the elastic wave scattering problem
for a rigid rough surface. However, a number of remarks are in order on, as of yet,
not fully satisfactory results as well as on important consequences.

A slighly limiting aspect of the presented results is the restriction to surfaces of class
C1,1 as opposed to those of class C1,α in Chapter 5. In fact, the solvability theory
itself does not rely on this assumption; it is only due to the nature of the regularity
results of Chapter 3 and the corresponding mapping properties of the integral oper-
ators. An extension of these results to boundaries of class C1,α, α ∈ (0, 1], appears
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possible but the amount of technical detail involved seems disproportionate to that
of new insights being gained. With regard to even more general surfaces, it seems
possible to extend the uniqueness results to scattering surfaces that are piecewise
Lyapunov; for the acoustic wave case this result has been proven in [20] and it is
anticipated that similar arguments apply for the elastic wave case. However, the
question of solvability of boundary integral equations for such surfaces remains open.

A further issue of interest is the extension of the results presented in Chapters 4 and
5 to scattering problems involving obstacles with different physical properties. From
the point of view of applications, a free surface or a Robin boundary condition would
be more realistic than the rigid surface considered here. As regards the question of
uniqueness of solution, very similar methods to those used in Chapter 4 could be
applied in the case of a Robin boundary condition; it is even anticipated that the
arguments simplify to some extend in this case. On the other hand, uniqueness of
solution does not hold in the free surface case if the same general class of incident
fields is permitted as in the present investigation. This is due to the fact that
Problem 4.15 with the Dirichlet boundary condition replaced by Pu = g admits
Rayleigh surface wave solutions in the case g = 0.

To prove existence of solution to either problem by the boundary integral equation
approach, requires, for any physically realistic problem, the use of the stress tensor
σjk instead of the generalised stress tensor πjk and thus prohibits the use of the
pseudo stress operator. As a consequence, it is necessary to deal with integral
operators of Cauchy singular type. It is an open question of some interest, if and
how the solvability theory developed in Chapter 5 can be extended to this case.

On the other hand, the presented approach to prove solvability of the boundary
integral operators in all Lp-spaces can be applied directly to a wide class of integral
operators arising in acoustic and electro-magnetic scattering theory. A first such
application is presented in [6] for the case of acoustic waves.

An issue that has not been the subject of this investigation is the numerical computa-
tion of the solution to a rough surface scattering problem. With the use of the bound-
ary integral equation method this reduces to the numerical solution of a boundary
integral equation, or systems of such equations, on the real line. The principal
method that has been proposed for this purpose is the finite section method which
amounts to limiting the range of integration to a finite interval [−A,A], and then
proving convergence of the corresponding finite section solution as A→∞ [39,42].
The integral equation with the truncated range of integration can be solved in prin-
cipal by any collocation, quadrature or Galerkin method of choice, but the resulting
dense linear system needs to be large for accuracy and thus sophisticated matrix
compression schemes need to be employed for the solution. Examples of such meth-
ods are described in [6, 13]



Appendix A

Regularity Results up to the
Boundary for Second Order
Elliptic Systems

In this appendix, regularity results obtained for scalar elliptic equations of the second
order in Gilbarg/Trudinger [28] are generalised for systems of such equations.
It is the objective to show that the weak solution of any elliptic equation with
sufficiently regular coefficients in a bounded C1,α-domain is C1,α up to the boundary
provided its boundary values are in that space.

After some definitions and preliminary inequalities in Section 1, C1,α-estimates,
both interior and up to the boundary, are proved for weak solutions to elliptic
systems under suitable assumptions on the smoothness of the coefficient functions,
the domain and the boundary values in Section 2. These estimates are used in the
third section to prove existence of weak C1,α-solutions and, subsequently, regularity
of ordinary weak solutions up to the boundary.

