
A FrameWork for

Building Financial Models

Copyright 1997, Joseph W.
Yoder

Email: yoder@cs.uiuc.edu

i

Table of Contents
1. INTRODUCTION ... 1

2. FINANCIAL MODEL SPECIFICATION .. 1

2.1 DUPONTMODEL ... 1
2.2 DRILLING-DOWN.. 3
2.3 DETAILED TRANSACTIONS.. 3
2.4 SUMMARY REPORTS.. 4
2.5 GRAPHS... 5

3. THE ARCHITECTURE AND DESIGN OF THE FINANCIAL MODELING TOOL .. 6

3.1 WHAT HAPPENS IN THE FINANCIAL MODEL APPLICATION ... 6
3.2 FINANCIAL MODEL ARCHITECTURE... 8
3.3 HOW IT ALL FITS TOGETHER.. 9
3.4 HOW TO SPECIFY A FM ..11
3.5 REPORTVALUES...13

4. DETAILS OF THE DESIGN...19

4.1 CREATING DUPONT MODELS...19
4.2 BUSINESS LOGIC AND GUI SPECIFICATION DATA MODEL ..20
4.3 REPORTVALUE DETAILS ..22
4.4 VALUEMODEL...24
4.5 QUERIES..25
4.6 QUERYEXPRESSIONS..28
4.7 SELECTION CRITERION...30
4.8 SPECIFYING SELECTION CRITERION..32
4.9 FMSTATE ...34
4.10 APPLICATIONINFO...34
4.11 SESSIONS...34
4.12 NAMESPACES...35
4.13 SUMMARY REPORT FRAMEWORK...36
4.14 GRAPHING FRAMEWORK ..36
4.15 DETAILEDREPORT FRAMEWORK...37
4.16 PRINTING FRAMEWORK..38
4.17 TESTING FRAMEWORK...38

5. SECURITY MODULE ...38

5.1 SECURITY REQUIREMENTS...38
5.2 COMPONENTS..39
5.3 HOW SECURITY REQUIREMENTS ARE MET..39
5.4 OTHER REQUIREMENTS..40
5.5 SECURITY DATA MODEL..40
5.6 SECURITYADMIN TOOLS..41
5.7 FMLOGIN PROCESS...42

6. FUTURE WORK ...48

7. SUMMARY..48

8. PATTERNS ..49

9. REFERENCES...50

10. APPENDIX - THE FARM DATA MODEL ..50

ii

Figures

FIGURE 1 - DUPONT MODEL... 2

FIGURE 2 - DRILL DOWN ON INVENTORIES.. 3

FIGURE 3 - PRIME PRODUCTS INVENTORY DETAILED TRANSACTIONS... 4

FIGURE 4 - PRIME PRODUCTS INVENTORY SUMMARY REPORT.. 4

FIGURE 5 - PRIME PRODUCTS INVENTORY GRAPH.. 5

FIGURE 6 - VALUE MODELS IN GUIS... 7

FIGURE 7 - FINANCIAL MODEL APPLICATION OVERVIEW.. 7

FIGURE 8 - USER VIEW OF THE FINANCIAL MODEL LAYERED ARCHITECTURE... 9

FIGURE 9 - BUILDER VIEW OF THE FINANCIAL MODEL LAYERED ARCHITECTURE...10

FIGURE 10 - FINANCIAL MODEL CREATIONAL DIAGRAM ...11

FIGURE 11 - WHAT HAPPENS...12

FIGURE 12 - REPORTVALUE..13

FIGURE 13 - DRILL DOWN VALUES ..14

FIGURE 14 - REPORTVALUES GUI SPECIFICATIONS...15

FIGURE 16 - REPORTVALUES BUSINESS LOGIC SPECIFICATION...16

FIGURE 18 - REPORTVALUES CREATIONAL DIAGRAM ...17

FIGURE 20 - STRUCTURAL DIAGRAM OF REPORTVALUES ..18

FIGURE 22 - BUSINESS LOGIC AND GUI DATA MODEL..20

FIGURE 23 BUSINESS LOGIC AND GUI ENTITY RELATIONSHIP DIAGRAM ...21

FIGURE 24 - OBJECT STRUCTURE DIAGRAM FOR VALUEMODEL ...25

FIGURE 25 - DYNAMIC STRUCTURE OF QUERYOBJECTS ...27

FIGURE 26 - OBJECT DIAGRAM FOR QUERYOBJECT ...27

FIGURE 27 - QUERYEXPRESSION'S OBJECT DIAGRAM..28

FIGURE 28 - DYNAMIC STRUCTURE OF QUERYEXPRESSIONS..29

FIGURE 29 - AURORA SELECTION BOX...30

FIGURE 30 - SPECIFYING SELECTION CRITERIA...31

FIGURE 31 - SELECTIONCRITERION STRUCTURE..32

FIGURE 32 - SELECTIONCRITERIONEDITOR EDITOR...33

FIGURE 33 - SECURITY DATA MODEL ..40

FIGURE 34 - SECURITY ADMIN...41

FIGURE 35 - USERPROPERTIESDIALOG ...42

FIGURE 36 - LOGIN PROCESS...43

FIGURE 37 - FMLOGINDIALOG ..43

FIGURE 38 - LOGIN FAILURE LOOP...44

FIGURE 39 - APPLICATION SETUP...45

FIGURE 40 - OTHER SECURITY CHECKS..45

FIGURE 41 - NODE SECURITY...46

FIGURE 42 - PROFILE SECURITY...46

FIGURE 43 - ROLE SECURITY...47

FIGURE 44 - PASSWORD SECURITY...47

FIGURE 45 - FINANCIAL MODEL START UP...48

FIGURE 46 - FARM DATA MODEL...52

1

1. Introduction

We've been working for over two years on a fairly large financial modeling project with Caterpillar. Our main
result is a framework for financial modeling. It lets you quickly build applications that examine financial data
stored in a database and produces profit and loss statements, balance sheets, detailed analysis of departments,
sales regions, and business lines, with the ability to drill down until you hit individual transactions. It lets you
budget and correct errors in the data, too. We believe that once the business specific data model has been built
(which currently takes a long time in Caterpillar because most of their data has to be taken from many sources,
and every business unit is different and so has to define its own data model) that it will only take a week or
two to build the rest of the system. We are able to define a complete system for any business unit without any
Smalltalk programming. The business model is stored in the database, not written in Smalltalk, and we plan to
have a GUI for building it. The menus, reports, drill-downs, and graphs are also stored in the database. We
have also implemented GUIs for defining all of the GUI’s and business logic.

The financial modeling framework allows one to build a Financial Model application for nearly any type of
business. Although it was hard to figure out a good architecture for building Financial Models, the actual
architecture for the Financial Model is not complicated and can easily be reproduced. Most importantly, the
architecture is language independent. It can be implemented in any language, and once implemented,
knowledgeable users can build domain-specific applications without programming. This allows domain
experts to design the applications and allows end-users to customize them.

The primary principle here is to not program in a general purpose language, rather program in a higher-level
domain-specific language. You can do more with a general purpose language but with the higher level
language you can program within a limited domain with fewer lines of code. This work provides a visual-
object-oriented programming language [Burnett, Goldberg, Lewis 1995] to allow one to program without
feeling like they are programming. They are designing the application in terms of domain specifics that they
are familiar with. [reference Book on Visual Programming by Goldberg here].

2. Financial Model Specification

A Financial Model is an transactional-based application that allows multiple users to edit and view different
financial aspects of a business. It is used to analyze financial data and to support business decision making. It
provides a top-level profit/loss statement; the ability to drill-down to view any desired summary reports,
graphs, or detailed transactions; a way to update and correct individual transactions; and a way to
dynamically create new reports of interests.

The application is client-server oriented and allows users to collaborate during business decision making.
Customizing and selecting views of interest is built into the system, thus the users can interactively decide the
desired business logic and the view on the data.

The system creates a top-level view of the model depending on the user, typically a DuPontModel or a Profit
and Loss Statement. The user can select the desired date range and products that they wish to view. They can
also drill down to see how a particular value is computed. These drill-down reports also allow for many
customized summary reports, graph reports, and detailed reports.

2.1 DuPontModel

The DuPontModel [Johnson & Kaplan, 1987] (see Figure 1) is a graphical model of a view of Profit/Loss
statements for businesses. It provides a quick way for managers and accountants to view their return on
assets. Some of the boxes in Figure 1 are simply calculations from other values while others are the result of
querying values from a database. Each of the values based upon queries from a database can be viewed in
more detail by simply clicking on the button above its value. This will open up a more detailed report which
allows for customized views on the data of interest. The following account of the development of the DuPont

2

is taken directly from the book "Relevance Lost: The Rise and Fall of Management Accounting", written by H.
Thomas Johnson and Robert S. Kaplan.

“The DuPont Powder Company was an explosives firm founded in 1903 by three DuPont cousins,
Alfred, Coleman, and Pierre. Upon acquisition of the company the three cousins began to
develop a new adminstrative structure so that they might better evaluate and control the
company operations. Thenew structure involved consolidating the company's operations.
The Powder company became a centrally managed entreprise coordinating throught its own
departments most of the manufacturing and distribution activities formerly mediated
through the market by scores of specialized firms.

A big key to the new corporate structure was the development of a centralized accounting
system. The home office requested from the company's mills and branch sales offices,
which were located throughout the United states, daily and weekly data on sales, payroll,
and manufacturing costs. The company wanted to use this data to constantly monitor the
financial performance of all the branch divisions.

With the company structure and accounting system in place, all that was left to do is
develop a tool. The companies intense desire to assess every aspect of the company's
activities in terms of the price of capital led the founders of the DuPont Powder Company
to devise an ingenious return on investment formula. That formula is what has come to be
known as the DuPont model.

The breakdown of the DuPont formula helps see how return on investment is affected by a
change in any element from either the income statement or the balance sheet. Viewed from
this perspective, the DuPont return on investment formula is an ideal tool for
controlling, with accounting numbers, any verticall integrated company's opertions.

On interesting side note. It appears that the idea for the DuPont return on investment
formula originated with F. Donaldson Brown. Brown was a college-trained electrical
engineer and one-time electrical equipment salesman. Brown had no formal accounting
training. It is believed that Brown's profiency in mathematics, sales experience, and
engineering and marketing skills gave him a uniques perspective on the determinants of
company performance.”

Figure 1 - DuPont Model

3

2.2 Drilling-Down

Viewing the source of a value is called “drilling down.” When the user drills-down on a specified value, they
get a report similar to the one seen in Figure 2. This drill-down on Inventories is a first level report that shows
where the DuPontModel Inventories values come from. This report is created dynamically and can be
customized by the user. Note that the Budget and Actual columns are derived directly from database queries
while “Profit +/-“ and “% Change” are extra columns that are calculated as any mathematical function of the
previous columns. These calculated columns can be defined by the GUI developer and it is possible to allow
the end-user to specify these. Whenever the user changes the selection criteria that the queries are based upon,
the new values based upon the changed queries are automatically propagated to all open windows.

From here the user can open up customizable summary, graph, and detailed reports. This is done by either
selecting the desired report from a user-defined menu item or by clicking on one of the rows in the table which
has a user-defined report associated with it. Although our current system has the application-builder
(domain-expert) define these reports ahead of time, our framework does make it possible to allow for the end-
user to dynamically create these reports.

2.3 Detailed Transactions

The Detailed Transactions report (see Figure 3) allows the user to view and edit the individual transactions.
The designer can select which columns are editable and which columns are viewable. There is also a GUI
provided which allows the end-user to specify SQL-Queries selecting which transactions they want to view
and/or edit. These reports are dynamically built and the framework allows for these to be defined by the end-
user at run-time.

