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Abstract In this paper we describe the use of multivariate Chebyshev polynomials in computing spec-
tral derivations and Clenshaw–Curtis type quadratures. The multivariate Chebyshev polynomials give a
spectrally accurate approximation of smooth multivariate functions. In particular we investigate polyno-
mials derived from the A2 root system. We provide analytic formulas for the gradient and integral of A2
bivariate Chebyshev polynomials. This yields triangular based Clenshaw–Curtis quadrature and spectral
derivation algorithms with O(N logN) computational complexity. Through linear and nonlinear mappings,
these methods can be applied to arbitrary triangles and non-linearly transformed triangles. A MATLAB
toolbox and a C++ library have also been developed for these methods.

1 Introduction

Classical Chebyshev polynomials are among the most important building blocks in approximation theory.
We recall some of their beautiful and immensely useful properties:

• Polynomial interpolation in Chebyshev zeros and Chebyshev extremal points converges exponentially
fast for analytic functions on [−1,1] and with superalgebraic speed for smooth functions.

• The Lebesgue constant for Chebyshev interpolation grows logarithmically in the number of interpolation
points N.

• Chebyshev polynomials are orthogonal both with a continuous weighted inner product and also with
discrete inner products based on Gauss-Chebyshev or Gauss-Chebyshev-Lobatto quadrature (nodes in
Chebyshev zeros or Chebyshev extremal points).

• Chebyshev polynomial interpolation is equivalent to discrete Fourier cosine transform under a change of
variables, thus all basic operations can be computed in O(N logN) operations using FFT. This includes
transforms between nodal values and expansion coefficients, mesh refinement and coarsening, products,
integration and derivations.

• Integration and derivation of Chebyshev polynomial expansions can be done exactly. This leads to the
highly accurate Clenshaw–Curtis quadrature and spectral Chebyshev derivation.

Chebyshev polynomials are also frequently used for multidimensional approximations. The standard
approach is to construct multivariate polynomials as tensor products of univariate polynomials. However,
this approach limits the application of multivariate Chebyshev approximations to rectangular and brick
shaped domains, and domains that can be constructed from these by e.g., spectral elements.
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2 Multivariate Chebyshev Polynomials

In this paper we will discuss families of multivariate Chebyshev polynomials obtained by an alternative
construction, where tensor products of univariate polynomials appears as just one particular case. The
construction is based on central ideas in group theory and representation theory. The construction was first
done for particular cases by Koornwinder [12, 13] and later in full generality by Hoffman and Withers [10],
see also [1, 5, 15]. Applications of these polynomials in numerical algorithms were discussed in [17]. For
an introduction to the group theoretic background of this paper we refer to [6, 11].

This work is in particular motivated by the goal to construct spectral type discretisations on domains
subdivided into triangles and simplices. Approximation theory on triangles have been discussed in various
contexts, see [2, 3, 4, 7, 8, 9, 18, 20, 22]. Fast Fourier type transforms for the symmetric functions that
appear in the context of multivariate Chebyshev polynomials are discussed in [16, 19].

The construction of multivariate Chebyshev polynomials starts by looking at periodic exponential func-
tions through a kaleidoscope of mirrors acting on Rd . More specifically we ask:

Which polytopes S⊂ Rd generate a periodic tessellation of Rd under reflections about its faces?
Up to group isomorphisms there is just one such S for d = 1, four
for d = 2 and seven for d = 3. For d = 1 we can take the domain
S = [0,π]⊂R, which generates a 2π periodic tessellation. For d = 2 the
four possibilities are S being a rectangle or a triangle with 60o−60o−60o,
45o−45o−90o or 30o−60o−90o angles. In d = 3, the possible polytopes
are prisms with base polygon being one of the four 2-d cases, as well
as three particular tetrahedra. For each of these polytopes, there exists
a family of multivariate Chebyshev polynomials, which are orthogonal
on a domain which is the image of S under a certain change of vari-
ables. The classification of all these polytopes S, and thus also the
classification of multivariate Chebyshev polynomials, is done in terms
of Dynkin diagrams. This is a graph with d nodes, each node repre-
senting one mirror in Rd . The nodes are not connected if the mirrors
are orthogonal, connected with one edge if the mirrors meet at 60o, two
edges if they meet at 45o and three edges for 30o. If two sets of nodes
are totally disconnected, the mirrors form two subsets which are mu-
tually orthogonal. In this case the corresponding polynomials become
tensor products of each of the connected components. Thus, it is suf-
ficient to classify only the connected Dynkin diagrams. The complete
classification of connected Dynkin diagrams is shown on the right.

The classical univariate polynomials are represented by the diagram consisting of a single dot, A1. Tensor
product polynomials in d dimensions is represented as a diagram of d separate dots. The 2-d triangles
60o−60o−60o, 45o−45o−90o and 30o−60o−90o are given by the diagrams A2, B2 and G2.