A.1 Definitions and Interpolation Inequalities

The systems of partial differential equations under consideration are of the form

Llkul = gk + div fk, k = 1, . . . ,m (A.1)

in some bounded domain D ⊂ Rn. Here and in much of the following, we make
use of the usual summation convention, i.e. a sum will be taken over all repeated
indices.
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The linear differential operators Llk are assumed to be of the form

Llkv := alijk (x)Dijv + blik (x)Div + clk(x)v, k, l = 1, . . . ,m,

where we will assume throughout that the coefficient functions satisfy alijk ∈ C1,α(D̄),
blik ∈ Cα(D̄), clk ∈ C(D̄) and that there exist constants λ, Λ > 0 with

alijk (x)ξiξj ≥ λ|ξ|2

for all x ∈ D, ξ ∈ Rn, k, l = 1, . . . ,m and

‖alijk ‖1,α;D, ‖blik‖0,α;D, ‖clk‖∞;D ≤ Λ

for all k, l = 1, . . . ,m, i, j = 1, . . . n. Unless specifically stated otherwise for some
individual results, we will also assume g ∈ [C(D̄)]m and fk ∈ [Cα(D̄)]m, (k =
1, . . . ,m).

Definition A.1 A vector field u ∈ [H1(D)]m is called a weak solution to the system
(A.1), if, for any test function v ∈ [H1

0 (D)]m, the equation∫
D

(
alijk DiulDjvk + (Dja

lij
k − b

li
k )Diul vk − clk ul vk

)
dx

= −
∫
D

(
gk vk + fk,iD

ivk
)
dx

holds.

For x,y ∈ D, set dx := dist (x, ∂D) and dx,y := min{dx, dy}. For σ ∈ N0 and
u ∈ Ck(D) we define

[u]
(σ)
k;D := sup

x∈D
|β|=k

dk+σ
x |Dβu(x)|,

|u|(σ)
k;D :=

k∑
j=0

[u]
(σ)
j,D,

and for u ∈ Vk,α(D),

[u]
(σ)
k,α;D := sup

x,y∈D
|β|=k

dk+α+σ
x,y

|Dβu(x)−Dβu(y)|
|x− y|α

,

|u|(σ)
k,α;D := |u|(σ)

k;D + [u]
(σ)
k,α;D.

Assuming T to be a (possibly empty) portion of ∂D, we set d̄x := dist (x, ∂D \ T )

and d̄x,y := min{d̄x, d̄y}. Using these notations, we define the semi-norms [u]
(σ)
k;D∪T ,

[u]
(σ)
k,α;D∪T , |u|(σ)

k;D∪T and |u|(σ)
k,α;D∪T as above, only replacing dx by d̄x and dx,y by d̄x,y

respectively. All these definitions are easily extended to vector fields by taking the
sum of their components. We then have the following simple extensions of some
results in [28]:
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Lemma A.2 (p. 61 in [28]) Assume D ⊂ R2 to be bounded with d := diam(D)
and u ∈ [Vk,α(D)]m. Then,

(a) |u|(0)
k,α;D ≤ max{1, dk+α} sup

D′⊂⊂D
‖u‖k,α;D′,

(b) for any D′ ⊂⊂ D and s := dist (D′, ∂D), there holds

min{1, sk+α} ‖u‖k,α;D′ ≤ |u|(0)
k,α;D.

Lemma A.3 (Lemma 6.32 of [28]) Suppose j + β < k + α, where j, k = 0, 1
and 0 ≤ α, β ≤ 1. Let u ∈ [Vk,α(D)]m. Then for any ε > 0 and some constant
C = C(ε, k, j, n,m) we have

[u]
(0)
j,β;D ≤ C ‖u‖∞;D + ε[u]

(0)
k,α;D,

|u|(0)
j,β;D ≤ C ‖u‖∞;D + ε[u]

(0)
k,α;D.