Figure 2 - Drill Down on Inventories

4

2.4 Summary Reports

Summary Reports as seen in Figure 4 allow for any type of report to be generated that comprise the that is
being drilled-down on. These reports allow for the user to view any type of summary report on the data in a
spreadsheet fashion. These summaries can slice-and-dice the data in any manner. This includes allowing the
user to join different aspects of the business together to search for different financial aspects of the business.

Figure 3 - Prime Products Inventory Detailed Transactions

Figure 4 - Prime Products Inventory Summary Report

5

2.5 Graphs

Graph reports as seen in Figure 5 allow the user to specify the type of graph (bar, line, pareto, band stacked),
the orientation, the legends, and other viewing options. These graphs can be built either on SQL-Queries for
values from the database, or from pre-calculated values. Once again, although these are currently pre-defined
by the application-builder, our framework allows for GUI extensions that could have end-users defining there
graphs at run-time.

Figure 5 - Prime Products Inventory Graph

6

3. The Architecture and Design of the Financial Modeling Tool

The Financial Modeling Tool is a set of frameworks for creating financial models. The prototype system was
developed using ParcPlace Smalltalk. It provides an architecture for creating financial models and visual tools
and languages for generating these modules without knowing the specifics of the implementation language. It
contains the following primary frameworks/modules.

I. User Interface Frameworks

• DuPontModel - A graphical view of the return on sales.
• ReportModel - Builds a spreadsheet interface using values and GUI descriptions from ReportValues .
• GraphReports Framework - Used to graph any desired values from the database.
• SummaryReports Framework - Gives a summary view on values from the database.
• DetailedWindows Framework - Allows users to edit and view individual transactions from the

database.

I. Business Logic Frameworks

• QueryObjects - Used to create queries into the database.
• ReportValues - Specifies the business logic and GUI for reports.
• SelectionCriteria - Allows for the dynamic creation of desired selection values. This works in

conjunction with QueryObjects to allows users to select their values of interest.

I. Utility Frameworks

• Printing Module - Allows any window to print itself with a user selected output
• Security Module - Insures that only desired users can edit and/or view the data. This is configurable

by an administrative module.
• Testing Framework - This works in conjunction with the report values and the selection criteria. It

automatically selects values from the database and insures you have the desired results.

3.1 What happens in the Financial Model Application

There are four types of users of the financial modeling framework. There is 1) the end-user; 2) the GUI
designers/builders; 3) the business-logic programmers (domain-experts); and 4) the system administrator who
sets up the security, users, etc. This framework supports all four kinds of users.

The above is possible because we have developed a special purpose high-level visual programming language
that allows the experts to build the financial application they need. This specialized language allow the
application builders to build according to equations and rules of the business logic rather than coding in the
specifics of the implementation language. Thus, the Financial Model can directly be represented according to
its high-level organization allowing for the domain experts to build (program) it.

The users view of a Financial Model is a set of reports. These reports interact with the business logic making
up the actual Financial Model. Before we look at the design of the business logic, it is helpful to see the
relationship between the reports and the business logic.

As seen from a report’s perspective (shown in Figure 6), a value displayed on the screen in a report actually
comes from some ValueModel . This ValueModel can be a function based upon a query into the financial
database or any mathematical formula based upon other ValueModels . Thus, queries return values that can
be plugged into objects. In Figure 6 the displayed value of $5,000 comes from a query which selects all North
American Sales from the database and divides it by 1000 since the view displays the amounts in thousands of
dollars.

7

If the specified date range or products of interest changes, the query automatically re-queries the database and
the changes are propagated through the ValueModels to the display. The specifics of ValueModels and
QueryObjects are discussed later.

There is a set of equations making up the business logic for a company. This business logic is built upon a
complicated data model representing all of the financial data. The business unit data model that we designed
used the Stars Patterns [Steve Petterson]. This financial data could be relation or legacy data. The financial
model application takes this business logic and builds different customizable views to the data.

Figure 7 gives a high-level overview of what happens. The application builds the values based upon the
specified business logic and returned values from the database, and then builds an appropriate GUI and plugs
the values into the GUI’s.

The application does the constructing of GUI’s and Values. The GUIs really take basic building block provided
by the system and puts them together to provide the desired view. The Values are constructed automatically
from the business logic that is stored in the database.

budget actual variance VM

$ 5,000 /

1000Query
Value

Select all sales from North America
for the specified date and products

which returns $5,000,000

Sales Report

Thousands of Dollars

 Figure 6 - Value Models in GUIs

GUI
Values
(based on

Business Logic)

Application

Figure 7 - Financial Model Application Overview

8

3.2 Financial Model Architecture

Figure 9 shows the user view of the Financial Model as a layered architecture. The three layers are the GUI
Layer, a Modeling Layer, and a Composition Layer (see Figure 8). The GUI Layer is the actual application
view objects that are built upon the business logic. These are the classes provided for the high-level,
summary, detailed, and graph views of the business data.

The Modeling Layer builds the business logic using queries and ElementSpecs . This is where all of the
displayed values are created. ReportValues create the ValueModels based upon ElementSpecs descriptions
queried from the database and plugs them into the GUIs. Ultimately, these ElementSpecs are tied back to
value models, usually through BlockValue objects. The queries are instances of QueryObject . The Modeling
Layer builds values based upon the specified business logic and plugs these values into GUI’s.

The Composition Layer is where the ValueModels and QueryObjects are linked together for caching in
values from the database. These values are depenedent on the desired SelectionCriteria . It is these
ValueModels which are plugged into the reports for display. A dependency mechanism insures that if the
user selects new values to be displayed, the ValueModels will automatically be updated and any changes
propagated to all open views. FMState is a global object (one per instance of the application running) that
knows the user’s access rights, the business unit, and the selection criteria.

Each box in a DuPontModels gives budget/actual values and allows you to drill-down to view more detailed
information and reports. Each box gives a different set of reports. Click on NetSales and you get the NetSales
report, click on Inventories and you get the Inventories report etc. The application developer defines the break
down of where the values come from and the GUI for the associated reports.

Also note that there are two types of boxes in the DuPontModel. Their are those that are calculations based
upon other component boxes and there are the leaves that get their values from SQL queries. Models map to
every interface widget with a view/controller. There was a commonality with these widgets, especially the
model where the logic to the values is stored. Thus their needs to be an object for each box that give values
and specify the drill-downs. This object was built by looking at what GUI and Business Logic specification
was needed.

Another view of the layered architecture can be seen by looking at it from a builder’s perspective (see Figure
9). When a ReportValue builds a new GUI, it builds the appropriate ValueModels and plugs them into the
GUI. These ValueModels are dependent on the SelectionCriterion . The GUI’s can open up an editor to
change the SelectionCriterion which then updates the ValueModels which in turn update the values
presented on the screen.

9

3.3 How it all fits together

A high-level view of the design, collaborations, and flow of the financial model can be seen in Figure 10. A
user logs into the system by going through a Security Module that validates user information and loads the
application information. This in turns creates the application session information which is called FMState .
FMState keeps track of all of the current application session information which allows for the accessing of
values, creation of the reports, and providing security. Once the FMState has been created, a DuPontModel is
opened with a reference to the newly created FMState . The values presented by the DuPontModel are
accessed through the ReportValues object via the FMState object. Here, lazy initialization is done to query
values from the database when needed. It is the ReportValues that keep all of the domain-specific
information.

Value Model
arithmetic

Report Values
Reports

Menu Specs

Element Specs

Window Specs

Queries

State

Query Expression Query Object

FM State
Windows

Values

App Info

Seletion

Report Model
Report Values

Editor Type

Table Interfaces

…

Dupont Model

Selection Criteria

Summary Report

Formula Report

Graph Report

Detailed Report

Modeling Layer

GUI Layer

Composition Layer

Figure 8 - User View of the Financial Model Layered Architecture

10

A DuPontModel can also open up an report showing where each of its displayed values came from. It does
this by requesting a specific ReportValue to open up a report on itself. A ReportValue knows what its view
looks likes that it wants to open and also contains the business logic associated with the view to open. It takes
this descriptive information and opens up a ReportModel which is the combination of the desired view and
business logic.

A ReportModel is also given information for opening up other reports for the specific ReportValue . These
reports consist of other summaries, graphs, and detailed transactions. This information is built up into menus
and clicking actions on the reports which call the appropriate method in the specific ReportValue via
FMState .

Value Model
arithmetic

Report Values
Reports

Menu Specs

Element Specs

Window Specs

Queries

State

Query Expression Query

FM State
Windows

Values

App Info

Seletion

Report Model

Dupont Model

Selection Criteria

Summary Report

Graph Report

Detailed Report

Modeling Layer

GUI Layer Composition Layer

Figure 9 - Builder View of the Financial Model Layered Architecture

11

3.4 How to Specify a FM

ReportValues define both the business logic and the GUI descriptions for different reports. When the system
starts up, a collection of application specific ReportValues is created by reading the GUI descriptions and
Business Logic from the database (see Figure 11). Each of these ReportValues know how to query their
respective values from the “Business Unit Specific Data” and build up any needed values to plug into the
generated reports. ReportValues also works in conjunction with ReportModels for opening up other
Summary, Graph, and Detailed reports. Since ReportValues are dynamically built, changing the descriptive
information in the database for a ReportValue can change the GUI’s and business logic without any
programming and also provide for user-customizable views.

Although not shown in Figure 11 for the sake of clarity, sometimes there is limited communication between the
“Business Unit Specific Data” and the Summary, Graph, and Detailed reports. This is primarily done when an
expensive query is used to return the results or updates need to be done to individual transactions. The

SecurityModule

FMState
AppInfo

Selection
Values

Report Model

DuPontModel

ApplicationInfo

Selection Criteria

Summary Report

Formula Report

Graph Report

Detailed Report

1) loads

3) Opens: (FmState)

ReportValues

Creates: (FmState)

Creates: (username)

openEditorOn: (value)

Creates: (FmState)

Opens: (FmState)

START

2) Creates: (AppInfo)

Figure 10 - Financial Model Creational Diagram

12

queries are still obtained from the ReportValues but then a direct connection is made for any needed values
and/or updates.

Application Report Values

NetSales
Report/Values Variable Costs

Report/Values

Report Model
and Values

Detailed
Gross Sales

Detailed
Warranty

1st
Qtr

2nd
Qtr

3rd
Qtr

4th
Qtr

0
10
20
30
40
50
60
70
80
90

1st
Qtr

2nd
Qtr

3rd
Qtr

4th
Qtr

East
West
North

1st
Qtr

2nd
Qtr

3rd
Qtr

4th
Qtr

0
10
20
30
40
50
60
70
80
90

1st
Qtr

2nd
Qtr

3rd
Qtr

4th
Qtr

East
West
North

Detailed
VCOS

Vehicle
Summary

Vehicle
Summary

1st
Qtr

2nd
Qtr

3rd
Qtr

4th
Qtr

0
10
20
30
40
50
60
70
80
90

1st
Qtr

2nd
Qtr

3rd
Qtr

4th
Qtr

East
West
North

Detailed
Values

Vehicle
Summary

Business Unit Specific Data

GUI Descriptions Business Logic

Figure 11 - What Happens

3.5 ReportValues

A ReportValue holds a specific value to be displayed and also knows the rules for calculating that value (i.e.
the business logic and the GUI descriptions). A ReportValue can also drill down on its value, showing how
the values are calculated. It uses the same rules for calculating its value that it does for creating the GUI, so
the GUI and the values are always consistent. Usually the GUI shows a spreadsheet of some kind. It lets the
user drill down on the value in the spreadsheet in several ways, perhaps by drawing graphs, perhaps by
showing detailed lists of transactions, perhaps by opening the GUI for the next lower ReportValue . The
primary function of a ReportValue is to allow values to be built based upon the specified business logic and to
allow for users to selectively slice and dice these values to get the desired summary, graph, and detailed
views.