Given such a domain S, we find a domain of periodicity P such that S ⊂ P ⊂ Rd . The construction of
multivariate Chebyshev polynomials goes as follows, exemplified by the classical case:

1. Take the Fourier basis functions on P.
Classical: S = [0,π], P = [−π,π], Fourier basis exp(ikθ).

2. Using reflection symmetries, fold the Fourier basis to symmetric functions on S.
Classical: cos(kθ) = 1

2 (exp(ikθ)+ exp(−ikθ)).
3. Use the symmetrised generators for the Fourier basis to change variables. This turns the symmetrised

Fourier basis into Chebyshev polynomials on a transformed domain S̃.
Classical: x = 1

2 (exp(iθ)+ exp(−iθ)) = cos(θ), S̃ = [−1,1].

It should be remarked that these polynomials enjoy most of the beautiful properties of their univariate
cousins. However, in the classical case the transformed domain S̃ is still an interval, whereas in the general
case S is typically a simplex or a product of simplices, e.g., a prism, while the transformed domain S̃ is a
more complicated domain which is usually non-convex and often has cusps in the corners. Coping with the
shape of S̃ is the main difficulty in the practical use of the multivariate Chebyshev polynomials.

This paper is organised as follows. In Section 2 we review basic properties of root systems and multivari-
ate Chebyshev polynomials with special emphasis on the A2 case related to symmetries of the equilateral
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triangle. Section 3 treats new spectrally accurate methods for computing gradients on triangles. Section 4
discusses Clenshaw–Curtis type quadratures for triangles. Lastly, in Chapter 5 we demonstrate the algo-
rithms through numerical experiments.

2 Chebyshev polynomials and root systems

In this Section we will review the basic definitions and properties of multivariate Chebyshev polynomials.
Root systems give explicit information about the reflections and translations discussed in the introduction,
and are hence important for computational algorithms.

2.1 Root Systems

A root system Φ on a vector space V is a collection of vectors satisfying the following four conditions [11]:

(i) Φ spans V ,
(ii) If α ∈Φ , then cα ∈Φ ⇐⇒ c ∈ {1,−1},
(iii)If α ∈Φ , then Φ is closed under the reflection σα = I−2 ααT

αT α
,

(iv)Integrality condition: α,β ∈Φ =⇒< β ,α >= 2 (α,β )
(α,α) ∈ Z, where (α,β ) = αT β .

In 1 dimension, the only root system is given by Φ = {α,−α}, where α is a non-zero vector. In 2 dimen-
sions, there are four root systems, which are shown in Figure 1. The first of these is a tensor product of the

α1 α1 α1

α2

A2 B2A1×A1 G2

α1

α2

α2α2

Fig. 1 Root systems in two dimensions.

1-dimensional root system, while the remainder are irreducible. A complete classification of irreducible
root systems is given by the Dynkin diagrams An, Bn, Cn, Dn, E6, E7, E8, F4 and G2.

2.2 Multivariate Chebyshev Polynomials

Following [17], let Φ be a root system with a basis {α1, . . . ,αd} where the αi are simple positive roots of
Φ . Corresponding to this root system is the Weyl group W = {σα |α ∈ Φ}, where σα is the reflection in
the hyperplane orthogonal to α . Expressed in the basis {α j}, W is generated by the integer matrices

σ̃i = I− eieT
i C, i = 1, . . .d,

where C is the Cartan matrix C jk = 2
αT

j αk

αT
j α j

, I is the identity matrix, and {ei} is the standard basis on Rd .
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The root lattice is the set of all translations generated by the roots Λ = spanZ{α1, . . . ,αd}, and the affine
Weyl group W̃ = Λ oW is the group generated by both translations and reflections along the roots. The
fundamental domain of W̃ is a polytope S⊂Rd and the periodicity domain P is the parallelepiped spanned
by the simple positive roots α j.

In terms of the basis 1
2π
{α1/|α1|, . . . ,αd/|αd |}, we identify P with the abelian group G = (R/2πZ)d ,

whose dual group is Ĝ = Zd . The Fourier basis for periodic functions is defined via the pairing

(k,θ) := eik·θ ,

where k ∈ Ĝ and θ ∈ G. Via the symmetries of the Weyl group, one can define the symmetrised pairing

(k,θ)s :=
1
|W | ∑

g∈W
(k,gθ) =

1
|W | ∑

g∈W
(gT k,θ),

where |W | is the number of elements in the Weyl group W .
Note that in the same way that G can be recovered (up to periodicity) from the fundamental domain by

application of elements from the Weyl group, one can define a dual fundamental domain (i.e., a fundamental
domain in Ĝ) such that Ĝ is recovered from the dual fundamental domain by application of the transpose
of elements from the Weyl group.

We can now define the multivariate Chebyshev polynomials in the following way:

Definition 1 The multivariate Chebyshev polynomial of degree k is given by

Tk(z) := (k,θ)s, (1)

where z j(θ) = (e j,θ)s for j = 1, . . . ,d, and the e j are the standard basis vectors in Rd .

The multivariate Chebyshev polynomials are related to each other via the following relations

T0 = 1,
Te j = z j,

Tk = TgT k for g ∈W,

T−k = Tk,

TkTl =
1
|W | ∑

g∈W
Tk+gT l =

1
|W | ∑

g∈W
Tl+gT k.