A.2 Estimates for Weak Solutions

From results for scalar elliptic equations, it is straight-forward to obtain the following
result for a special, very simple case of the system (A.1). Assume that there exist
constants Aijk (i, j = 1, . . . , n, k = 1, . . . ,m) with

alijk = δlk A
ij
k , and that blik = 0, clk = 0. (A.2)

Then we have the following lemma, which is proved similarly as Lemma 6.1 of [28],
but is based on estimates (4.45) and (4.46) in that same reference:

Lemma A.4 Assume (A.2) holds and u is a bounded, weak solution to (A.1) in D
with u ∈ [V1,α(D)]m. Then

|uk|(0)
1,α;D ≤ C(‖uk‖∞;D + |gk|(2)

0;D + |fk|(1)
0,α;D), k = 1, . . . ,m,

where C is a constant only depending on n, m, α, λ and Λ. If we further assume
D ⊂ Rn+, T ⊂ {xn = 0} to be a boundary portion of D, u ∈ [C1,α(D ∪ T )]m and
u = 0 on T , then

|uk|(0)
1,α;D∪T ≤ C(‖uk‖∞;D + |gk|(2)

0;D∪T + |fk|(1)
0,α;D∪T ), k = 1, . . . ,m,

where C is a constant only depending on n, m, α, λ and Λ.
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We will now derive inequalities for weak solutions to (A.1) under general assump-
tions. The first aim will be to derive interior estimates, given in the following
lemma:

Lemma A.5 Let u be a bounded, weak solution to (A.1) in D with u ∈ [V1,α(D)]m.
Then

|u|(0)
1,α;D ≤ C

(
‖u‖∞;D + |g|(2)

0;D +
k∑
j=1

|fk|(1)
0,α;D

)
where C depends only on n, m, α, λ and Λ.

Proof: The method of proof follows very closely the argument in the proof of
Theorem 6.2 in [28]. Analogously to the first argument given there, it suffices to

prove the asserted estimate for [u]
(0)
1,α;D and we may assume [u]

(0)
1,α;D to be finite.

Choose x0 and y0 ∈ D arbitrarily but assume without loss of generality that dx0 ≤
dy0 , so that dx0 = dx0,y0 . Further let µ ≤ 1

2
be a positive constant (which will be

specified later) and set d := µdx0 , B := Bd(x0).

For convenience of notation we introduce

M
(i)
k u :=


blik (x)Diul −

(
Dja

lji
k (x)

)
Diul, i = 0,

∑m
l=1
l 6=k

alijk (x)Djul, i = 1, . . . , n,

and now rewrite (A.1) as

akijk (x0)Dijuk = Gk + div Fk (A.3)

where

Gk := −M (0)
k u− clk(x)ul + gk,

Fk,i :=
{(
akijk (x0)− akijk (x)

)
Djuk

}
−M (i)

k u + fk,i.

We can now apply Lemma A.4 to equation (A.3). Let y0 ∈ Bd/2(x0). Then,(
d

2

)1+α |D1uk(x0)−D1uk(y0)|
|x0 − y0|α

≤ C

µ1+α

(
‖uk‖∞;B + |Gk|(2)

0;B + |Fk|(1)
0,α;B

)
,

where D1uk denotes any first derivative of uk, and thus

d1+α
x0

|D1uk(x0)−D1uk(y0)|
|x0 − y0|α

≤ C

µ1+α

(
‖uk‖∞;B + |Gk|(2)

0;B + |Fk|(1)
0,α;B

)
.
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If, on the other hand, we have |x0 − y0| ≥ d/2, then it is easy to see that

d1+α
x0

|D1uk(x0)−D1uk(y0)|
|x0 − y0|α

≤
(

2

µ

)α (
dx0|D1uk(x0)|+ dy0|D1uk(y0)|

)
≤ 4

µα
[uk]

(0)
1;D.