The rules for calculating values are often complex. Consider the report for Inventory. It calculates Inventory
according to the formula Inventory = Prime Products Inventory + Parts Inventory. Prime Products and Parts
Inventory are computed by querying the database, i.e. they correspond to SQL queries. Figure 13 shows the
GUI with values plugged in. The menus are automatically generated from the Business Logic and GUI

Descriptions as well.

It is up to the application designer to specify what data to display

1. The DuPontModel will display the total value of the entire ReportValues group information.
2. The next drill-down level displays a more specific information in report tables.
3. The reports from the drill-down can be one of three more specific views of the data.

a) The user can view the current or more specific information in a graphic form.
b) The user can obtain other summary information on the current tables.
c) The user can obtain the database table’s detailed row level information. These will either

return all of the rows for the specified selections or they can specify a selected list of the rows
they are interested in. If the user is permited by the security module, they can edit these
transactions and save them back to the database. They can also sort the rows on any columns
they desire.

As can be seen in Figure 13, the drill-down report of Inventories are values obtained from two tables of the
database, prime_products_sums and prod_stores_sums . The GUI interface of this window is designed
following the ReportValues GUI Specifications for the Inventories report.

Report Value

Business
Logic

Element Specs
Queries

GUI
Descriptions

Reports
Menu Specs

Window Specs

Figure 12 - ReportValue

14

ReportValues GUI Specifications in Figure 14 shows an example of the GUI specifications for the report. The
window level specifications are defined in ReportInterfaceSpec . The specifications include the column labels,
the label of the window, the table specifications, and the functions for calculating some of the columns. The
value of some of the columns are obtained from the queries, but some other columns, ‘Profit +/-‘ and ‘%
Change’, are calculated from the values of the other columns. It is indicated in the picture below, the ‘Profit
+/-‘ is the ‘Actual’ column minus the ‘Budget’ column. ‘% Change’ column, moreover, is the ‘Profit +/-‘
column divided by the ‘Actual’ column. These calculated columns can also be stored in the business logic
descriptions in the database.

Each table’s specifications are in TableInterfaceSpec . It holds the name of each table, which can be displayed
if desired, and the collection of row specifications. It is shown in Error! Reference source not found. that the
first table’s label is shown, but not that of the second table. In actuality, the second table, which is called the
total table, is generated automatically. The application builder only needs to indicate whether or not that table
is to be shown and how to calculate it. The default for the total table is to add up the total of all of the other
tables, but this arithmetic formula can be changed.

Each row’s specifications are in TableRowSpec . It holds the label of the row, which is shown on the left side
of the tables, the values for each column, and the source of the values. Each value corresponds to a
ValueModel object which is inserted into each element on the row. Therefore you can notice each ValueModel
holding a number corresponding to each cell in the above picture. The source of these values can be obtained
from various sources. They can be obtained from the ElementSpec objects. They can also be obtained from
the total of other ReportInterfaceSpecs or TableInterfaceSpecs or TableRowSpecs . In fact, although it is
not shown in this picture, arithmetic operations can also be performed on the totals of these specs. For
example, you may want another table which holds one row that divides the ‘Prime Products’ row by the
‘Production Stores’ row.

Figure 13 - Drill Down Values

15

ReportValues Business Logic Specification in Figure 15 shows the structure of the collection of
ElementSpecsH older and QueriesHolder . As you can see from below, the ElementSpecs are ultimately
dependent on the QueryObjects . But they can also be an arithmetic operation of two other objects. In the case
below, the ElementSpecsH older has ‘prime’ pointing to a CompositeElementSpec , which is an
ElementSpec divided by the number of months selected. The child ElementSpec in turn points to a
QueryObject with the information about how to sum up the rows returned from the query.

A direct dependence on the queries is undesirable because database queries are so expensive. If there are many
queries, then it can take a long time to get all the values from the queries. In fact, there are many redundancies,
where several queries may be accessing the same database table to obtain only slightly different values. So it is
preferable to query as little as possible. One effective way of minimizing queries is by getting all the needed
values in few large queries and then selecting the desired values from those query values. The selection of the
query values is done by the ElementSpecs . Although heavy arithmetic calculations are now performed on the
client side, the reduction of the number of queries results in a performance improvement. It is up to the user to
determine the optimal division between queries and the element specifications. Also, query values are cached

TableInterfacesSpec

ColumnLabels: (‘Budget’,
‘Actual’, ‘Profit +/-‘, ‘%
Change’)

WindowLabel: Inventories

Functions: 3 = 2-1
 4 = 3/2

Tables: Table1

Table2

TableInterfaceSpec

Name: Inventories

Rows: Row1
Row2

TableInterfaceSpec

Name: Inventories

Rows: Row1

TableRowSpec

Label: ‘Production Stores’

ValueSource: ‘store’

ColumnValues:

TableRowSpec

Label: ‘Prime Products’

ValueSource: ‘prime’

ColumnValues:

TableRowSpec

Label: ‘INVENTORIES’

ValueSource: ‘TotalTable’

ColumnValues:

ValueModel
80857

ValueModel
77585

ValueModel
3273

ValueModel
23.7086

ValueModel
26525

ValueModel
525

ValueModel
26000

ValueModel
.0202

ValueModel
107382

ValueModel
78110

ValueModel
29273

ValueModel
2.6684

Figure 14 - ReportValues GUI Specifications

16

into memory and held there until the desired values are no longer needed or the selection criteria the values
are based upon changes. This minimizes the amount of network traffic since if we already have queried for the
desired value, we can just use it without re-establishing a connection to the database.

Figure 16 shows the creational diagram of ReportValues and ReportModel . ReportValues must first create
its specs by querying for them from the database. This includes ReportGraphSpecs ,
ReportDetailedTableSpecs , and ReportSummarySpecs . Other objects are also created from the
specifications in the database. They are the menu which is used for the report, QueriesHolder , and
ElementSpecsH older. QueriesHolder , and ElementSpecsH older need ReportValues for proper creation.

Once these are created, the ReportModel can be opened. The ReportModel needs information about
FMState , and Menu for the ReportValues to be properly created. It is the ReportModel that prompts the
opening of the DetailedTable , TableGraph , and SummaryReportModel windows. The creation of these
objects is actually done on the ReportValues side since the menu holds blocks from ReportValues that are
evaluated when selected.

One exception is TableGraph . ReportModel automatically creates a graph for each table in the drill-down
report. In this case, the TableAdaptor of the table interface must be passed for display to TableGraph . The
other way of creating a graph is through the ReportGraphSpecs , which makes a graph based on an
ElementSpec .

SummaryReportModel needs a QueryObject which will provide the view on the summary data. Similarly,
DetailedTable needs QueryObject and QueryDescription with which the most detailed row-by-row data of
tables can be obtained. QueryDescription determines the type of DetailedTable that is to be opened.

ElementSpecsHolder

‘prime’: ElementSpec1
‘store’: ElementSpec2
 ...
 ...

ElementSpec

Query: ‘prime’

SumField: ‘primeDollars’

ElementSpec

Query: ‘store’

SumField: ‘psiDollars’

CompositeElementSpec

operation: /
ElementSpec1: ElementSpec
ElementSpec2: numOfMonths

CompositeElementSpec

operation: /
ElementSpec1: ElementSpec
ElementSpec2: numOfMonths

QueryObject

Select * from
PrimeProductsInvSums

QueryObject

Select * from
ProdStoresSums

Figure 15 - ReportValues Business Logic Specification

17

Figure 17 shows a structural diagram of ReportValues . It shows a detailed structure of the objects that
ReportValues needs. It first needs the FMState in order to pass around the information. The queries are built
up using QueryObjects for each query needed. The ElementSpecs can point to a SingleEl ementSpec or a
CompositeElementSpec . SingleEl ementSpec makes its results by directly putting constraints on the values
returned from a QueryObject . CompositeElementSpec , on the other hand, is an arithmetic function on two
other ElementSpecs .

The specification of the reports are stored in the following manner. Each report, in ReportInterfaceSpec ,
consists of a label, window-level formats, such as the specification of the functional columns, and the
specifications of the tables. It also has a total value. The total value is a RowInterfaceSpec . It indicates the
total value of the entire report. This total value is needed when an arithmetic operation of two reports is
performed. This is basically the arithmetic operation of the the two total values. The TableInterfaceSpec is
similar to the ReportInterfaceSpec in having its own total value. The functional column specifications are
passed down to this object. But it points to a collection of RowInterfaceSpecs . Each RowInterfaceSpec
actually holds the BlockValues that are inserted into the cells of the tables. It makes the BlockValues based
on the result of the ElementSpecs . It inserts the values for the functional columns based on the specifications.
It can also be tied to an action that is executed when the cell or row is double-clicked.

ReportValues

Menu

ElementSpecsHolder

QueriesHolder

ReportDetailedTableSpecs

ReportGraphSpecs

SummaryReportSpecs

1) Creates:

(ReportValues)

(ReportValues)

ReportModel

Opens: (ReportValues,
FMState, Menu)

DetailedTable

TableGraph

SummaryReportModel

Opens:

(TableAdaptor)

Tells ReportValues to
open these windows

Figure 16 - ReportValues Creational Diagram

18

ReportValues

FMState
Queries

ElementSpecs
ReportWindowSpecs

Menu
GraphSpecs

DetailedTableSpecs
SummaryReportSpecs

QueryObject SingleElementSpec

Name
Query

Constraints
Result

ValueModel

CompositeElementSpec

Name
Element1
Element2
Operator
Result

ReportSpec

Label
Total

Function column spec
Table specs

 Window display format

TableSpec

Label
Total

Function column spec
Row specs

RowSpec

element spec
Function column spec
Double-click function

element results
BlockValues

Figure 17 - Structural Diagram of ReportValues

19

4. Details of the Design

This sections describes the more intricate details of the design. Occasionally, implementation details will be
described. This is only done to helps clear up the design or a very complicated implementation that the details
are needed for understanding how to implement this architecture.

4.1 Creating DuPont Models

Each box in a DuPontModels , has formulas and database queries associated it. A typical way to build GUI’s
like this is to use an interface builder to draw the text fields and buttons and then write code to the associated
behaviors. This code would include such things as defining all of the queries/formulas along with all of the
associated constraints. If this only needed to be done once, then it probably would be an efficient way to
develop the software. However, different business units will have different business logic and different views
on their data which included different boxes, constraints, formulas, and database queries. Moreover, the
database structure layout will be somewhat different for each business unit. This prompted us to extend the
Visual Builder framework to automate the construction of DuPontModels .

As was seen in the DuPontModel example (Figure 1), there is a common interface widget that is used many
times. By creating a "DuPont widget" to be used with the GUI builder along with methods for the automatic
generation of related code, the developer can quickly tailor different DuPontModels to meet the needs of
different users.

We were able to extend the VisualWorks Smalltalk Visual Builder framework to re-use code and easily extend
the DuPontModel by creating another interface widget like the DuPont box which has all of the fields and the
associated button. The developer can then draw the DuPont boxes quickly on the screen and use the property
editor along with the builder's automatic define method to automatically generate the formulas, the default
accessing methods, and the needed constraints. This extension to the Visual Builder can be done in other
languages but may be harder. For example in Visual Basic you can define new widgets, but then you have to
go off and write “C” code for the behavior and compile and test. You need to work with two different
languages to extend the builder.

