
COMPUTER ARCHITECTURE AND
ORGANIZATION: An Integrated Approach

PRACTICE PROBLEMS
(Solutions are at the end)

FEBRUARY 2007

CHAPTER 1 PROBLEMS

(1-1) Place the computing technologies in the proper chronological order corresponding to when they
were first introduced, from earliest to most recent:

• integrated circuits
• mechanical - machine powered
• mechanical - manually powered
• transistors
• vacuum tubes

CHAPTER 2 PROBLEMS

(2-1) The binary representation of the hexadecimal number 3B7F is (choose one):

(A) 0100 1001 1110 1101 (B) 0011 1011 0111 1111 (C) 0010 0100 0000 1010

(D) 0110 0011 1011 1100 (E) 1101 1100 1011 0101

(2-2) Convert the following numbers as indicated.

(a) (110101)2 to unsigned base 10.

(b) (−29)10 to two’s complement (use 8 bits in the result).

(c) (61543)8 to unsigned base 16 (use four base 16 digits in the result).

(d) (37)10 to unsigned base 3 (use four base 3 digits in the result).

(2-3) A computer with a 32-bit word size uses two's complement to represent numbers. The range of
integers that can be represented by this computer is:

(A) –232 to 232 (B) –231 to 232 (C) –231 to 231 – 1 (D) –232 to 23 (E) –232 – 1 to 232

(2-4) Computer A uses the following 32-bit floating-point representation of real numbers:

Mantissa ExponentS

31 30 7 6 0

Computer B uses the following floating point representation scheme:

Mantissa ExponentS

31 30 8 7 0

Which of the following statements is true with regard to Computer B’s method of representing
floating-point numbers over Computer A’s method?

(A) both the range and precision are increased

(B) the range is increased but the precision is decreased

(C) the range is decreased but the precision is increased

(D) both the range and precision are decreased

(E) both the range and precision remain the same

(2-5) (ref: Stallings, 1999) A normalized floating point representation has an exponent e with a
representation that lies in the range 0 ≤ e ≤ X, in excess q, with a base b and a p digit fraction. Note
the emphasis on representation, as opposed to value.

(a) What are the largest and smallest positive values that can be represented?
(b) What are the largest and smallest gaps?
(c) What is the number of representable numbers?

(2-6) Express -1/32 in the IEEE 754 single precision format.

(2-7) For parts (a) through (d), use a floating point representation with a sign bit in the leftmost
position, followed by a three-bit excess 4 exponent, followed by a normalized six-bit fraction in
base 4. Zero is represented by the bit pattern 0 000 000000.

(a) What decimal number is represented by the bit pattern: 1 100 010000?

(b) Show the bit pattern for the smallest non-zero positive representable number.

(c) Show the bit pattern for the largest positive representable number.

(d) There are a total of 10 bits in this floating point representation, so there are 210 = 1024 unique
bit patterns. How many of these bit patterns are valid? (Remember: 0 = 0 000 000000).

(2-8) Represent (107.875)10 in the IEEE-754 single precision floating point representation which has a
sign bit, an eight-bit excess 127 exponent, and a normalized 23-bit significand in base 2 with a
hidden 1 to the left of the radix point. Truncate the fraction if necessary by chopping bits as
necessary. Show your work.

CHAPTER 3 PROBLEMS

(3-1) Show the results of adding/subtracting the following pairs of six-bit (i.e. one sign bit and five
data bits) two’s complement numbers and indicate whether or not overflow/underflow occurs for
each case:

 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1
+ 0 0 1 0 0 1 + 1 0 0 1 0 1 + 0 0 0 1 1 1
------------- ------------- -------------

 0 1 0 1 1 0 1 1 1 1 1 0 1 0 0 0 0 1
- 0 1 1 1 1 1 - 1 0 0 1 0 1 - 0 1 1 1 0 1
------------- ------------- -------------

(3-2) (From Hamacher et al, 1990) Perform A×B and A/B on unsigned A=10101 and B=00101
manually. (Just use pen and paper; do not show the serial multiplication or division menthods.)

(3-3) Show how the unsigned serial multiplication method would compute M × Q where M = 10110
and Q = 01101. M and Q are unsigned numbers. For each step, describe in words what is
happening (shift left, shift right, add/subtract M or Q into product, set a bit, etc.), and show the
product (or partial product) for that step. (Note: Q is the multiplier and M is the multiplicand.)

Step # Product Action

 0 C=0 M=10110 Q=01101 Initial values _

 C A Q _

(3-4) Use the Booth algorithm (not bit pair recoding) to multiply 0110 by 0110.

(3-5) Use the modified Booth algorithm (that is, use bit pair recoding) to multiply signed numbers
010101 (multiplicand) by 110110 (multiplier).