Combining these two estimates yields

d1+α
x0

|D1uk(x0)−D1uk(y0)|
|x0 − y0|α

≤ C

µ1+α

(
‖uk‖∞;D + |Gk|(2)

0;B + |Fk|(1)
0,α;B

)
+

4

µα
[uk]

(0)
1;D. (A.4)

Now, for x ∈ B there holds dx > (1− µ) dx0 ≥ 1
2
dx0 . Thus, for any h ∈ Cα(D), we

have analogously to equation (6.18) in [28]

|h|(1)
0,α;B ≤ d‖h‖∞;B + d1+α[h]α;B

≤ µ

1− µ
|h|(1)

0;D +
µ1+α

(1− µ)1+α
[h]

(1)
0,α;D

≤ 2µ|h|(1)
0;D + 4µ1+α[h]

(1)
0,α;D (A.5)

≤ 4µ|h|(1)
0,α;D. (A.6)

These two inequalities will now be used to further estimate (A.4). Firstly, we have

|Fk,i|(1)
0,α;B ≤

n∑
j=1

∣∣∣(akijk (x0)− akijk (x))Djuk

∣∣∣(1)

0,α;B
+ |M i

ku|
(1)
0,α;B + |fk,i|(1)

0,α;B.

Using (A.6) yields

|fk,i|(1)
0,α;B ≤ 4µ|fk,i|(1)

0,α;D

and

|M i
ku|

(1)
0,α;B ≤

m∑
l=1

n∑
j=1

|aljik Diul|(1)
0,α;B

≤ 4µmax
l,j
|aljik Diul|(1)

0,α;D

≤ 4µΛ|u|(0)
1,α;D

≤ 4µΛ
(
C(µ)‖u‖∞;D + µ2α[u]

(0)
1,α;D

)
,

where the last inequality is obtained by applying Lemma A.3 with ε = µ2α. Using
(A.5) and |akijk (x0)− akijk (·)|(0)

0,α;B ≤ 4Λµα and again Lemma A.3, we also obtain the
estimate

n∑
j=1

∣∣∣(akijk (x0)− akijk (·))Djuk

∣∣∣(1)

0,α;B
≤ 16nΛµ1+α

(
C(µ)‖uk‖∞;D + 2µα[uk]

(0)
1,α;D

)
.
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Combining these last three inequalites yields the bound

|Fk|(1)
0,α;B ≤ Cµ1+2α[u]

(0)
1,α;D + C(µ)

(
‖u‖∞;D + |fk|(1)

0,α;D

)
. (A.7)

In a similar fashion, we conclude

|Gk|(2)
0;B ≤ Cµ1+2α[u]

(0)
1,α;D + C(µ)

(
‖u‖∞;D + |gk|(2)

0,α;D

)
. (A.8)

Applying Lemma A.3 one final time, we estimate

4

µα
[uk]

(0)
1;D ≤ 4

(
C(µ)‖uk‖∞;D + µα[uk]

(0)
1,α;D

)
.

Combining this result with (A.4), (A.7) and (A.8) now yields

[uk]
(0)
1,α;D ≤ Cµα[u]

(0)
1,α;D + C(µ)

(
‖u‖∞;D + |gk|(2)

0,α;D + |fk|(1)
0,α;D

)
.

Summing up this last estimate over k = 1, . . . ,m and choosing µ so that Cmµα ≤ 1
2
,

we now finally obtain

[u]
(0)
1,α;D ≤ C

(
‖u‖∞;D + |g|(2)

0;D +
k∑
j=1

|fk|(1)
0,α;D

)
.

In the presence of a flat boundary portion, this result is easily extended to yield an
estimate up to the boundary:

Lemma A.6 Let D ⊆ Rn+, T ⊆ {xn = 0} a boundary portion of D, u a bounded,
weak solution to equation (A.1) with u ∈ [V1,α(D ∪ T )]m and u = 0 on T . Then
there holds

|u|(0)
1,α;D∪T ≤ C

(
‖u‖∞;D + |g|(2)

0;D∪T +
k∑
j=1

|fk|(1)
0,α;D∪T

)
.

where C depends only on n, m, α, λ and Λ.