The DuPontModel is really a collection of DuPontSpecs and DuPontPctSpecs . These are special sub-classes
of SubCanvasSpec which are pre-built to define the default look of a DuPont widget. Once given a name it
will get its ReportValues object by concatenating its with "Values" and "ValuesPct" and asking FMState for
that object. Therefore, whatever application model these widgets are placed on need to understand the state
message which returns a FMState object. "ValuesPct" is for the percentages. Once it gets the Values object
budget and actual are sent for the top and bottom boxes respectively. Whenever the button is pressed, the
openEditor message is sent to the values object which defaults to "No further drill-down available". The only
difference between DuPontSpec and DuPontPctSpec is that DuPontPctSpec only deals with percentages
while the DuPontSpec has percentages and whole dollar values.

In order to meet the above, the DuPontModel requires an object that knows its values and can create GUI’s to
examine more specific details of these values. These objects are known as ReportValues.

4.2 Business Logic and GUI Specification Data Model

The data model that contains the descriptive data (meta-data) needed to build a financial model is called the
Business Logic and GUI Data Model. The foreign key relationship are shown in Figure 18 - Business Logic and
GUI Data Model. Figure 19 depicts the entity relationships. To build a GUI with a given report element
requires information detailing the look and feel of the GUI as well as information regarding how the data is to
be displayed.

Report_Query_Specs holds the queries used to retrieve data from the financial database for all the report
elements.

Report_Detailed_Specs stores the data necessary for building a table based report.

Report_Summary_Specs stores the data necessary for building a summary report. Both it and
Report_Detailed_Specs have a query_name field which relates them to Report_Query_Specs . This
provides the corresponding report elements with means to retrieve the data they are to display.

Report_Graph_Specs stores data for building graph reports, but it does not have a reference to
Report_Query_Specs . Rather it is associated with Report_Element_Specs which contains the
information needed to get the query from Report_Query_Specs .

Report_Column_Specs
application
name

spec

Application_Editor
application
editor_name

FM_State_Formulas
application (FK)
editor_name (FK)

formula

Report_Composite_Window_Specs
application (FK)
editor_name (FK)

spec
column_spec_name

Report_Summary_Specs
application (FK)
editor_name (FK)
spec_name

query_name
window_label
field_types
alignments
groupby_columns
summing_columns
calculated_columns
formats
display_columns

Business Lo gic and GUI S pecification Data Model

Report_Query_Specs
application (FK)
editor_name (FK)
query_name

type
base_name
expression

Report_Detailed_Table_Specs
application (FK)
editor_name (FK)
spec_name

window_label
without_fields
displayer_class
type
original_table
error_table
no_edit_fields
query_name
menu_label

Report_Menu_Specs
application (FK)
editor_name (FK)
spec_name

parent_menu_label
menu_order
spec_type

Report_Element_Specs
application (FK)
editor_name (FK)
element_name

spec

Report_Window_Specs
application (FK)
editor_name (FK)
window_type

spec
column_spec_name

Report_Graph_Specs
application (FK)
editor_name (FK)
spec_name

selections
spec
format
column_labels
window_label

Selection_Spec
name
container

type
init

Figure 18 - Business Logic and GUI Data Model

21

Report_Composite_Window_Specs contains information for putting one or more report windows together.

Report_Window_Specs’ data specifies how to build a report window. A report window contains one or
more element specs found in Report_Element_Specs . Report windows also have menus which are defined
by Report_Menu_Specs .

Report_Menu_Specs contains data for building a menu. Each menu item is associated with a detailed table
report, graph report, summary report, or another menu.

Selection_Spec has the data for building a selection criteria box. It references the data in
Report_Query_Specs necessary for specifying its queries. Selection_Spec also has data referenced by
Report_Query_Specs to augment the query specification in Report_Query_Specs .

Report_Query_Specs

Report_Composite_Window_Specs

Report_Window_Specs

Report_Element_SpecsReport_Menu_Specs

Report_Graph_SpecsReport_Detailed_Table_Specs Report_Summary_Specs

Report_Column_Specs

Selection_Spec

FM_State_Formulas

0,1 0,2

0,10,1

0,1

0,1

Figure 19 Business Logic and GUI Entity Relationship Diagram

22

4.3 ReportValue Details

ReportValues is an object that holds the values from database queries that are needed for producing reports.
It has the following capabilities.

I. Keeping track of the queries needed for the report, as well as the values returned from the queries. In
reality, this is split into two parts, QueriesHolder and ElementSpecs . The QueriesHolder holds the
queries as well as their cached values. The ElementSpecs holds specifications for manipulating the query
values of the QueriesHolder to obtain the desired result.

1. QueriesHolder holds a collection of associations mapping query names to queries and their results.
2. ElementSpecs holds a collection of associations mapping names to selection specs. For building the

report window, two types of selection specs are available. It always holds query selections specs called
‘total’. They should represent the total value of the report. The total is currently being used by the
DuPontModel .
a) SingleEl ementSpec returns the sum of all the rows that satisfy the given constraints. It

returns a block value which returns the desired sum when evaluated. It holds the following
specifications.
i) Spec name.
ii) The name of the query value, which it obtains from the QueriesHolder .
iii) The selection constraints that determine which rows of the result to choose.
iv) The specification for calculating the value of each row. The specification basically

involves arithmetic operations on the columns of the row that hold numbers.
b) CompositeElementSpec returns the result of an arithmetic operation on two other selection

specs. This spec is indirectly dependent on the query values. It holds the two ElementSpecs
and the operator. The second operand can also be a number or a symbol that stands for a
method call to the ReportValues object that holds the element spec.

II. Specifying the report interface. ReportSpecsHolder keeps a collection of associations mapping report
names to the report interface specifications, called report specs. The interface also has a menu
associated with it. More than one interface can be specified, but there should always be a default
interface. The report interface’s look is basically a collection of tables lined up either horizontally or
vertically, each with a specified set of columns and rows. All tables of a given report have the same
number of columns. The tables specify the rows, which in turn hold the values that are to be put into
the table cells. Instead of inserting numbers, value models (more specifically BlockValues) are
inserted so that when the results of the queries change, the cells obtain the new values automatically.

1. The report specs hold the following information.
a) Report label. This label is used if the report is displayed as a window.
b) Function column spec. There are columns that are dependent on the query values, and there

are also function columns, which are functions of other columns. The arithmetic function for
each of the function columns must be specified. The query specification for the query-based
columns is not necessary at this level because the specifications of these columns are assumed
to be constant throughout all the report specs. Each function column needs to specify two
functions, one for a cost table and another for a profit table. The report spec picks the desired
one for each table (each table spec should do this).

c) A collection of table specs.
d) The total value of the totals of the table specs. The default is to sum up the table totals, but it

can be changed. Also a total table can be displayed below all other tables if desired.
e) Display format. The values can be displayed after being divided by an integer value.

2. The table specs hold the following information. They correspond to the tables of a report.
a) Table label. This label can be displayed if desired.

23

b) Function column spec. This spec is obtained from the parent report spec.
c) A collection of row specs.
d) The total value of the row specs.

3. The row specs, which correspond to the rows of a table, hold the following information.
a) Function column spec, obtained from the parent table spec.
b) An array that is specifies the action when the row is double-clicked.
c) A formula for obtaining the values. The formula is an arithmetic specification of

ElementSpecs and operators. Instead of obtaining values directly from the ElementSpecs , it
is also possible to obtain values from other row, table, or window specs.

d) A collection of value models (more specifically block values), corresponding to each column.
They are obtained by using the formula and are inserted into each cell of a row in the report
interface.

III. Specifying the graphs.

I. Specifying the detailed table information.

I. Specifying the summary reports.

I. Specifying the menu of the window interface. The actions for opening graphs, detailed information, and
summary reports will be inserted there.

Using ReportValues

In order to use the report specs, you must know the queries needed and the desired view of the report
interface.

1. It is recommended that you first determine the database tables and queries needed. Then determine the
optimal split between the queries and the query value selections.

1. Then determine the look of the report interface. Determine what value each cell of the tables will hold.
1. Then determine the other specifications.
1. From these specifications of (3), create the menu specs. Also insert double-clicking actions into the cells of

the tables if desired.

We have developed GUIs to allow the application developer to easily specify all of the above.

24

4.4 ValueModel

We usually think of values as being the attributes of objects, or sometimes we think of them as being special
classes. For example, an Employee object will have attributes like salary and hiring date, and these values will
be instances of classes like Money or Date, which we might consider a value class.

But there are other ways that objects can represent values. VisualWorks has a class called ValueModel that
represents a single value. Not only can clients of a ValueModel read and (usually) write its value, they can
become its dependents and be notified when it changes. GUI widgets usually depend on a single ValueModel .
So, if an Employee object stores its salary in a ValueModel then a text widget can depend on the salary and be
notified when it changes.

The most common ValueModel is a ValueHolder , which is just a container of a value. Instead of storing its
attribute in an instance variable, an object can store its attribute in a ValueHolder , which can be stored in an
instance variable. A read or a write to the instance variable must then get converted to a message to the
ValueHolder . This lets clients depend on the attribute and be notified when it changes.

Most other ValueModels are adapters. For example, a date adapter converts a value that is a date to a value
that is a string. Thus, a date adapter might translate between a text widget, which expects a string, and a
ValueHolder containing a date.

The most interesting ValueModels are ComputedValues , which define one value in terms of others.
ComputedValues are often defined as a function of other ValueModels and as such use the dependents
feature of ValueModels to stay up-to-date with the other ValueModels . There are many items that can be
based on other values. For example, value PROFIT is really a function based on the amount of total SALES minus
the total COSTS; whenever SALES or COSTS change so does PROFIT. The PROFIT value is represented by a
BlockValue which is a specialization of ComputedValue that calculates its function based on a Smalltalk
block. Whenever the value is needed the block is evaluated.

In addition to BlockValues who compute their functions through Smalltalk blocks, there are also
QueryValues which compute their values from queries. This allows the model to be directly hooked into the
database without the need of writing specific code to transfer values from queries to ValueModels .

The inheritance diagram for the ValueModels is shown in Error! Reference source not found.. Although the
actual VisualWorks ValueModel hierarchy has several additional classes, only the important ones for the
framework are shown.

The default protocol for ValueModel is very small. It only contains the value message to return its value. But
since many ValueModels are also used in formulas by ComputedValues , it should be easy to combine them
to form the formulas. We added methods for arithmetic functions like + and - to ValueModel that
automatically create a ComputedValue . The result is that instead of creating a BlockValue for PROFIT with
code such as:

BlockValue
block: [:sales :costs | sales - costs]
arguments: (Array with: salesHolder with: costsHolder)

we can define the profit as "salesHolder - costsHolder". The definition of - in ValueModel is

aValue
^BlockValue block: [:x :y | x - y]

arguments: (Array with: self with: aValue)

25

We added to ValueModel all of the basic arithmetic operations and a few for operations for string and date
manipulation. As a result, it is easy to define new ValueModels based on other ValueModels .

ValueHolders have a direct reference to their value, and as a result have a value: method to set this value. This
message is mainly used by interface widgets, but can be used programmatically to change the value.
ComputedValues also add a few messages to the basic ValueModel protocol that determine how it computes
its value. The value can be computed eagerly or on demand by sending the eagerEvaluation: message. Values
which are associated with queries turn-off eager evaluation since queries can take seconds to compute. Both
BlockValue and QueryValue only extend ComputedValues interface by adding messages to initialize their
blocks and queries.

4.5 Queries

Not all information for an application will be stored in memory. Instead, this information is stored externally
in a database, and values are fetched by querying the database. For example, consider a payroll system. There
might be one function that lists the number of hours worked by an employee during a time interval. For such a
system, there would be an interface that allows the user to enter the employee id and date range. Once they are
entered, the database would be queried for the number of hours worked.