(3-6) Use the Booth and bit-pair recoding techniques to multiply (-10 × -10 = 100)10.

(3-7) Boolean expressions are shown below for the difference diffi = (xi – yi) and borrow bi+1 outputs
of a full subtractor. The subscripts denote the relative position of a full subtractor in a ripple-borrow
subtractor:

diffi = xiyibi + xiyibi + xiyibi + xiyibi
bi+1 = xibi + xiyi + yibi

We can factor the second equation and obtain:
bi+1 = xiyi + bi(xi + yi)

which can be rewritten as:
bi+1 = Gi + Pibi

where: Gi = xiyi and Pi = xi + yi .

The Gi and Pi terms are referred to as generate and propagate functions, respectively, for the effect
they have on the borrow. When Gi = 1, a borrow is generated at stage i. When Pi = 1, then a borrow is
propagated through stage i if either xi is 0 or yi is 1. Create Boolean equations for b0, b1, b2, and b3 for
a borrow-lookahead subtractor in terms of Pi and Gi. Hint: Assume b0 = 0.

CHAPTER 4 PROBLEMS

(4-1) Which of the following operations does function baz in the ARC program shown below carry
out? The parameters A and B are passed to the function and returned from it are passed via the
stack. B is closer to the stack pointer than A. Circle one of these operations:

(A) min (A , B) (B) max(A , B) (C) addcc(A , B) (D) subcc(A , B)

(E) (A == B) <--- in this case, the result is a boolean, indicated by a nonzero result.

baz: ld %sp, 4, %r1

 ld %sp, 0, %r2

 orncc %r2, %r0, %r3

 addcc %r3, 1, %r3

 addcc %r1, %r3, %r4

 bneg foo

 st %r2, 4, %sp

 ba DONE

foo: st %r1, 4, %sp

 addcc %r14, 4, %r14

DONE: jmpl %r15, 4, %r0

(4-2) The memory map for a video game that can accept two game cartridges is shown below. Each
32-bit word is composed of four 8-bit bytes in a big endian format, just like the ARC.

Reserved for built-in
graphics routines

Plug-in game cartridge #1

I/O space

0

216 – 4

Stack pointer
System Stack

Top of stack

Bottom of stack

Screen Flash
Joystick x
Joystick y

224 – 4

223 – 4

32 bits

Address Data

224 – 1byte

������
������
������

Plug-in game cartridge #2
217 – 4

219 – 4

(a) How large can the stack grow, in bytes? (Leave your answer as an equation in powers of
two, e.g. 8 + 210.)

(b) When a joystick is moved, the horizontal (joy_x) and vertical (joy_y) positions of the
joystick are updated in memory locations (FFFFF0)16 and (FFFFF4)16, respectively. When the
number ‘1’ is written to memory location (FFFFEC)16 the screen flashes, and then location
(FFFFEC)16 is automatically cleared to zero by the hardware (the software does not have to clear
it). Write an ARC program that flashes the screen every time the joystick moves. Use the skel-
eton program shown below. The ARC instruction set is summarized at the end of the exam.

 .begin

 ld [joy_x], %r7 ! %r7 and %r8 now point to the

 ld [joy_y], %r8 ! joystick x and y locations

 ld [flash], %r9 ! %r9 points to the flash location

loop: ld %r7, %r1 ! Load current joystick position

 ld %r8, %r2 ! in %r1=x and %r2=y

 ld [old_x], %r3 ! Load old joystick position

 ld [old_y], %r4 ! in %r3=x and %r4=y

 orncc %r3, %r0, %r3 ! Form one’s complement of old_x

 addcc %r3, 1, %r3 ! Form two’s complement of old_x

 addcc %r1, %r3, %r3 ! %r3 <- joy_x - old_x

 be x_not_moved ! Branch if x did not change

 ba moved ! x changed, so no need to check y

x_not_moved: ! Your code starts here, about four lines.

 orncc %r4, %r0, %r4 ! Form one’s complement of old_y

 addcc %r4, 1, %r4 ! Form two’s complement of old_y

 addcc %r2, %r4, %r4 ! %r4 <- joy_y - old_y

 be loop ! Repeat

! This portion of the code is entered only if joystick is moved.

! Flash screen; store new x,y values; repeat.

moved:

 <— YOUR CODE GOES HERE

flash: #FFFFEC ! Location of flash register

joy_x: #FFFFF0 ! Location of joystick x register

joy_y: #FFFFF4 ! Location of joystick y register

old_x: 0 ! Previous x position

old_y: 0 ! Previous y position

 .end

(4-3) With regard to stack frames, a main routine (or method, for Java) is treated just like any other
routine or method. Show the stack frame for main() in the diagram below. Fill in the blanks for
the main() stack frame with one-word descriptions of what is stored in each location. Note that
there are many correct solutions (and many incorrect solutions too.)