Proof: The proof is essentially identical to that of Lemma A.5; it is only necessary
to replace dx by d̄x.

We will now generalise Lemma A.6 to obtain estimates up to the boundary for
weak solutions to elliptic systems in domains with sufficiently smooth boundaries.
For technical simplicity, we will limit ourselves to domains in R2, but note that all
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arguments carry through for domains in Rn, n > 2. Recalling the definition of the
set of C1,α domains, Dα,κ0,δ,M , from Section 1.3, we now consider, for κ0, δ, M > 0,
domains D ∈ Dα,κ0,δ,M .

We can obtain uniform estimates up to the boundary for weak solutions to elliptic
systems in such domains with vanishing boundary values:

Lemma A.7 Let D ∈ Dα,κ0,δ,M and u ∈ C1,α(D̄) a weak solution to (A.1) in D
with u = 0 on ∂D. Then there exists ε > 0 so that for each x0 ∈ ∂D, setting
B := Bε(x0), there holds

‖u‖1,α;B∩D ≤ C

(
‖u‖∞;D + ‖g‖∞;D +

m∑
k=1

‖fk‖0,α;D

)
,

where the constant C depends only on m, α, λ, Λ, κ0, δ and M .

Proof: Using the estimates for Ck,α-diffeomorphisms on page 96 of [28] and applying
the same arguments as in the proof of Lemma 6.5 in [28], Lemma A.6 implies that
for each x0 ∈ ∂D there exists a ball Bρ(x0) so that

|u|(0)
1,α;B′∪T ≤ C K(x0)

(
‖u‖∞;D + |g|(2)

0;B′∪T +
k∑
j=1

|fk|(1)
0,α;B′∪T

)
,

where B′ := Bρ(x0) ∩D and T := Bρ(x0) ∩ ∂D and K(x0) is a constant depending
only on the C1,α diffeomorphism corresponding to x0. Thus, as D ∈ Dα,κ0,δ,M , it
follows that K can in fact be chosen independently of x0 and dependent only on α,
κ0, δ and M . Now set B′′ := Bρ/2(x0) ∩D. Then Lemma A.2 yields

min
{

1, (ρ/2)1+α
}
‖u‖1,α;B′′ ≤ |u|(0)

1,α;B′∪T .

Thus we have the result

‖u‖1,α;B′′ ≤ C K

(
‖u‖∞;D + ‖g‖∞;D +

m∑
k=1

‖fk‖0,α;D

)
. (A.9)

As the set of balls {Bρ(x)/4(x) : x ∈ ∂D} covers all of ∂D, the compactness of
∂D implies existence of a finite set {Bρi/4(xi) : i = 1, . . . , N} that covers ∂D. Set
ε := min

i=1,...,N
{ρi/4} and X := {x1, . . . ,xN}. Now, choosing x ∈ ∂D arbitrarily and

setting B := Bε(x) we conclude B ⊆ Bρ/2(x0) for some x0 ∈ X . Thus, by (A.9),

‖u‖1,α;B∩D ≤ ‖u‖1,α;Bρ/2(x0)∩D

≤ C K

(
‖u‖∞;D + ‖g‖∞;D +

m∑
k=1

‖fk‖0,α;D

)
.
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As a consequence of the results obtained so far, it is now possible to formulate global
bounds up to the boundary for solutions to elliptic systems in C1,α-domains:

Theorem A.8 Assume D ∈ Dα,κ0,δ,M and u ∈ [C1,α(D̄)]m to be a weak solution to
(A.1) satisfying u = φ on ∂D for some φ ∈ [C1,α(D̄)]m. Then

‖u‖1,α;D ≤ C

(
‖u‖∞;D + ‖φ‖1,α;D + ‖g‖∞;D +

m∑
k=1

‖fk‖0,α;D

)
,

where the constant C depends only on m, α, λ, Λ, κ0, δ ,M .