Relational databases have their own language for specifying queries. Many times the language is SQL. For our
application to query a SQL database, it must send its commands as SQL statements. A default SQL statement
might look like:

SELECT

FROM

WHERE

GROUP BY

ORDER BY

fields to group on

fields to return

tables in query

clause to select

fields to sort on

9DOXH0RGHO

value
+, -, *, /
…

9DOXH+ROGHU

value
value:

&RPSXWHG9DOXH

eagerEvaluation:

%ORFN9DOXH

block
4XHU\9DOXH

query

dependents
UI Widgets

Figure 20 - Object structure diagram for ValueModel

26

The WHERE, GROUP BY, and ORDER BY parts of the statement are optional. For “our hours” worked example
above, we would have an SQL statement such as:

SELECT SUM(hours)
FROM time_cards
WHERE employee_id = ‘12345’ AND

date < ‘1/1/98’ AND
date >= ‘1/1/97’

While we could model each query as a string, many queries have similar parts and these parts might change
over time. For example, we might have several queries that have the same WHERE clause that specifies that the
records returned should be within a date range. If we needed to change the condition to add another
condition, we would need to change all the strings in the code. Clearly, this is undesirable.

Another way to model the queries might be to make an object that holds each query part as a string and then
concatenates them together when we execute the query, but we would like to include other Smalltalk objects
besides strings in our expressions. Instead of constructing a string from code like: “’orderNumber = ‘,
orderNumberHolder value printString”, we would rather construct the SQL expression from code like:
“salesTable orderNumber = orderNumberHolder”. When the query is evaluated the expression is turned into
the appropriate SQL statement string. Otherwise, we must update the string whenever the orderNumberHolder
ValueModel changes.

Instead of using strings to model the queries, we chose QueryObjects to model queries and
QueryExpress ions to model the individual expressions (e.g., WHERE clauses, GROUP BY clauses, etc.).
QueryObjects then construct their SQL statements at runtime using the QueryExpress ions .

A query returns something that behave like a table; it has rows that are separated into fields. Many databases
even allow you to create database views from a query. These views can then be used in other queries as if they
were real tables. We want to have a similar feature in our QueryObjects , but instead of having to create
database views for each query, we want to be able to use QueryObjects in other QueryObjects .

The most primitive type of QueryObject is a TableQuery . TableQueries represent tables in the database, and
are the basic building blocks for all other queries. They correspond to the tables listed in the FROM clause of a
SQL statement. Evaluating a TableQuery by itself just returns all the records in the table. Whenever multiple
tables are listed in the FROM clause of a SQL statement, they are “joined” together. This operation is
represented by a JoinQuery . JoinQueries join two QueryObjects to form one QueryObject .

The other clauses of a SQL query are also QueryObjects . For the SELECT part, we use a ProjectionQuery
since the SELECT part tells the database what fields to project in the result. The WHERE clause is modeled by a
SelectionQuery since it tells the database which rows to select. The ORDER BY and GROUP BY clauses are
represented by OrderQuery and GroupQuery respectively. Since all of these queries also have expressions,
they have QueryExpress ions that will create their SQL code for their respective clauses.

In addition to the SQL syntax described above, there is an additional keyword that can appear in a SELECT
statement. The “DISTINCT ” keyword specifies that all records returned by the query should be unique. This is
modeled in our system by a DistinctQuery which wraps another query and returns only the unique rows.

There are a couple additional QueryObjects that don’t have a direct SQL mapping. A RenamingQuery
renames the fields of another query. This is useful for achieving consistency with the field names. An
ImmediateQuery evaluates and caches the results of its wrapped query. Instead of letting the database
compute the values for the overall query, ImmediateQueries signify that part of the calculation should be
performed in Smalltalk. These can be used for performance optimizations and also when values from one
database must be merged with values from another database. Since ImmediateQueries signify that part of the
query calculation should be performed in Smalltalk, we can present a unified query model that can straddle
several databases without the developer needing to write special code.

27

A single SQL statement is represented by a set of QueryObjects . The SQL statement above is shown using
QueryObjects in Error! Reference source not found.. Both the SelectionQuery and the ProjectionQuery also
have QueryExpress ions which are not shown.

Figure 22 shows the QueryObjects object diagram. The query operations have been split-out under a
WrapperQuery which defines some common behavior for all operational queries. Also, the queries that need a
QueryExpression have been further split-out under ExpressionWrapperQuery .

QueryObjects support a protocol to retrieve values from the database through the value, valueIfAbsent:,
values, and valuesAsObject messages. Both the value and valueIfAbsent: messages expect to return zero or one
row from the database whereas the values and valuesAsObjects can return zero or more rows. If value or
valueIfAbsent: query returns more than one row, then an error is raised. The valuesAsObjects message is used
when you wish to return the values from the query as Smalltalk data model objects, and not as arrays.

ProjectionQuery
query

SelectionQuery
query
dependents

TableQuery
tableName
dependents

time_cards

Figure 21 - Dynamic structure of QueryObjects

4XHU\2EMHFW

value, values,
valueIfAbsent:,
buildQuery, …

7DEOH4XHU\

tableName
fieldNames…

:UDSSHU4XHU\

'LVWLQFW4XHU\

isDistinct

([SUHVVLRQ�4XHU\

expression

dependents
4XHU\9DOXH

query

5HQDPLQJ4XHU\

fieldNames

@@, fieldNames

,PPHGLDWH4XHU\

values

2UGHU4XHU\

orderByBlock

3URMHFW4XHU\

answerBlock

*URXS4XHU\

groupByBlock

6HOHFWLRQ4XHU\

selectBlock

-RLQ4XHU\
leftQuery

rightQuery

Figure 22 - Object diagram for QueryObject

28

In addition to the value retrieval protocol, there are also methods that return fields from the query so that they
can be used to create QueryExpress ions . There are two main methods that are used for this support: @@ and
fieldNames. The @@ message returns a QueryExpression that represents the field for argument name, and
the fieldNames message returns the list of field names that are available to the query.

There is also several "helper" methods that are defined by QueryObjects . These methods allow you to create
new QueryObjects based on the receiver. For example, you can join two query objects together by using the
join: message.

In addition to the public protocol for retrieving values, creating QueryExpression , and creating new
QueryObjects , there is also a private protocol for converting the QueryObjects into SQL by interpreting
them. The main method that builds the query is the buildQuery Template Method in QueryObject . It uses the
answerBlock, selectBlock, orderByBlock, and groupByBlock methods to help build the query. Each of these
build specific parts of the query.

4.6 QueryExpressions

As mentioned in the previous section, QueryExpress ions specify the expressions for the different parts of the
SQL query. A query such as

SELECT employee_id, SUM(hours)
FROM time_cards
WHERE (date < ‘1/1/98’) AND (date >= ‘1/1/97’)
GROUP BY employee_id
ORDER BY employee_id

has four expressions (the FROM line is formed from JoinQueries not expressions). Looking at each expression
closely we see that they are almost in a Smalltalk syntax. Renaming a few of the logical operators to their
Smalltalk equivalent (e.g., AND → &), we can convert everything except for the functions. Functions with one
argument are easily converted to unary messages, and functions with more arguments are converted to
keyword messages. Once we convert the functions into messages, we see that each expression is a series of
message sends to a field in a table. Therefore, we can represent each expression as a parse tree of message and
field nodes. Since queries can also refer to constant values, we also need parse nodes for constant values. These
nodes can either hold a constant such as 100, or hold a ValueModel which holds the constant. If the value node
holds a ValueModel , then when the query is evaluated, the current value of the ValueModel is used.

4XHU\([S

valueUsingMapping:

)LHOG4(

field
valueUsingMapping:

0HVVDJH4(

selector
valueUsingMapping:

5HQDPHG)4(

valueUsingMapping:

dependents
4XHU\2EMHFW

receiver
arguments

9DOXH4(

value
valueUsingMapping:

expression

Figure 23 - QueryExpression's object diagram

29

Error! Reference source not found. shows the object diagram for QueryExpress ions . In addition to the three
types of parse nodes, there is also a RenamedFieldQu eryExpression class that is used together with the
RenamingQuery . Since each field of the answer of a RenamingQuery can refer to many fields of its wrapped
query, we need a reference to the expression that created that field. A RenamedFieldExpressionQuery holds
onto the original expression for the renamed field. For example, given the query above, we might want to
rename the fields of the answer to be “employee_id ” and “hours_worked ”. For such a query we would
need two ReanmedFQE’s one for the “employee_id ” expression and one for “SUM(hours) ” expression.

As an example of the runtime configuration of the QueryExpress ions , Error! Reference source not found.
shows the expression for the WHERE clause (i.e., the expression that is used by the SelectionQuery).

There are three different protocols for QueryExpress ions . One is used for easily forming the expressions. It
consists mainly of a redefinition of the doesNotUnderstand: message. This makes it easy to construct the parse
trees simply by executing Smalltalk code. Whenever the doesNotUnderstand: message is received, the
QueryExpression constructs a MessageQueryExpression with itself as the receiver. Although the
doesNotUnderstand: mechanism can handle most messages, there are a few that must be overridden since they
are defined by Object (e.g., isNil).

Another protocol is responsible for converting the expression into SQL code. Although we could generate our
own SQL code, we rely on the VisualWorks Lens framework to generate it for us. Since we use the Lens
framework, this protocol consists of only one message: valueUsingMapping:. This returns the Lens object that
is equivalent to the expression, since the blocks used in the Lens queries are similar to our QueryExpression ,
the valueUsingMapping: method simply evaluates the QueryExpression in the context needed by the Lens
blocks.

The final protocol supports the Observer pattern. Since QueryExpress ions can also have ValueModels , they
need to update their dependents when they change. These dependents can either be other QueryExpress ions
or QueryObjects . Whenever an expression changes, the query that it is contained in must be re-computed.

MessageQE
receiver
arguments
selector → #&

MessageQE
receiver
arguments
selector → #<

MessageQE
receiver
arguments
selector → #>=

FieldQE
field → ‘date’

ValueQE
value → 1/1/98

ValueQE
value → 1/1/97

Figure 24 - Dynamic structure of QueryExpressions

30

4.7 Selection Criterion

A financial application queries a relational database to extract data for financial reports. Usually users of the
application want to set constraints and view the data satisfying the restriction. Therefore, the queries need to
depend on user constraints.

SelectionCriterion is an object connecting queries and a user interface for specifying constraints.

4.7.1 Example

We consider an example from the Aurora financial model application (see Figure 25). In the application users
select a list of product families, for which they want to view the data, the period of time they are interested in,
and, possibly, the kind of records(internal sales, effect of internal sales).

The selections a user can make map to value models within the model of the interface, SelectionCriterion . In
this case we have the following value models:

• familyList
• isInternalSales
• isEffectOfInternalSales
• startingDate
• endingDate

4.7.2 Implementation

A usual way of implementing SelectionCriterion is to have one instance variable for each of the value models.
However, this approach requires a new class to be created for each new selection interface.

Instead, we would like to have one SelectionCriterion class to work for every selection interface. Therefore,
we use a dictionary of the value holders as an instance variable in SelectionCriterion . In the dictionary each

Figure 25 - Aurora Selection Box

31

value holder is assigned a name(key in the dictionary). The name is then used for accessing the corresponding
value holder(see examples in Specifying Selection Criterion).

Since the value holders are value models, they can be used in query expressions. The query expressions will be
then dependent on the value holders. The queries that use the query expressions will also depend on the value
holders, and, hence, be recalculated whenever the value holders change.