(4-4) The instruction set shown below should be new to you. The ZERO instruction has been removed
in this version although its description is left in place so that you can understand its function. How can
the remaining instructions be used to implement the ZERO function on register 5? No memory storage
is to be used. Show the 16-bit object code instruction(s).

OPCODE

OPERAND FIELDS

DESCRIPTION

0 0 0 0 0 0 0 –– –– X Set contents of Result register to zero.

MNEMONIC

ZERO

0 0 0 0 0 0 1 X –– X Copy Operand A register to Result
register.

COPY

0 0 0 0 0 1 0 X X XADD

0 0 0 0 0 1 1 X X XSUB

0 0 0 0 1 0 0 X X XMULTIPLY

0 0 0 0 1 0 1 X –– XCOMP

0 0 0 0 1 1 0 X –– XINC

0 0 0 0 1 1 1 X –– XDEC

1 0 Destination –– Address Load Destination register with contents
of memory at location Address.

LOAD

1 1 Source –– AddressSTORE Store Source register in memory at
location Address.

Add Operand A and Operand B
registers, placing result in Result
register.

Subtract Operand B register from
Operand A register, placing result in
Result register.

Multiply the Operand A and Operand
B registers, placing the result in Result
register.

Copy the complement of the Operand
A register into the Result register.

Increment Operand A register by 1,
placing result in Result register.

Decrement Operand A register by 1,
placing result in Result register.

Operand A Operand B Result

0 0 0 1 0 0 0 –– –– –– Halt the processor.HALT

O
pcode

Source
O

perand A
Source

O
perand B

R
esult

7 bits
3 bits

3 bits
3 bits

N
O

T
E

: T
here are 8 registers in this architecture.

CHAPTER 5 PROBLEMS

(5-1) List the microinstructions that are executed in interpreting the ARC "st %r1, %r2, %r3"
instruction. Start with microinstruction 0. Just list the microinstruction numbers, not the code.

(5-2) Write the binary form for the microinstructions shown below. Use the value 0 for any fields that
are not needed.

1615: R[temp1] ← R[rs1]; GOTO 21;

 21: R[temp2] ← NOR(R[temp0], R[temp0]);

R
D

W
RCA B JUMP ADDRALU COND

A
M
U
X

B
M
U
X

C
M
U
X

60:

61:

(5-3) Microcode: An ALU that operates on 8-bit operands can be implemented with a read-only
memory (ROM) that behaves as a lookup table (LUT), in which the data and control bits are treated
alike. The block diagram shown below illustrates the external behavior of the ALU that we would like
to implement with a ROM LUT. The A and B lines are for the operand inputs, and the F lines (that is,
the control inputs) select the ALU function according to the truth table shown below. The Cin and Cout
lines are for the carry in and the carry out, respectively. The carry out is always 0 when an addition is
not taking place. The 8-bit output appears on the Z lines. Assume that a two’s complement
representation is used. Fill in the missing entries in the truth table below.
[HINT: The solution for the first row is all 1's for Z7 - Z0.]

0

0

1

1

0

1

0

1

NOR

Multiply

AND

Add

F1 F0 Function

ROM
LUT

8

8

Cin

1

2

Z78

Cout

1
Z0

...

A7

A0

...

D
ata out lines

B7

B0

...

F1
F0

A
dd

re
ss

 li
ne

s

F1CinB0B1B2B3B4B5B6B7A0A1A2A3A4A5A6A7 F0 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0 Cout

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 _ _ _ _ _ _ _ _ 0

_ _ _ _ _ _ _ _ 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 _ _ _ _ _ _ _ _ _

CHAPTER 6 PROBLEMS

(6-1) Translate the following Pascal code into SPARC (note: this is a variation of a problem from the
Tanenbaum Structured Computer Organization textbook).

/* Compute min of i and j */

function min (i, j: Int): Int /* i and j are parameters, min returns Int*/

var m: Int;

begin

 if i < j then m := i else m := j;

 min := m /* This is how a Pascal function returns a value */

end;

(6-2) Translate the single line indicated in the following ARC code into object code. Remember:
branch displacements are in terms of 4-byte words, not bytes. (That is, an offset of 8 bytes is
represented as 2, because it is equivalent to an offset of 2 words.)

 .begin

 .org 0

 srl %r2, 10, %r2 ans: 10 00010 100110 00010 1 0000000001010

(6-3) Disassemble the following ARC object code into a source statement. Since there is not enough
information in the object code to determine symbol names, use numbers (offsets, like +5 or −12)
instead, if needed.