Proof: Following the argument of the proof of Theorem 6.6 in [28], it suffices to
prove the assertion for φ ≡ 0. Assume x ∈ D and let ε denote the radius in Lemma
A.7. Further let D′ ⊂⊂ D satisfy dist (D′, ∂D) > ε/2.

If x ∈ Bε(x0) ∩D for some x0 ∈ ∂D, then Lemma A.7 implies

|D1u(x)| ≤ C ′1

(
‖u‖∞;D + ‖g‖∞;D +

m∑
k=1

‖fk‖0,α;D

)

for any first derivative D1u of u.

On the other hand, if x ∈ D′, Lemma A.5 implies

dx|D1u(x)| ≤ C ′′1

(
‖u‖∞;D + ‖g‖∞;D +

m∑
k=1

‖fk‖0,α;D

)
.

As dx ≥ ε/2, combining these two estimates yields

|D1u(x)| ≤ C1

(
‖u‖∞;D + ‖g‖∞;D +

m∑
k=1

|fk|0,α;D

)
(A.10)

for all x ∈ D.

Now choose x, y ∈ D arbitrarily. Three cases have to be considered:

1. x,y ∈ Bε(x0) ∩D for some x0 ∈ ∂D,

2. x,y ∈ D′,
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3. x or y ∈ D \D′, but not in the same ball Bε(x0) for any x0.

In the first two cases we proceed as above employing Lemma A.7 and Lemma A.5

respectively to obtain the required bounds on |D1u(x)−D1u(y)|
|x−y|α . In the third case,

dist (x,y) > ε/2 and therefore

|D1u(x)−D1u(y)|
|x− y|α

≤
(ε

2

)−α (
|D1u(x)−D1u(y)|

)
≤

(ε
2

)−α (
|D1u(x)|+ |D1u(y)|

)
≤ C3

(
‖u‖∞;D + ‖g‖∞;D +

m∑
k=1

‖fk‖0,α;D

)
by (A.10).

Combining these last estimates with (A.10) yields the assertion.

A similar estimate can also be obtained for a domain that only has a boundary
portion of class C1,α. We introduce the set Tα,κ0,δ,M of domains D such that there
exists a boundary portion T ⊂ ∂D with the property that for every T ′ ⊂⊂ T there
exists D′ ∈ Dα,κ0,δ,M such that D′ ⊂ D and T ′ ⊂ ∂D′ ∩ ∂D. For D ∈ Tα,κ0,δ,M , the
set T in this definition is called a C1,α boundary portion of ∂D.

Corollary A.9 Let D ∈ Tα,κ0,δ,M and T a C1,α-boundary portion of ∂D. Further
assume u ∈ [V1,α(D ∪ T )]m to be a weak solution to (A.1) and u = φ on T where
φ ∈ [C1,α(D̄)]m. Then, for every x0 ∈ T and 0 < ρ < dist (x0, ∂D \ T ), there holds

‖u‖1,α;Bρ(x0)∩D ≤ C

(
‖u‖∞;D + ‖φ‖1,α;D + ‖g‖∞;D +

m∑
k=1

‖fk‖0,α;D

)
,

where the constant C depends only on n, m, α, λ, Λ, δ, κ0, M and ρ.

Proof: Set T ′ := {x ∈ T : |x − x0| < ρ} and choose D′ ∈ Dα,κ0,δ,M such that
D′ ⊂ D and T ′ ⊂ ∂D′ ∩ ∂D. Now apply Theorem A.8 in D′ and employ an interior
estimate on (Bρ(x0) ∩D) \D′, if necessary.