4.7.3 Query Specification

A problem appears, however, when one tries not only to specify the queries, but also save them in a database.
Since value holders are transient objects, it makes no sense to store them in a database.

We solve the problem by have the query specifications use not the value holders themselves, but their names
in SelectionCriterion . Then the queries retrieved from the database during runtime look up corresponding
value holders in selection criterion by their names, use them to make query expressions, and become
dependent on them.

4.7.4 Selection Interface

SelectionCriterion also contains the name of the selection interface class. For example, SelectionBox
represents Aurora financial model selection interface, which is depicted above.

One could also automatically build the interface from the specifications of a particular SelectionCriterion .
There are several problems with this. First, it is hard to layout nicely widgets for value holders without putting
constraints on the value holders. Second, there may be widgets not corresponding to any of the value holders.
Third, some of the value holders need not be displayed. Therefore, a programmer will still have to modify the
selection interface.

Figure 26 - Specifying Selection Criteria

32

4.8 Specifying Selection Criterion

The figure below presents the structure and the process of constructing SelectionCriterion for a
financial model application.

As shown, an instance of SelectionCriterion has a dictionary of value holders(selections). A key in the
dictionary is the name of the corresponding value holder. The key is also the name of the method called to

access the value holder. For example, to access value holder whose key in the dictionary is "familyList", one
simply calls selectionCriterion familyList, where selectionCriterion is an instance of the SelectionCriterion class.
The class of a selection held by a value holder as well as its initial value at the time of financial application
startup is specified using SelectionCriterionEditor . A view of SelectionCriterionEditor is shown below.

Figure 27 - SelectionCriterion Structure

33

There are several conventions for specifying the initial value in SelectionCriterionEditor .

1. If the type of the value is primitive (Number, Boolean, String, Symbol), the initial value is to be entered in
the input field.
For example, false is entered for the selection isInternalSales whose type is Boolean.

2. If the type of the value is Timestamp , the initial value is specified by the name of an initialization
method on the class side of the Timestamp class.
For example, entering yearStart for the initial value of the startingDate selection specifies that
"Timestamp yearStart" will return the initial value for the startingDate selection.

3. In other cases, it is assumed that the type of a selection is a kind of Collection. That is, it needs to be
initialized with a list. This is done by specifying in the initial value field the name of a query stored in
the ReportQuerySpecs table. At the system startup, the query will be executed and the corresponding
selection will be initialized with its results.
For example, we specify familyQuery as the initial value for the familyList selection.

The queries referenced as initial values are specified declaratively using the query model editor. The query
model editor provides an interface for constructing complex queries from simpler ones. The queries are then
stored in the database and retrieved as need for them arises. Since queries comprise a significant part of
business logic, such treatment makes it possible to modify and construct new business models while
preserving application code intact.

Figure 28 - SelectionCriterionEditor Editor

34

4.9 FMState

ReportValues often need access to “global” information about other ReportValues . These objects keep this
information accessible by keeping a reference to a FMState object.

The state object is created by the security module when all of the security checks have passed correctly. The
state is then passed to the startup window (DuPontModel , FMEditor , etc.). The startup window passes the
state the each drill-down, and each drill-down passes it to any window it creates. That ensures that window
will have the state information, if needed.

A FMState holds a variety of types of information. To keep the information more manageable, it is stored in
four different namespaces. The namespaces are values, selectionBox, windows, and applicationInfo.

values: This is where the business logic is cached. Although values is actually a dictionary, it is the
default namespace for a FMState . For example, state netSalesValues will search for
#netSalesValues in the values dictionary. This trick uses Smalltalk’s doesNotUnderstand:
mechanism and greatly improves code readability, but is not necessary part of an FMState
implentation.

windows: This keeps a list of all windows currently open for that session. These windows are listed in
under the Windows menu of a CatModelWrapper . This lets the user easily just between windows
of the same running application.

applicationInfo: This stores the ApplicationInfo object selected in the CatLoginDialog.
selectionBox: This stores the SelectionCriterion object for this state’s session.

4.10 ApplicationInfo

Not all of the application’s description can be put in the database. The data which tells how to setup security
is needed before a connection to the database has been made. Also the location of the database and the name
of the data model are needed to make the connection to the database. Finally, if something goes wrong, the
user will need to know the system administrator’s name and phone number. This data is stored in an
ApplicationInfo .

In the CatLoginDialog , the user selects which ApplicationInfo to use. This startup data is loaded from a
configuration file stored on disk. This file is created by the system administrator through the SecurityAdmin
tools, and it is encrypted to prevent malicious users from tampering with the file by hand.

During the login process the CatLogin security module store additional important information in the
ApplicationInfo . Examples include a QueryDataManager , the user’s list of editable families, and the user’s
login name.

After the login process the ApplicationInfo is passed to the FMState for future access. ApplicationInfo ’s
values are set up as a namespace so the code state applicationInfo username looks up #username in the the
ApplicationInfo ’s values

4.11 Sessions

Sessions are used to hide data from many simultaneously running applications while sharing the data among
many objects in one other application. This is achieved by passing a reference of the session object to every new
object in the same session which might need it. In the financial model, FMState objects serve as session objects

Using the state in this way involves some tradeoffs.
Drawbacks:

35

• The code is more complex because the session must be passed around to each object that is created
instead of having the code refer to a global location.

• Passing the whole session around means some objects have access to extra information which they do
not need.

Benefits:
• The user can run multiple applications simultaneously. This is achieved because the “global”

information for a running application is always stored locally. This allows each running application to
have its own private “global” information, shared throughout that application.

• The user can have multiple sessions of the same application running simultaneously. Each has
independent, local data.

• Passing the whole session simplified the interface between classes. Otherwise, each value that is need
by a new object, plus the each value needed by objects which the new object will create, have to be
passed individually to the new object.

In the financial model, a session is created whenever a user successfully logs in for particular application. A
user can open multiple sessions for the same application by specifying a new SelectionCriterion . A new
FMState will be built for the new selection and the old state’s ApplicationInfo . The windows for the new
FMState will be empty and its values will be re-queried from the database. This way, the new FMState holds
all of the data for the new session. A user can also open multiple sessions for different applications simply by
going through CatLogin again.

Session pattern in the financial model some pitfalls which are not necessarily drawbacks. They are just things
to be careful about when applying the pattern.

• Since classes like QueryObject are application independent, they should not be constrained by adding
a state instance variable. If information from the state’s ApplicationInfo is needed, then that
information must be made truly global. Since this information is normally only used when saving
query specs to the database, this causes the restriction of specifying only one application at a time. An
alternative solution is to make an application specific extension which takes the necessary information
as arguments.

• In any case, the QueryObjects must be created specifically for the QueryDataManager stored in the
application’s state. This means the creator must know the current session and must call a different
instantiation for the QueryObjects .

4.12 Namespaces

Namespaces are used to separate information. Typically, a namespace will hold a set of information that has the
same type, is used together, or is created by the same object. Namespaces are an organizational tool that put
conceptual walls between objects which might be indistinguishable or otherwise confusing if stored together.
Sometimes namespaces simply prevent a naming conflict so multiple, unique objects can share the same base
name. For example, “NetSales” could refer to a window, a query, or a set of values, depending on which
namespace is searched.

This is achieved by storing the values in separate dictionaries. Optionally doesNotUnderstand: can be
redefined. There are several tradeoffs with this technique.

Drawbacks:
- The code is misleading. In the example below, in appears that the ApplicationInfo has a username:
method, when actually doesNotUnderstand: is actually catching the exception.
- Its not immediately clear which values will be put in a namespace. This information is clear when
instance variables are used.
- There is no guarantee that only relevant items are put in the namespsace.
- doesNotUnderstand: incurs a minimal performance overhead. The performance is most likely too
small to be an issue, however.

36

- Items which have names equivalent to important system messages cannot be put in a namespace
unless values at:put: is explicitly used.

Benefits:
- The code is much more readable.
- All of the drawbacks can be avoided by using a dictionary without redefining Smalltalk’s
doesNotUnderstand: for the namespace object.
- The code is more flexible. If more information needs to be stored, it can be put in a namespace without
writing new code for the object holding the namespace. This single benefit is the principle reason for
using this pattern. Namespaces are the solution for a flexiable, dynamically changing system in which
many values have to managed.

In the financial model, a FMState holds four namespaces: values, windows, applicationInfo, and selection. Each
namespace is implemented as a dictionary. Undefined messages sent to the object which hold the namespace are
forwarded to the dictionary. This makes the code more readable (state applicationInfo username: ‘jack’
instead of state applicationInfo values at: #username put: ‘jack’).

4.13 SummaryReport Framework

The SummaryReport Framework uses the Model-View-Controller pattern [BMRSS 96]. This framework
provides an easy way to build a spreadsheet-type report for viewing high-level summaries of the transactions

You specify the list of values, label, columns to group on, columns to sum on, formats, alignments, extra
calculated columns. A query can also be provided that is automatically converted to the list of values.

Given the above, a row-column report is generated with the necessary constraints for automatically updating
itself if the query or values it is dependent upon changes. This spreadsheet allows for individual rows to be
selected, columns to be resized, ordering of columns, and allows for printing. You can also add pop-up menus
to get a desired action for a specify row.

The printing package does nice printing with headers, footers, page-numbers, smooth column/row breaks.

There are three classes that collaborate to make it work. SummaryReportModel, SummaryReportView, and
SummaryReportController. The view and controller classes are just like the normal view and controller from
MVC in that the controller handles input and the view displays it. The model of a SummaryReportView is a
SelectionInList.

The SummaryReportModel is an ApplicationModel that contains a view holder for the SummaryReportView.
It also contains several support methods for accessing menus, printing, etc.

What happens is that the SummaryReportView is created using a ReportSummarySpec. This creates the
summary rows that will be displayed. A RerpotSummarySpec contains all of variable parts specified above.
This gets pluggged into the SummaryReportModel for later display.

The view lazily creates the controller when it is needed. Once the view is opened by displaying the
SummaryReportModel’s window, the models values are drawn on a GraphicsContext using the standard
MVC provided by VisualWorks.

4.14 Graphing Framework

This framework extends the VisualWorks Business Graphs to dynamically display any two-dimensional
collection of numbers in graph form. In addition, the labels for the X and Y axes must also be given (the Y axis
labels are the legend). In addition to this basic feature, there are several extensions.

37

1. Create a dependency between the graph and the collection, so that when the collections values change,
the graph automatically updates itself.

1. Pass an entire table instead of a collection of values, in which case the dependency between the table
and the graph is set up automatically.

1. Display the results of a query in a graph. Again, the dependency between the query and the graph is
set up automatically.

1. Display the results of a query for each individual month. The dependency is set up automatically.

Several classes handle the graphing framework. TableGraph handles the graph display. It is able to handle
the first two features listed above. This class holds another class called GraphHolder as a subcanvas, which in
turn holds the VisualWorks graphics view. TableGraph makes a dynamic version of the VisualWorks graphics
package. Because the package requires the specifications of legend, type of graph, legend placement, among
other things, to be determined as part of the spec, the specifications cannot change. TableGraph allows all
these features to be changed at run time.

QueryGraph is a subclass of TableGraph . It displays the graphs that are calculated through GraphMaker ,
which makes a graph that is dependent on element specs, which in turn are dependent on queries.
GraphMaker handles the last two features above. The GraphMaker holds a two-dimensional collection of
block values to display. It is also possible to perform simple arithmetic operations on GraphMaker . The values
of the two GraphMakers must have the same dimensions

Its subclass, SingleGraphM aker , gets the value from the result of a set of element specs. The resulting values
of each element spec is on the X-axis. Each element spec should return a group of values. The group should
match the Y-axis. MonthlyGraphMaker is a subclass of SingleGraphM aker that must use one element spec
whose value returns the date of each row along with the value to graph. Based on the current selections of date
in CatState , it calculates the values for each month. The X-axis is ordered by the months.