(2)

These relations clearly show that the multivariate Chebyshev polynomials are indeed polynomials in the z j.
A multivariate function may be expanded in an infinite weighted sum over multivariate Chebyshev

polynomials,
f (z) = ∑

k∈Ĝ

a(k)Tk(z),

where the coefficients a(k) can be obtained via a Fourier transform, i.e.,

∑
k∈Ĝ

a(k)Tk(z) =
1
|W | ∑

k∈Ĝ

a(k) ∑
g∈W

(gT k,θ)

=
1
|W | ∑

k∈Ĝ
∑

g∈W
a(gT k)(gT k,θ)

= ∑
k∈Ĝ

a(k)(k,θ)

since a(k) = a(gT k) for all g∈W . Thus a(k) = f̂s(θ), where fs(θ) is the pullback of f (z) to the periodicity
domain P. Note that fs(θ) is a symmetric function, fs(gθ) = fs(θ) for all g ∈W .
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To do numerical computations, we discretise P with a regular lattice and sample f (z). It is essential that
this lattice respects all the symmetries of W̃ . There are several ways to accomplish this. One possibility is
to downscale the root lattice Λ by a factor N so that P contains an N×N grid. This grid is invariant under
the action of W̃ . Thus we obtain a finite polynomial approximation

f (z)≈ PN(z) = ∑
k∈ĜN

aN(k)Tk(z), (3)

where ĜN = (Z/NZ)d is the d-dimensional N-periodic integer lattice. If the approximating polynomial,
PN(z), is evaluated at the set of points

{
z∗ = z(θ j)

}
, where j ∈ ĜN and θ j = 2π j/N ∈ Rd , then the expan-

sion of PN(z) is

PN(z(θ j)) =
N−1

∑
kd=0
· · ·

N−1

∑
k1=0

aN(k)exp(ik ·θ j),

which is simply an unnormalised d-dimensional inverse discrete Fourier transform. Thus, the aN(k) are
given by

aN(k) =
1

Nd

N−1

∑
jd=0
· · ·

N−1

∑
j1=0

PN(z(θ j))exp(ik ·θ j), (4)

which can be computed quickly via the d-dimensional fast Fourier transform Fd ,

{aN(k)}=
1

Nd Fd {PN(z∗)} .

In the sequel, we omit the subscript N and write just a(k)≡ aN(k).

2.3 The A2 root system

The Weyl group for the A2 root system is

W =

{[
1 0
0 1

]
,

[
−1 1
0 1

]
,

[
1 0
1 −1

]
,

[
−1 1
−1 0

]
,

[
0 −1
1 −1

]
,

[
0 −1
−1 0

]}
. (5)

Here the fundamental domain is that of the Ã2 affine Weyl group, which is an equilateral triangle in the
plane (see Figure 2), and the dual fundamental domain is the set of points in Fourier space given by {k ∈
(Z/NZ)2|k2 ≤ k1,2k1 + k2 ≤ N}.

With this Weyl group, Eq. (2) gives rise to the following recursion formulas

T0,0 = 1, T1,0 = z1, T0,1 = z2 = T−1,0 = z1,

Tn,0 = 3z1Tn−1,0−3z2Tn−2,0 +Tn−3,0,

Tn,m =
1
2
(3Tn,0Tm,0−Tn−m,0).

However, it is more convenient, in practice, to work in the real-valued coordinates

x1 =
1
2
(z1 + z2) =

1
3
(cos(θ1)+ cos(θ2)+ cos(θ1−θ2)),

x2 =
1
2i
(z1− z2) =

1
3
(sin(θ1)− sin(θ2)− sin(θ1−θ2)).

Clearly, the multivariate Chebyshev polynomials are also polynomials in these coordinates.
While the multivariate Chebyshev polynomials are defined in a unit cell of the lattice, they exist in θ

coordinates as multiple images (not necessarily whole) of the fundamental domain. For the A2 root system,
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θ
1

θ
2

Fig. 2 The A2 root system showing fundamental domain (yellow triangle), translation group (blue hexagonal lattice) and
downscaled lattice (small black dots) for the downscaling factor N = 12. The blue arrows indicate the θ coordinates.

this is the equilateral triangle on the right of Figure 3. However, in the x coordinates, this triangle is mapped
to a deltoid as shown on the left of Figure 3.
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Fig. 3 N = 12 equally spaced tangent lines to the deltoid in x and θ coordinates. The points {x∗(θ)} lie at the intersection of
these lines, cf. Figure 2.

Lemma 2.1 The Lebesgue constant λ (N) for the points x∗ grows as O((log(N))2).