A.3 Regularity of Weak Solutions

To later obtain the regularity results for weak solutions to elliptic systems, we first
need to prove the existence of a regular solution in the case where uniqueness is
already ensured:
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Theorem A.10 Let D ⊂ R2 be a bounded domain of class C1,α so that the boundary
value problem

alijk (x)Dijul + blik (x)Diul + clk(x)ul = 0 in D, k = 1, . . . ,m

u = 0 on ∂D

only has the trivial solution in [H1
0 (D)]m. Then, for g ∈ [L∞(D)]m, fk ∈ [Cα(D̄)]m

(k = 1, . . . ,m) and φ ∈ [C1,α(D̄)]m, the boundary value problem

alijk (x)Dijul + blik (x)Diul + clk(x)ul = gk + div fk in D, k = 1, . . . ,m,

u = φ on ∂D
(A.11)

has a uniquely determined weak solution u ∈ [C1,α(D̄)]m.

Proof: Let Γ be the set of coefficient functions in (A.11). Approximate any γ ∈ Γ
uniformly in D by a sequence (γν) in C∞(D̄). Similarly, choose [C∞(D̄)]m sequences
(gν), (fkν) and (φν) that uniformly converge to g in [L∞(D)]m, fk in [C0,α(D̄)]m and
φ in [C1,α(D̄)]m, respectively. Finally, let (Dν) be a sequence of C∞-domains that
exhausts D from the inside and whose members are uniformly of class C1,α.

From results in Fichera [26] it follows that the approximations to the boundary
value problem (A.11) have unique solutions uν ∈ [C∞(D̄ν)]

m. An application of
Theorem A.8 yields the estimate

‖uν‖1,α;Dν ≤ C

(
‖uν‖∞;Dν + ‖φν‖1,α;Dν + ‖gν‖∞;Dν +

m∑
k=1

‖fkν‖0,α;Dν

)
. (A.12)

From the maximum principle we also can estimate

‖uν‖∞;Dν ≤ ‖φν‖∞;Dν + C

(
‖gν‖∞;Dν +

m∑
k=1

‖fkν‖∞;Dν

)
.

Combining this with (A.12) yields an estimate of the form

‖uν‖1,α;Dν ≤ C

(
‖φν‖1,α;Dν + ‖gν‖∞;Dν +

m∑
k=1

‖fkν‖0,α;Dν

)

≤ C

(
‖φ‖1,α;D + ‖g‖∞;D +

m∑
k=1

‖fk‖0,α;D

)
.

Therefore, (uν) converges to a vector field u ∈ [C1,α(D̄)]m which is also a weak
solution to the boundary value problem (A.11). By assumption this solution is
uniquely defined.

The regularity result for a weak solution to an elliptic system of form (A.11) is now
a simple consequence of Theorem A.10.
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Corollary A.11 Let D ⊂ R2 be a bounded domain of class C1,α, g ∈ [L∞(D)]m,
fk ∈ [Cα(D̄)]m (k = 1, . . . ,m), φ ∈ [C1,α(D̄)]m and u ∈ [H1(D)]m a bounded weak
solution to the boundary value problem (A.11). Then there holds u ∈ [C1,α(D̄)]m.

Proof: We will rewrite equation (A.1) as Lu = 0. Choose σ ∈ R so large that the
boundary value problem

(L− σ)u = 0 in D,
u = 0 on ∂D

only has the trivial solution in [H1(D)]m. Then, by Theorem A.10, the boundary
value problem

(L− σ)v = g + div fk − σu in D,
v = φ on ∂D

has a unique solution v ∈ [C1,α(D̄)]m. But u is also a solution to this system by
assumption, so u = v must hold.