CompositeGraphMaker is the result of applying arithmetic operations on GraphMaker .

4.15 DetailedReport Framework

This framework handles the display of the lowest-level query, where each row of the tables of the database is
displayed. Its features include:

1. Display the rows returned from a query.
1. Let the user edit the rows.
1. Before letting the user change the rows, pop up a dialog that asks the user to specify some information.
1. Search for a string in all the data, just specific columns.
1. Sort by a column.
1. Go to the nth row.

DetailedTable displays the rows returned from a query. It actually has all the methods for row editing as well,
but they are turned off by default. It does not query all the rows at once, but more rows are obtained as the
scrollbar is pulled down. The user can specify the number of rows to return. The information that the detailed
table uses is passed through a class called QueryDescription .

The subclasses tend to be somewhat query specific. Each one assumes that certain fields exist in the query.
IncurrenceRatesTable is used for incurrence rates tables. It allows the rows to be edited.
EditableDetailedTable , on the other hand, is a more general class for editing rows of tables.
SimpleErrorsTable , on the other hand, is more extensive because it not only edits the original table, but it also
creates a row in the error table corresponding to the original table. It is assumed that the error table has at least
all the fields of the original table. DialogErrorsTable is even more extensive because it requires the user to
enter some information which will be stored in the error table along with the original row information.
ErrorCorrect ionTable does the reverse of DialogErrorsTable by displaying an error table, and when a row is

38

edited, the error row is deleted, and the edited row is written to the non-error table. The error table's fields
must have all of the fields of the non-error table.

4.16 Printing Framework

The Printing framework is design to print up all of the reports except the Summary Reports which know how
to print themselves.

PrintFileInterface is a standard print dialog that is opened when the end-user wants to print something. It
collects some of the basic information from the user about page-numbering, header, footer, orientation and
then calls PrintFile to print the view. PrintFile does the printing work. It takes the model requested to print,
the page orientation, the print medium, the title, the footer, the report date, and possibly disclaimer and
filename for printing. PrintFile then initializes everything and prints on the specified graphics context which
could be a printer device or file

4.17 Testing Framework

Testing framework is designed to perform testing of DuPont values and different level "drill-downs". In the
core of the framework is the TestObject class. The class keeps both TestCriterion, which virtually stores a
SelectionCriterion instance, and a TestData collection, a collection of TestData subclass instances.

To test new kind of report values, it is necessary to perform the following operations:

• Create a subclass of TestData. The class instances should know how to create themselves from the
current state of the financial application.

• In the default portfolio create a test TopTest for testing the new TestData subclass.

Aside from the TestObject, TestData subclasses, and TestCriterion, there are several support classes:
TestSelectionDialog, EqualityTestInfo, TestResultViewer. They are usedfor selecting tests from a TestData
collection, storing test result information, and viewing test results, respectively. See each class for detailed
descriptions.

5. Security Module

The security module follows some specified requirements to restrict access to the financial data. Different
applications could have different security requirements, so the security modules was designed to make it easy
to plug in additional security checks and easy to turn some security features on and off. The default security
checks include forcing the user to enter a new password after a certain period of time and disabling access
from a machine or account after a certain number of login. After passing the active security checks, the
security module starts the process of extracting all of the information from the database and organizing it into
independent sessions.

5.1 Security Requirements

This list provides some of the types of security which Caterpillar was looking for in the financial model.

1. Passwords must be at least five characters long.
1. Passwords should not be viewable in clear text form.
1. Passwords should expire after a specified period, forcing the user to select a new password.
1. The new password should not be a repetition of any of the user’s recently used passwords.
1. Users can only view a specified list of products.
1. Users can only edit a subset of the specified list of products.
1. A user’s account is disabled after 3 consecutive failed login attempts
1. Login is only possible from specified machines.

39

1. A machine is disabled after 3 consecutive failed login attempts.
5.2 Components

FMLogin manages the security and login process.

Several user interfaces for system administration and user login have been designed with security in mind.
They are in the CAT-SecurityGUI category. ChangePasswordDialog , NewUserDialog , FMLoginDialog ,
ValidNodesDialog , and UserPropertiesDialog are some examples of security support user interfaces. Most
are used with the SecuirtyAdmin tool or during the FMLogin Process.

A FMState is created at the end of the login process. It serves as the basis for separating sessions and sharing
data among a session’s ReportValues .

The ApplicationInfo class stores all of the information necessary to configure the security process, connect to
the database, and start the application. It also includes some extra information such as the name and phone
number of the system administrator. Because this information is needed before a connection is made to the
database, it is persistently stored in .cfg files in a specific configuration file directory.

The Cryptor prevents users from changing ApplicationInfo configuration files and security tables by hand. It
has encrypt: and decrypt: methods which take a string as input and return encoded and decoded strings,
respectively. Using this class forces administrators to use the Administrator Application to make changes.

Several database tables have been added to the reusable part of the data model to persistently store user and
machine specific information related to security. They are: Accessible_Products,
Editable_Products, Old_Passwords, Cat_User_Prof, and Valid_Nodes .

5.3 How security requirements are met
1. Passwords length is required to be > 5 by the ChangePasswordDialog and NewUserDialog .
1. FMLoginDialog , NewUserDialog , and ChangePasswordDialog use password text fields that

display asterisks instead of what the user is typing. Old passwords are processed by the Cryptor
class before they are written to the Old_Passwords table. Database account passwords are used
for current passwords, so they have the visibility protection provided by the database.

1. ApplicationInfo stores a passwordAgeLimit. If the change_date in the user’s Old_Passwords
record is more than passwordAgeLimit days old, FMLogin opens a ChangePasswordDialog to
force the user to change the password.

1. The new password is compared to the user’s 12 most recent records in Old_Passwords . The
password change is only successful if the password is unique.

1. SelectionCriterion generates the list of families for the selection box from the user’s records in
Accessible_Families . All querying is based on a SelectionCriterion and thus is restricted to
this list of families.

1. Detailed windows are the only places where data can be saved to the database. Before an editable
detailed window is opened, it checks to make sure all of the selected families are in the user’s
Editable_Families record. If not, the window is opened in read-only mode. state isEditable
determines if the editable families are a subset of the selected families.

1. A user’s Cat_User_Profile record keeps a list of login_failures which is cleared when a
login is successful. If login_failures is greater than 3, the enabled column is set to false and
the current time is stored in the disabled_time column. The user’s account will be
automatically re-enabled after a specified elapsed time.

1. CatLogin makes sure the machine’s IP address is stored in the Valid_Nodes table.
1. A machine’s Valid_Nodes record keeps a list of login_failures which is cleared when a login

is successful. If login_failures is greater than 3, the enabled column is set to false and the

40

current time is stored in the - column. The machine will be automatically re-enabled after a
specified elapsed time.

5.4 Other Requirements

 Users can run several, possibly different, applications, in the same image. Each application executes
independently.

5.5 Security Data Model

There are five security tables in the data model: Accessible_Products, Editable_Products,
Old_Passwords, Cat_User_Prof, and Valid_Nodes .

Accessible_Products: username(FK), products
- This table is used to restrict which products or families a user can select and view.

Editable_Products: username(FK), products
- This table is used to restrict which products or families a user can edit.

Old_Passwords: username(FK), password , change_date
-This table is used to force the user to create new passwords after a specified time has passed

FM_User_Prof: username, enabled, disabled_time, login_failures
- This table is used to temporarily disable user accounts

Valid_Nodes: node_address, enabled, disabled_time, login_failures
- This table is used to temporarily disabled access to the data model from a machine

Editable_Products
username (FK)
products

Accessible Products
username (FK)
products

FM User Profile
username

enabled
enabled time
login failures

Old Passwords
username (FK)
password
change date

Valid Nodes
node_address
enabled
disabled time
name
loginfailures

 Figure 29 - Security Data Model

41

Figure 30 - Security Admin

5.6 SecurityAdmin Tools

This set of tools is available to any user with a ‘dba’ role. With these tools, the security administrator can:

1. Create a user (NewUserDialog)
1. Remove a user
1. Enable a user’s profile
1. Edit a user’s roles (UserPropertiesDialog)
1. Edit a user’s viewable and editable products (UserPropertiesDialog)
1. Add, remove, and enable a machine (ValidNodesDialog)
1. Grant role access for new tables (a sql script)
1. Create public synonyms for new tables (a sql script)
1. Create/edit/remove application initialization files (ApplicationInfoDialog)

42

Figure 31 - UserPropertiesDialog

5.7 FMLogin Process

The login process involves several stages. A failure at any stage raises a signal to stop. Depending on the
timing and severity of the cause, the login process could be halted immediately, the user’s account or the
machine’s access privileges could be disabled, or the process might simply restart.

FMLogin first locks itself as a critical section. Only one FMLogin security verification process is permitted at
a time. After the security verification has completed (successfully or unsuccessfully), another login can be
attempted. The process then proceeds to a login failure loop, other security and the financial model startup
routines.

43

Test Failure Count

Lock

Startup

Unlock

done

Other Security

halt

failed

ok

ok

failed

Figure 32 - Login Process

Figure 33 - FMLoginDialog

44

Initially, the user sees a dialog window for logging in (FMLoginDialog). The Application is the name of the
ApplicationInfo configuration file to load. Many applications could support a production and a test database,
so easy access to two databases is provided in the login dialog. The user must also type in a valid user id and
password.

Test Failure Count

Password Correctness Security
Increase Fail

Count

Admin RecoveryApplication Setup

Login Window

halt

cancel

ok

ok

abort

ok

abort

abort

ok

ok

Figure 34 - Login Failure Loop

After entering this information, FMLogin attempts to setup the system and login with the username and
password. After three consecutive failures, the login process aborts immediately.

45

Build data model

ok

abortFind database

Read application config file
missing

ok

ok

tables not found

found

Figure 35 - Application Setup

Node security

Profile security

Role security

ok

Password age security

abort

not updated

ok

ok

ok

ok

disabled

disabled

fails

Figure 36 - Other Security Checks

46

Application setup read a .cfg file from the config directory and stores the information in an ApplicatoinInfo .
Then it verifies that some tables exist in the database. If the database’s data model has changed, it will rebuild
the client’s data model to match

.At this point, the user has a successful database connection. During the next stage of the login process,
FMLogin tries employs other security techniques to valid the user before giving them full access to the
financial model. The ApplicationInfo has a parameter which determines which checks are performed

disabled time

re-enable node

enabled node

valid node

ok

abort
no

yes

yes

ok

has passed

hasn’t passed

Figure 37 - Node security

Node security ensures only designated computers can keep a connection to the database. (A node is an IP
address). This check is done by first retrieving the record for node from Valid_Nodes database table. If the
node is not in the table the login process is aborted. If the retrieved record’s enabled column is false, the
disabled time is checked. The node can be re-enabled if enough time has elapsed since the disabled time. This
has the advantage of providing disrupting a hacker’s attempts while not necessarily forcing a system
administrator from intervening to re-enable a node. If not enough time has passed, abort the login process.
When a successful login occurs, login_failures is reset to 0.

disabled time

re-enable profile

abortprofile exists

enabled profile

ok
ok

no

yes

yes

no

has passed

has not passed

Figure 38 - Profile Security

47

Profile security is similar to node security except that instead of disabling machines, it disables a user’s
account. The user’s profile is retrieved from the FM_User_Profile table. Otherwise, this security check
behaves exactly like Nodes security.

ok

valid role abort

3c

Role Security

Figure 39 - Role Security

Role Security allows different types of users to access different parts of the financial model. Roles are actually
implemented by Oracle, but the financial model extends the roles’ purpose while limiting the roles which
actually play a part in security. The four primary roles are: dba, accountant, modeler, and developer. The dba
can read, write, and change any data model and can use the SecurityAdmin tools. The developer can read,
write, and change any of the data models. The modeler has read and write the business logic and GUI
specification data models and can run the FMEditor . The accountant can read the business login and gui
specification models and can read and write the business unit specific and security data models. Write
privileges are constrained by the application (only personal information in the security model, only editable
products in the business unit specific model). The accountant can also run the financial model.