In higher dimensions the Lebesgue constant grows as O((log(N))d). The proof of this result relies on
properties of the multidimensional Dirichlet kernel, see also [14].
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3 Computing gradients

Let us consider the gradient of the approximating function PN(z),

∇z f (z)≈ ∇zPN(z) = ∑
k∈ĜN

a(k)∇zTk(z). (6)

For the univariate Chebyshev polynomials, the derivative of the approximating polynomial can be writ-
ten exactly as a weighted sum over Chebyshev polynomials via the relation,

∂zPN(z) =
N

∑
k=0

a(k)∂zTk(z) =
N−1

∑
k=0

b(k)Tk(z), (7)

where the b(k) are calculated recursively by

b(k−1) = b(k+1)+2ka(k) for k = N−1, . . . ,1, (8)

with b(N +1) = b(N) = 0. This recursion formula can be obtained by substituting the relation

2Tk(z) =
∂zTk+1(z)

k+1
− ∂zTk−1(z)

k−1
,

into Eq. (7) and matching terms.
In the general multivariate case the coefficients of the gradient are vectors b(k) ∈ Cd . It can be shown

that these satisfy the recursion

|W |ka(k) =
d

∑
l=1

∑
γ∈W

b(k− γ
T el)l(γ

T el). (9)

The b(m) in Eq. (9) can be obtained by setting b(M) = 0 and a(M) = 0 for M outside the dual fundamental
domain and iteratively determining the b(m) as m approaches the origin.

3.1 The A2 root system

As mentioned earlier, we prefer to work in the real-valued (x1,x2) coordinates when dealing with the A2
root system. The effect of this is that the gradient of the approximating polynomial becomes

∇xPN(x) = Jx(z)−T Jz(θ)
−T

∑
k∈ĜN

a(k)∇θ Tk(θ) = Jx(z)−T
∑

m∈ĜN

b(m)Tm(θ), (10)

where Jz(θ) is the Jacobian of the transformation between the θ and z domains, and

Jx(z)−T =

[
1 1
i −i

]
.

The recursion formula (Eq. (9)) can then be used to determine the b(m) from the a(k) via the following 3
steps

1. Sort the k in the dual fundamental domain by k1 + k2 = c for c = 0,1, . . . , and with increasing k2 for
each c (see Figure 4).

2. Assume that b(k) = 0 for k not in the dual fundamental domain and apply the stencils in Figure 5 to
each of the k in the fundamental domain in the reverse order to the sorting in step 1.

a) If k2 > 0, use stencil a) to obtain b(k1,k2)1:
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b(k1,k2)1 = 3(k1 +1)a(k1 +1,k2)+b(k1 +2,k2−1)1 +b(k1 +2,k2)2−b(k1,k2 +1)2

otherwise, use stencil b):

b(k1,0)1 = 3(k1 +1)a(k1 +1,0)+b(k1 +1,1)1 +b(k1 +2,0)2−b(k1,1)2.

b) If k1 > 0, use stencil c) to obtain b(k1,k2)2:

b(k1,k2)2 = 3(k2 +1)a(k1,k2 +1)+b(k1−1,k2 +2)2 +b(k1,k2 +2)1−b(k1 +1,k2)1

otherwise use stencil d):

b(0,0)2 = 3a(0,1)+b(1,1)2 +b(0,2)1−b(1,0)1.

c) Apply the conjugate symmetry:
b(k2,k1)1 = b(k1,k2)2,

b(k2,k1)2 = b(k1,k2)1.

3. Apply the symmetries from the symmetry group W to obtain the rest of the coefficients:

b(gT k) = b(k) for g ∈W.

k2

k1

3
2

1

4
5

6
7

8

c = 0

Fig. 4 Sorted dual fundamental domain for the A2 root system with N = 12.

By using this recursion formula, one can calculate the gradient of a function in O(N2 +α(N2 logN2))
time, where α indicates the amount of the time spent performing the fast Fourier transform and its inverse.
Note that there are O(N2) sample points in the computational domain, thus in terms of the number of
sample points, the computational complexity of this approach is only marginally greater than linear, the
main cost being the FFT.

4 Clenshaw–Curtis quadrature

Clenshaw–Curtis quadrature is a well-known technique for univariate integration. For a function on [−1,1]
the method amounts to approximating a given function by a finite Chebyshev expansion and integrating this
polynomial exactly. For smooth functions this method behaves nearly as good as Gaussian quadrature [21].

As with the univariate Chebyshev polynomials, the integral of a multivariate function may be evaluated
rapidly with a multivariate Clenshaw–Curtis quadrature technique.
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b(k1 +1,1)1
b(k1,1)2b(k1,k2 +1)2

b(k1,0)1

a) b)

c) d)

a(k1 +1,0)a(k1 +1,k2)

b(k1 +2,k2)2
b(k1,k2)1

b(k1 +2,k2−1)1

b(k1−1,k2 +2)2

a(k1,k2 +1)

b(k1 +1,k2)1
b(0,0)2

b(1,0)1

b(1,1)2

a(0,1)

b(0,2)1

b(k1 +2,0)2

b(k1,k2)2

b(k1,k2 +2)1

Fig. 5 Stencils for use in step 2.

∫
Ωz

f (z)dz≈
∫

Ωz

PN(z)dz = ∑
k∈ĜN

a(k)
∫

Ωθ

Tk(θ)|Jz(θ)|dθ , (11)

where |Jz(θ)| is the absolute value of the determinant of the Jacobian and Ωz and Ωθ are the fundamental
domains in z and θ coordinates respectively.