More technical arguments have to be employed to prove a similar result for boundary
portions of class C1,α:

Theorem A.12 Let T be a C1,α-boundary portion of a domain D ∈ Tα,κ0,δ,M , g ∈
[L∞(D)]m, fk ∈ [Cα(D̄)]m (k = 1, . . . ,m), φ ∈ [C1,α(D̄)]m and u ∈ [H1(D)]m a
weak solution to the system (A.1) satisfiying u = φ on T . Then u ∈ [V1,α(D∪T )]m

and for D′ ⊂⊂ D ∪ T with D′ ∈ Dα,κ0,δ,M , there holds

‖u‖1,α;D′ ≤ C

(
‖u‖∞;D + ‖φ‖1,α;D + ‖g‖∞;D +

m∑
k=1

‖fk‖0,α;D

)
,

where the constant C depends only on m, α, λ, Λ, κ0, δ, M and dist (D′, ∂D \ T ).

Proof: The proof broadly follows that of Lemma 6.18 in [28]. Without loss of gen-
erality assume φ ≡ 0. Choose x0 ∈ T arbitrarily. Then there exist a neighbourhood
T ′ ⊂⊂ T of x0 and a domain D∗ so that T ′ ⊆ ∂D, D∗ ⊂ D of class C1,α and so
small, that Theorem A.10 can be applied.

The values of u on ∂D∗ can now be extended to a vector field v ∈ [C(D′)∩C1,α(B̄)]m

where D′ is chosen such that D∗ ⊂⊂ D′ and B := Bρ(x0) ⊂⊂ D′ for some ρ > 0
(see Lemma 6.38 and the subsequent remark in [28]). Let (vν) be a sequence in
[C1,α(D∗)]m that converges to v in C(D∗) and also satisfies ‖vν‖1,α;B ≤ C‖v‖1,α;B.
Theorem A.10 garanties that the systems

Lku = gk + div fk in D,
u = vν on ∂D
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have unique solution uν ∈ [C1,α(D∗)]m. An application of Lemma A.6 now yields
convergence of the sequence (uν) in [C1,α(Bρ/2(x0) ∩D)]m. So u ∈ [V1,α(D ∪ T )]m

follows.

Now assume D′ ⊂⊂ D ∪ T , D′ ∈ Dα,κ0,δ,M . As T ′′ := ∂D′ ∩ T is bounded, setting
ρ := dist (D′, ∂D \ T ), there exists a finite set of open balls {Bi := Bρ/2(xi) : xi ∈
T ′′, i = 1, . . . , N} that covers T ′′ and, by applying Corollary A.9, in each ball we
have the estimate

‖u‖1,α;Bi ≤ C

(
‖u‖∞;D + ‖g‖∞;D +

m∑
k=1

‖fk‖0,α;D

)
, (A.13)

with the asserted dependance of the constant C on the parameters. Also, there
exists some ε > 0 such that, setting D′′ := {x ∈ D′ : dist (x, T ′′) > ε}, the union of
D′′ and the Bi covers all of D′. Then Lemma A.5 yields the estimate (A.13) in D′′

and combining the two completes the proof.
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Elasticity Theory

∆∗ u 10 µ̃ 12
Eµ̃,λ̃(v,w) 12 ω 10

Γ(x,y) 15 Π(1)(x,y) 17
ΓD,h(x,y) 18 Π(2)(x,y) 17

γp 17 Π
(1)
D,h(x,y) 24

γs 17 Π
(2)
D,h(x,y) 24

kp 11 Pu 12
ks 11 U(x,y) 18
λ 9 up 12

λ̃ 12 us 12
µ 9

Sets in R2

Da 6 S(A) 6
Da(A) 6 Ta 6
γ(a,A) 6 Ta(A) 6
Ω 6 Ua 6
S 6

Norms and Spaces

‖ · ‖∞;S 4 H1/2(∂D) 5
‖u‖α;D 5 H1

loc(S) 5

‖u‖k,α;D 5 H
1/2
loc (S) 5

BC(S) 4 Φ(V ) 63
Ck,α(D̄) 5 Vk,α(S) 5
H1(D) 5

Miscellaneous

< φ, ψ > 59 div⊥ 5

φn
σ−→ φ 61 grad⊥ 5

Df 58 Sf 58
D′f 58
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[7] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer,
1976.
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