Other security checks can readily be added at this point of the login process.

ask for new passwordpassword expired

update old and new password

compare with old passwords

ok

ok

password is new

password = old password

yes

ok

no

Figure 40 - Password Security

If the password has expired, open a ChangePasswordDialog . If the new password is listed for that user in
the Old_Passwords table, force the user to select a new password by reopening a ChangePasswordDialog .
When the new password is entered add the old password to the Old_Passwords table and set the new
password for the user.

48

create state for application and username

create startup window for state

login completed

Figure 41 - Financial Model Start Up

At this point, FMLogin has finished its security checks. Using information from ApplicatoinInfo and a user’s
selected active role, FMLogin creates a FMState passes it the startup class (DuPontModel, FMEditor, or
SecurityAdmin), opens the startup class, and unlocks itself.

6. Future Work

There are many extension to the domain-specific visual language that could be added. For example, you might
image that you want to be able to reuse tables, element specs, and report values more globally. This would
provide for a finer grain of development. Thus, the developer can make a set of ReportsValues used in
different applications but associate different menus, calculated columns etc. They could also create queries
that can be reused in different ReportValues. Of course there are tradeoffs with this as the developer will have
to know more and try to keep track of global information during the design.

We also took into consideration that the application could be distributed. We believe that the architecture
allows for this, but there may be some needed changes to allow for distributing the business logic correctly,
especially if you want to share these and have views automatically updated for multiple users when the
business logic or GUI descriptions change.

This application has logically and architecturally been developed as a three-tiered application. The current
implementation in Smalltalk only used two real tiers since we could easily let the business logic and GUI’s live
in the same place. However, it would be easy to either use Gemstone or DST and move the ReportValues to a
middle-tier.

7. Summary

What we have described here is the architecture and design of a domain-specific visual language for building
financial models. There has been many reusable components integrated into the system. The overall
architecture is language independent and could be developed using any general purpose language desired.

Our architecture was developed around a object-oriented framework written in Smalltalk [Goldberg & Robson
1983]. Smalltalk allowed us to quickly develop working prototypes, and get immediate feedback from our
users. Since VisualWorks is robust enough for production use, these prototypes could evolve into production
applications.

49

8. Patterns
The following is an incomplete list of the patterns that being used in the Financial Modeling Framework.

All of the Reports patterns by Brant and Yoder
Sessions/Namespaces patterns by UoI to be developed
Adapter by GOF BETWEEN VALUES AND QUERY OBJECTS
Builder by GOF REPORT VALUES BUILD QUERIES AND REPORTS AND VALUE-MODELS
Command by GOF QUERY OBJECTS ARE SOMEWHAT COMMANDS
Composite by GOF QUERY OBJECTS and POSSIBLY THE GUIs
Decorator by GOF QUERY OBJECTS
Factory Method by GOF REPORT VALUES
Interpreter by GOF REPORT VALUES AND QUERY OBJECT
Observer by GOF QUERY OBJECTS
Singleton by GOF DONE BY STATE SOMEWHAT...SINGLE ACTIVE STATE OBJECT and a SINGLE

ACTIVE SECURITY MODULE
Patterns by Kent Beck -Used throughout....just good smalltalk patterns
Template Method by GOF QUERY OBJECTS REPORTVALUES
Visitor by GOF DuPont Model to build code and write to database....walks through interface widgets.
Constraints by Johnson USED IN THE VALUEMODELS AND QUERY OBJECTS
Evolution, Architecture, and Metamorphosis patterns by Foote and Yoder
Some of the Selfish Class patterns by Foote and Yoder
Evolving Frameworks: A Pattern Language for Developing Object-Oriented Frameworks Authors:

Don Roberts and Ralph Johnson, University of Illinois USED DURING THE DESIGN AND
DEVELOPMENT OF THE SYSTEM

Checks by Ward Cunningham I believe we use patterns 1-6 of his paper.
Understanding ValueModels by Bobby Woolf
Null Object by Bobby Woolf and Ralph Johnson USE FOR NULLREPORTVALUES
Stars: A Pattern Language for Query Optimized Schema by Steve Peterson are patterns that we did use

in our data modeling of the business. We really don’t describe that in this paper but it was
done and might be interesting to note as a side-point especially when we talk about designing
a database for the company.

Ward Cunningham. “The WyCash Report Writer,” OOPSLA ’92 Workshop, “Towards an Architecture
Handbook.” http://c2.com/doc/ooplsa91.html DOING SIMILAR THINGS IN OUR
SUMMARYREPORTMODEL

50

9. References

[Brown & Whitenack 95] Kyle Brown and Bruce G. Whitenack. “Crossing Chasms - A
Pattern Language for Object-RDBMS Integration,” PLoP’95
Proceedings.

[Cunningham 91] Ward Cunningham. “The WyCash Report Writer,” OOPSLA ’92
Workshop, “Towards an Architecture Handbook.”
http://c2.com/doc/ooplsa91.html

[Foote & Yoder 95] Brian Foote and Joseph Yoder. “Evolution, Architecture, and
Metamorphosis,” PLoP’95 Proceedings.

[Brant & Yoder 96] John Brant and Joseph Yoder. “Reports” PLoP’96 Proceedings.

[BGL 96] Margaret M. Burnett, Adele Goldberg, and Ted G. Lewis. Visual
Object Oriented Programming, Concetps and Environments, Manning,
1995.

[BMRSS 96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal. Pattern - Oriented Software
Architecture, A System Of Patterns, Manning, 1996.

[Fowler 97] Martin Fowler. Analysis Patterns, Reusable Object Models, ,
Addison-Wesley, 1996.

[Foote & Yoder 96] Brian Foote and Joseph Yoder. “Attracting Reuse,” To appear in
PLoP’96 Proceedings.

[Goldberg & Robson 1983] Adele Goldberg and David Robson, Smalltalk-80:The Language and
its Implementation, Addison-Wesley, Reading, MA, 1983

[GHJV 95] Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1995.

[Johnson 92] Ralph E. Johnson. “Documenting Frameworks with Patterns,”
OOPSLA ’92 Proceedings, SIGPLAN Notices, 27(10): 63-76,
Vancouver BC, October 1992.

10. Appendix - The Farm Data Model

The farm data model was created as an example of our framework being used (see Figure 42). The farm data
model handles the financial transactions that would occur on a typical farm. To keep the model simple,
several assumptions have been made.

• All components of the farm are considered assets including the farm itself.
• The farmer and his family comprise the entire work force. The cost of any work done by an outside

party is related to the asset on which the work was done rather than to the individual or organization
providing the service.

• Income comes solely from the sale of assets.

51

• The only products produced are crops.

The collection of assets constituting the farm have been separated into four categories: Land , Crops ,
Supplies , and Capital_Goods . Each type of asset has an identifying field, an adjustment date, a quantity,
and a value. The identifying field allows for the categorization of the asset types. The adjustment date keeps
track of when the quantity or value of an asset has changed. The value field represents the total value invested
in all the assets with a given identification field as opposed to the unit value. The complete inventory of all
assets is kept in another table called Inventory . All data in Inventory can be accessed on a monthly basis.
Any time a transaction occurs involving Land , Crops , Supplies , or Capital_Goods , Inventory is
automatically updated.

The Supplies_Used table manages the depletion of supplies used in production. All supplies must be
directly related to the production of crops. This constraint simplifies handling the cost of using a supply and
attributing it to some plot_id . App_date is the date of application and qty specifies the amount of the
supply used. App_date provides a means of keeping a history of supply use. Qty is necessary for updating
the appropriate asset record and calculating the cost.

The Production table is very similar to the Supplies_Used only it keeps track of the amount crops grown
on a plot in a given season. Notice that crop_id is not part of the primary key so only one type of crop can be
grown on a given plot of land in any one season. This was done to keep the profit analysis based on a plot of
land simple. Any asset produced which is not sold becomes part of the inventory resulting in an increase in the
quantity field of the corresponding asset record .

Income is generated based on the sale of an asset. The Income table handles such transactions. The number of
assets sold with a common identification as well as the date of sale and total revenue generated is stored.

There are two types of costs modeled. The Period_Costs table stores the data pertaining to a cost which
occurs periodically such as taxes. The other type of costs, variable costs, is handled by the Var_Costs table.
The only difference in the data stored in the two tables is a quantity field (qty) inthe Var_Costs table. It
allows for the purchase of several assets at the same time. Costs can be either production or non-production
related. The type field determines which is the case. The dollars field represents the total cost in the case of
Var_Costs rather than the cost per qty .

52

Queries may be constrained by selection criteria chosen by the user. If the selection criteria is used, the queries
may be constrained by any combination of a crop_id, start_date, and an end_date.

Income Queries:

Income Generated from a crop_id from start_date to end_date.

SELECT sum(dollars)
FROM Income
WHERE asset_id = crop_id AND sell_date >= start_date

AND sell_date <= end_date

Income Generated from the sale of Supplies between start_date and end_date:

SELECT sum(dollars)
FROM Income,Assets
WHERE Income.asset_id = Assets.asset_id AND

Assets.type = ‘supplies’ AND Income.sell_date >=
start_date AND Income.sell_date <= end_date

Similar queries can be made for the sale of Land or Capital_Goods by replacing the Income table with
either Land or Capital_Goods.

Supplies
supply_id (FK)
adj_date

qty
value

Inventory

asset_id (FK)
inv_date

qty
value

Crops

crop_id (FK)
adj_date

qty
value

Supplies_Used

plot_id
app_date
supply_id

qty

type

Assets
asset_id

description
type

Production

plot_id
prod_date

crop_id
qty

Var_Costs

asset_id (FK)
vcos_date

type
description
qty
dollars

Period_Costs
asset_id (FK)
pcos_date

type
description
dollars

Income
asset_id (FK)
sell_date

qty
dollars

Capital_Goods

asset_id (FK)
adj_date

qty
value

Land

plot_id (FK)
adj_date

area
value

Farm Data Model

Plot used on

Supply used

plot harvested

crop produced

asset incurring cost

asset sold

asset incurring cost

asset held

Figure 42 - Farm Data Model

53

Total Income Generated from all sales between start_date and end_date:

SELECT sum(dollars)
FROM Income
WHERE sell_date >= start_date AND sell_date <= end_date

Cost Based Queries:

Production Costs from start_date to end_date:

SELECT sum(dollars)
FROM (SELECT asset_id, vcos_date, type, description, dollars

FROM Var_Costs
UNION ALL
SELECT *
FROM Period_Costs)

WHERE type = ‘production’ AND vcos_date >= start_date
AND vcos_date <= end_date

Non-Production Costs can be found by substituting the comparison of type against ‘production’ with ‘non-
production’.

Supply Costs for a plot of land, plot_id, between dates start_date and end_date:

SELECT max(Supplies.adj_date),
supplies_Used.qty/Supplies.qty*Supplies.value

FROM Supplies,Supplies_Used
WHERE Supplies.supply_id = Supplies_Used.supply_id AND

Supplies.adj_date <= Supplies_Used.app_date AND
Supplies_Used.plot_id = plot_id

GROUP BY Supplies.supply_id