Since both Tk(θ) and the Jacobian Jz(θ) have terms of the form (k,θ) as building blocks, we can expand
the integrals in Eq. (11) as ∫

Ωθ

Tk(θ)|Jz(θ)|dθ = ∑
κ∈ĜN

b(κ)
∫

Ωθ

(κ,θ)dθ , (12)

for some b(κ) that is only non-zero near κ = k. Furthermore, these integrals need only be computed once.

4.1 The A2 root system

For the A2 root system, the determinant of the Jacobian Jx(θ) is

Γ =
1
9
(sin(θ1 +θ2)+ sin(θ1−2θ2)− sin(2θ1−θ2))

=− i
2
· 1

9

(([
1
1

]
,θ

)
−
([
−1
−1

]
,θ

)
+

([
1
−2

]
,θ

)
−
([
−1
2

]
,θ

)
+

([
−2
1

]
,θ

)
−
([

2
−1

]
,θ

))
,

which is zero on the boundary of the fundamental domain and negative within it. Furthermore, the orien-
tation of the deltoid in the x coordinates is opposite to that of the fundamental domain in θ coordinates.
Thus, Eq. (12) becomes
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Ωθ

Tk(θ)|Jx(θ)|dθ =
i
2
· 1

9
· 1
|W | ∑

κ∈S
δκ

∫
Ωθ

(κ,θ)dθ (13)

for the set S consisting of gT k+ l, where g ∈W ,

l ∈
{[

1
1

]
,

[
−1
2

]
,

[
2
−1

]
,

[
−2
1

]
,

[
1
−2

]
,

[
−1
−1

]}
,

and

δκ =


1 if l ∈

{[
1
1

]
,

[
1
−2

]
,

[
−2
1

]}
,

−1 if l ∈

{[
−1
−1

]
,

[
−1
2

]
,

[
2
−1

]}
.

The fundamental domain in θ coordinates is the region bounded by

θ1 +θ2 = 2π,

θ1 = 2θ2,

θ2 = 2θ1.

Therefore, the integral
∫

Ωθ
(κ,θ)dθ becomes

∫
Ωθ

(κ,θ)dθ =
∫ 2π

3

0

∫ 2θ2

1
2 θ2

(κ,θ)dθ1dθ2 +
∫ 4π

3

2π
3

∫ 2π−θ2

1
2 θ2

(κ,θ)dθ1dθ2,

which evaluates to

∫
Ωθ

(κ,θ)dθ =



2π2

3 if κ1 = κ2 = 0,
4πi
3κ1

if κ1 6= 0,κ2 +
1
2 κ1 = 0,

− 2πi
3κ1

if κ1 6= 0,κ2 +2κ1 = 0,
− 2πi

3κ1
if κ1 6= 0,κ2−κ1 = 0,

3
2κ2

2
(−(κ2,

4π

3 )+2(κ2,
2π

3 )−1) if κ1 = 0,κ2 6= 0,

− 1
κ1
( 1

κ2+2κ1
((κ2 +2κ1,

2π

3 )−1)
− 1

κ2+
1
2 κ1

((κ2 +
1
2 κ1,

4π

3 )−1)

+ 1
κ2−κ1

(κ2−κ1,
2π

3 )((κ2−κ1,
2π

3 )−1)) otherwise.

(14)

Note that due to the symmetries in ĜN , one need only evaluate
∫

Ωθ
Tk(θ)|Jx(θ)|dθ for values of k in the

dual fundamental domain. The full integral (Eq. (11)) can then be computed by summing over just the k
lying in the dual fundamental domain and weighting each a(k) by the size of the orbit of k under the group
action of W . Curiously, due to the symmetries of Tk(θ) and |Jx(θ)|, we have the following lemma.

Lemma 4.1 The integral
∫

Ωθ
Tk(θ)|Jx(θ)|dθ is zero unless k1 = k2 or |k1− k2|= 3.

Proof. First, let us rewrite Eq. (13) as∫
Ωθ

Tk(θ)|Jx(θ)|dθ =
i

18|W | ∑
κ∈S

δκ

∫
Ωθ

(κ,θ)dθ

=
i

18|W |∑m
δm ∑

g∈W
δg

∫
Ωθ

(gT m,θ)dθ ,

where

m ∈ k+η
T l =

{[
k1 +1
k2 +1

]
,

[
k1−1
k2 +2

]
,

[
k1−2
k2 +1

]
,

[
k1−1
k2−1

]
,

[
k1 +1
k2−2

]
,

[
k1 +2
k2−1

]}



On Multivariate Chebyshev Polynomials and Spectral Approximations on Triangles 11

and δm ∈ {1,−1,1,−1,1,−1} respectively. The set S = gT m is then given by

S =

{[
m1
m2

]
,

[
−m1

m1 +m2

]
,

[
−m1−m2

m1

]
,

[
−m2
−m1

]
,

[
m2

−m1−m2

]
,

[
m1 +m2
−m2

]}
(15)

with δg ∈ {1,−1,1,−1,1,−1} respectively, such that δκ = δmδg.
Note that if k1−k2 ∈ {−3,0,3}, then for some κ ∈ S we have that κ1 = κ2, κ1+2κ2 = 0 or 2κ1+κ2 = 0.

In this case, the first four lines of Eq. (14) play a part in the sum and the integral can be non-zero. On the
other hand, if k1− k2 /∈ {−3,0,3}, then none of the first four lines of Eq. (14) play a part in the sum.

Let us consider the reduced sum

∑
g∈W

δg

∫
Ωθ

(
gT m,θ

)
dθ . (16)

Now, if one of the κ ∈ gT m in this sum is of the form κ1 = 0, κ2 6= 0, then it can be easily seen from Eq.
(15) that S reduces to three distinct pairs, each of which have δg being of opposite sign. Thus, the terms in
Eq. (16) coming from the fifth line of Eq. (14) identically cancel.

It just remains to consider Eq. (16) where all of the integrals
∫

Ωθ
(gT m,θ)dθ are evaluated by the last

line of Eq. (14). Directly evaluating this sum, one finds that after some simple but tedious manipulation,
Eq. (16) reduces to

∑
g∈W

δg

∫
Ωθ

(
gT m,θ

)
dθ =

4
(
m2

1 +m1m2 +m2
2
)2 (

α−α2
)

m1m2
(
m2

2−m2
1

)
(m1 +2m2)(m2 +2m1)

,

where α =
(
κ2−κ1,

2π

3

)
=
(
κ2 +2κ1,

2π

3

)
=
(
κ2 +

1
2 κ1,

4π

3

)
and α−α2 = 0 since κ2−κ1 ∈ Z for all k.

Thus, the integral
∫

Ωθ
Tk(θ)|Jx(θ)|dθ over the deltoid is zero unless k1 = k2 or |k1− k2|= 3. ut

5 Triangles

The reader is no doubt aware that deltoids are not, in general, good shapes for decomposing surfaces into.
Rather, it is much more desirable to decompose a surface into a number of triangles, which can then be
mapped to a standard triangle either with linear or non-linear maps.

The difficulty now arises as to how to apply the multivariate Chebyshev polynomials (which naturally
live on the deltoid) to such a triangle. We envisage two possible methods of doing this:

(I) Stretch the deltoid to the triangle with corners at the corners of the deltoid.
(II)Use the equilateral triangle that is inscribed in the deltoid.

Method (I) is appealing, since all of the data points in the deltoid lie within the triangle. Straightening
maps are discussed in [17]. However, due to the shape of the deltoid, with its singularities at the corners,
we are not able to straighten the deltoid to a triangle without compromising spectral convergence.

On the other hand, method (II) has the advantage that it does not require any further mappings (the
gradient algorithm can be used directly and the Clenshaw–Curtis quadrature algorithm can be used with
only a small modification to the integral of (k,θ) over the fundamental domain). However, this method
makes use of the data points that lie outside the triangle to obtain the coefficients a(k). This has implications
for the use of these algorithms in spectral and spectral element methods on domains with boundaries, which
will be discussed in a later paper.

5.1 Clenshaw–Curtis quadrature over a triangle

Since we are restricting the domain of integration, Ωx, to the equilateral triangle inscribed within the deltoid
(red triangle in Figure 3), the integrals

∫
Ωθ

(κ,θ)dθ in Section 4 must be modified. They become
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Ωθ

(κ,θ)dθ =
∫ 2π

3

π
3

∫
θ2+

π
3

π
3

(κ,θ)dθ1dθ2 +
∫

π

2π
3

∫
π

θ2− π
3

(κ,θ)dθ1dθ2,

where Ωθ is the restriction of the fundamental domain to the equilateral triangle in θ coordinates.
As with the integral over the deltoid, this integral can be evaluated directly to give

∫
Ωθ

(κ,θ)dθ =



π2

3 if κ1 = κ2 = 0,
iπ

3κ2
((κ2,

π

3 )− (κ2,π))+
1

κ2
2
(2(κ2,

2π

3 )− (κ2,π)− (κ2,
π

3 )) if κ1 = 0,κ2 6= 0,
iπ

3κ1
((κ1,

π

3 )− (κ1,π))+
1

κ2
1
(2(κ1,

2π

3 )− (κ1,π)− (κ1,
π

3 )) if κ2 = 0,κ1 6= 0,
2

κ2
1
(1− cos(κ1

π

3 ))+
2π

3κ1
sin(κ1

π

3 ) if κ1 +κ2 = 0,
1

κ1κ2

(
(κ1,

π

3 )((κ2,
2π

3 )− (κ2,
π

3 ))− (κ1,π)((κ2,π)− (κ2,
2π

3 ))
)

+ 1
κ1(κ2+κ1)

(
(κ1,

2π

3 )((κ2,π)+(κ2,
π

3 ))

−(κ2,
2π

3 )((κ1,π)+(κ1,
π

3 ))
)

otherwise.
(17)

Again, the symmetries of Tk(θ) and |Jx(θ)| restrict the values of k for which the integral
∫

Ωθ
Tk(θ)|Jx(θ)|dθ

is non-zero. We obtain the following lemma.

Lemma 5.1 The integral
∫

Ωθ
Tk(θ)|Jx(θ)|dθ is zero unless k1− k2 = 0 (mod 3).

Proof. As with the proof of Lemma 4.1, we consider the reduced sum

∑
g∈W

δg

∫
Ωθ

(gT m,θ)dθ , (18)

where m and δg are given in Lemma 4.1 and the integrals are evaluated by Eq. (17).
If m1 = 0, m2 = 0 or m1 +m2 = 0, then it can be easily seen from Eq. (15) that the gT m occur in pairs

with δg being of opposite sign. Thus the contributions to Eq. (18) from the first four lines of Eq. (17)
identically cancel with each other and we need only consider the contributions coming from the last line of
Eq. (17).

Directly evaluating Eq. (18) where the integrals are evaluated by the last line of Eq. (17) gives

∑
g∈W

δg

∫
Ωθ

(gT m,θ)dθ =
2i(m1α +m2β )

m1m2(m1 +m2)
,

where

α =−sin(m1π/3)+ sin((m1−2m2)π/3)+ sin((m2 +3m1)π/3)
+ sin((m1 +3m2)π/3)− sin((m1 +m2)π/3)+ sin((3m1 +2m2)π/3)

and

β =−sin(m2π/3)+ sin((m2−2m1)π/3)+ sin((m1 +3m2)π/3)
+ sin((m2 +3m1)π/3)− sin((m2 +m1)π/3)+ sin((3m2 +2m1)π/3).

Now, let a = m2−m1, such that α and β become

α =−sin(m1π/3)(1+2cos(2aπ/3))− sin(2m1π/3)(cos(aπ)+2cos(aπ/3))

and
β =−sin(m2π/3)(1+2cos(2aπ/3))− sin(2m2π/3)(cos(aπ)+2cos(aπ/3)) ,

which are only non-zero if a = 0 (mod 3).
Since m1−m2 = k1−k2 (mod 3), we find that the integral

∫
Ωθ

Tk(θ)|Jx(θ)|dθ over the triangle is only
non-zero if k1− k2 = 0 (mod 3). ut
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5.2 Nonlinear transformations

Given a nonlinear mapping φ : R2 7→ R2 such that y = φ(x), the Jacobian of this map can be calculated
numerically at each point y(x) as

Jy(x) =

[
∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

]
using the gradient algorithm of Section 3.1.

f

f (y)

y = φ(x) ∈ R2x ∈ R2 φ

ΩyΩx

Fig. 6 A function f (y) is defined on a nonlinear triangle Ωy, which is mapped from the equilateral triangle Ωx by the map φ .

The gradient of a function f (y) on the nonlinear triangle can then be obtained by multiplying the gradient
obtained from the gradient algorithm by the inverse transpose of the Jacobian at each point in the domain.
I.e.,

∇y f (y) = Jy(x)−T
∇x f (x). (19)

Integrals using Clenshaw–Curtis quadrature can also be performed on nonlinear triangles. This is done
by transforming the integral back to the x domain and performing the integration there. For example,∫

Ωy

F( f (y),∇y f (y))dy =
∫

Ωx

|Jy(x)|F( f (φ(x)),Jy(x)−T
∇y f (φ(x)))dx (20)

where Ωy is the nonlinear triangle and Ωx is the equilateral triangle (see Figure 6). This integral can then
be evaluated by Clenshaw–Curtis quadrature and numerical gradient computations.

The computational cost of computing the Jacobian of the map at each point in the domain is approx-
imately twice the cost of computing a gradient. However, for a fixed mapping the Jacobian can be pre-
computed. The further computational costs associated with the above modifications to the gradient and
Clenshaw–Curtis quadrature are also O(N2) and only marginally increase the running time of the algo-
rithms.
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5.3 Linear transformations

If the mapping φ happens to be a linear mapping, then the gradient and Clenshaw–Curtis quadrature tech-
niques for the transformed triangles simplify as the Jacobian Jy(x) is a constant matrix for such transfor-
mations.

Thus, when calculating the gradient, the inverse transpose of the Jacobian need only be calculated once,
however, it must still be applied to each point in the domain. Furthermore, in Clenshaw–Curtis quadrature,
the constant factor of |Jy(x)| in the integral of PN(y) can be applied after the integral of PN(x) is calculated.
That is, Eq. (20) becomes∫

Ωy

F( f (y),∇y f (y))dy = |Jy(x)|
∫

Ωx

F( f (φ(x)),Jy(x)−T
∇y f (φ(x)))dx (21)

These simplifications provide a marginal improvement in the running times of the gradient and Clenshaw–
Curtis algorithms.

6 Numerics

In this section, we show timing and convergence results for the gradient and Clenshaw–Curtis quadrature
algorithms using the test function exp(sin(y1)sin(y2)) on the triangle with corners {(0,0),(0,1),(1,0)}.
We also show timing and convergence results for the calculation of the surface area of a spherical triangle,
which requires the use of both algorithms on a non-linearly transformed triangle. All computations are
performed using a combination of MEX and MATLAB R2007b on a single 2.4GHz processor.

Quadratic reference timing curves (fitted using least squares) have also been plotted to emphasise the
efficiency of the algorithms. Again, we would like to emphasise that there are O(N2) points within the
fundamental domain, of which, just over half lie within the triangle, thus our methods achieve spectral
accuracy with nearly linear computational complexity in the number of sample points.

We begin with Clenshaw–Curtis quadrature of our test function on the triangle. Figure 7 shows the spec-
tral rate of convergence of the Clenshaw–Curtis quadrature algorithm for a sufficiently smooth function.
Most of the variation in the timing curve comes from the two dimensional fast Fourier transform (which is
performed by FFTW) and is reproducible (cf. Figures 8–9).

If instead of the test function exp(sin(y1)sin(y2)), one uses a monomial of degree p, one finds that
the Clenshaw–Curtis quadrature algorithm becomes exact for N greater than some value (typically around
N/2). This occurs because the non-zero Fourier coefficients of the approximation PN(x) for a monomial
of degree p are limited to a hexagon of radius p centred at the origin of the dual fundamental domain.
The required value of N to make the integration exact is then the smallest value of N such that the dual
fundamental domain contains all of the k such that both a(k) 6= 0 and

∫
Ωθ

Tk(θ)|Jx(θ)|dθ 6= 0. A similar
result holds true for the gradient algorithm.

We now proceed to the calculation of the gradient of our test function using the recursion formula of
Section 3. Figure 8 shows that the gradient algorithm also has a spectral rate of convergence. The two
curves on the left of this figure are the L2 norms of the absolute error in the y1 and y2 components of the
gradient. The numerical error in the gradient for large N is entirely due to accumulated round-off error and
grows as O(εN2), where ε is machine precision. This phenomenon is consistent with the general rule that
numerical integration is stable while numerical differentiation is unstable.

Lastly, in Figure 9, we show convergence and timing results for our gradient and Clenshaw–Curtis
quadrature algorithms applied to a nonlinear triangle. Instead of showing these separately, we demonstrate
their use by calculating the surface area of the spherical triangle on the unit sphere with corners (x̂1, x̂2, x̂3),
where x̂i are normalised versions of the xi:

x1 =

 − 1
3

− 1√
3

1

 , x2 =

− 1
3

1√
3

1

 , x3 =

 2
3
0
1

 .
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Fig. 7 Integration of exp(sin(y1)sin(y2)) on the triangle.

0 10 20 30 40 50 60 70 80 90 100
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

2.22e−16N
2

L
2
 n

o
rm

 o
f 

th
e

 a
b

s
o

lu
te

 e
rr

o
r

0 10 20 30 40 50 60 70 80 90 100
0

0.5996

1.1992

1.7989

2.3985

2.9981

3.5978

4.1974

4.797
x 10

−3

y = aN
2

a = 3.672e−07
R = 0.88561

T
im

in
g

 i
n

 s
e

c
o

n
d

s

Spectral convergence of ∇
x
exp(sin(x)sin(y))

N

Fig. 8 Gradient of exp(sin(y1)sin(y2)) on the triangle.

The surface area of a function f (y1,y2) is calculated by first computing the gradient ∇y f (y) and then by
integrating over the domain the function
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S =

√
1+
(

∂ f
∂y1

)2

+

(
∂ f
∂y2

)2

.
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Fig. 9 Surface area of a spherical triangle with corners (x̂1, x̂2, x̂3).

From Figure 9 one can clearly see that the gradient and Clenshaw–Curtis quadrature algorithms perform
as well and almost as fast for nonlinear maps as they do for linear maps.

7 Summary

In this paper, we have constructed a family of multivariate Chebyshev polynomials based on a symmetric
extension of the fundamental domain of the affine Weyl group associated with a root system. Based on
these multivariate Chebyshev polynomials, we have developed algorithms to approximate the gradient and
the integral of functions over the fundamental domain associated with a root system. These algorithms are
spectrally accurate and extremely fast, with computational complexity dominated by FFTs.

Here, we have focussed our attention on the A2 root system, which is the simplest of the two-dimensional
root systems with a triangular fundamental domain. This root system gives rise to multivariate Chebyshev
polynomials that live on the interior of the deltoid 3(x2

1 + x2
2)

2−8x1(x2
1−3x2

2)+6(x2
1 + x2

2) = 1. However,
by restricting the domain of integration to the equilateral triangle that is inscribed within this deltoid, the
Clenshaw–Curtis quadrature algorithm can be used to integrate over this triangle. Furthermore, given a
(possibly nonlinear) mapping of this equilateral triangle, the Jacobian of this mapping can be computed
numerically using the gradient algorithm, which allows for the computation of gradients and integrals on
arbitrary (possibly nonlinear) triangles using our gradient and Clenshaw–Curtis quadrature algorithms. We
have created MATLAB and C++ libraries of our algorithms for the A2 root system, which will be made
available at http://hans.munthe-kaas.no/Chebyshev for public use.
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