00000010 10000000 00000000 00000011

(6-4) Given the assembly language program shown on the next page, which uses an assembly
language syntax that should be new to you, construct a symbol table. As with the ARC assembly
language, each instruction in this assembly language occupies four bytes. Not all of the lines in the
table will be needed. Do not try to figure out what the program does – it is not helpful to know this.
Mark any undefined symbols with an “X.” All values are given in base 10. Registers are named R0,
R1, and R3

.

Symbol Value/ All numbers are given in base 10
K EQU 77
P EQU 1

ORG 32

JUMP MAIN
PMUL: SUB 2,R0

LOAD A,R1
BZERO ANOTZ
LOAD 0,R1
JUMP DONE

ANOTZ: LOAD B,R3
BZERO BNOTZ
LOAD 0,R3
JUMP DONE

BNOTZ: LOAD 0,R1
STORE R1,A
BZERO PMUL

DONE: JUMP DONE
A: 12
B: 15

K 77

P 1

MAIN X

PMUL 36

A 88

ANOTZ 56

DONE 84

B 92

BNOTZ 72

(6-5) Define a SPARC macro mov that copies its first argument (a literal) into its second argument (a
register). For example, the code

mov 10, %r24

copies 10 into register %r24.

(6-6) In the compiled SPARC code used in the book, both call and jmpl need two instruction cycles
to complete. Both instructions are followed by a nop if there is no nearby instruction that can replace
the nop. The ret instruction is actually a pseudo-instruction that translates to:

jmpl %r15+8, %r0

In the other code examples, however, the following code is used for returning from a subroutine call:

jmpl %r15+4, %r0

What would happen if we used the %r15+4 version for the ret in the compiled code? In what way(s)
would the program behave differently?

ans: The program would still work correctly, but the return would go to the nop instruction that
follows the call, thus wasting an instruction cycle.

(6-7) Given an architecture that implements the following instructions:

Mnemonic Operand(s) Meaning
PUSH arg Push contents of memory location arg onto stack
POP arg Pop stack into memory location arg
BA label Branch to label
ADD arg1, arg2, arg3 arg3 <- arg1 + arg2

What is the result of executing the following program?

PUSH A
ADD A, 1, A
PUSH A
ADD A, 1, A
PUSH A
POP B
ADD B, -1, B
POP B
ADD B, -1, B
POP B

(6-8) A program is running on a pipelined computer in which every fourth instruction is a jump (or a
branch), and there is a 20% probability that each jump is taken. When a jump is taken, the pipeline
is flushed, which has a branch penalty of 3. Compute the average instruction time in terms of
instruction cycles.

(6-9) Consider the following code segment, which is for an architecture that many be new to you
(the MIPS):

LW R1, 0(R2) Load a word from memory

SUB R1, R1, R3 Subtract

BEQZ R1, L Branch if equal to zero

OR R4, R5, R6 or

.

.

.

L: ADD R7, R8, R9 Add

There is a load delay slot after the load from memory instruction: LW. The dependence of the
subsequent SUB and BEQZ instructions on the LW instruction means that we need a stall after LW.
Suppose we know that the branch is almost always taken, and that the value of R7 is not needed on the
fall-through path. Suggest a rescheduling of the code segment which would increase the speed of the
program.

CHAPTER 7 PROBLEMS

(7-1) A cache has a 95% hit ratio, an access time of 100ns on a cache hit, and an access time of 800ns
on a cache miss. Compute the effective access time.

(7-2) (From Stallings, 1999) A set associative cache consists of 64 slots divided into 4-slot sets. Main
memory contains 4K blocks of 128 words each. Show the format of the main memory address.

(7-3) Using the page table shown below, translate virtual address 2050 into a physical address, and
translate physical address 25 into a virtual address. Address length is 16 bits, page size is 2048 words.
Physical memory has 4 page frames.

Page Present (1-in/0-out) Page Frame
 0 1 3
 1 1 2
 2 1 0
 3 0 --
 ...

(7-4) A computer has 16 pages of virtual address space but only 4 page frames. Initially the memory
is empty. A program references the virtual pages in the order: 0 2 4 5 2 4 3 11 2 10.

(a) Which references cause a page fault with the LRU page replacement policy?

(b) Which references cause a page fault with the FIFO page replacement policy?

(7-5) When running a particular program with N memory accesses, a computer with a cache and
paged virtual memory generates a total of M cache misses and F page faults. T1 is the time for a
cache hit; T2 is the time for a main memory hit; and T3 is the time to load a page into main memory
from the disk.

(a) What is the cache hit ratio?

(b) What is the main memory hit ratio? That is, what percentage of main memory accesses do not
generate a page fault?

(c) What is the overall effective access time for the system?

(7-6) Four 256-word × 8-bit PROM chips are used to produce a total capacity of 1024-word × 8-bits.
How many address bus lines are required? (Circle one.)

(A) 4 (B) 8 (C) 10 (D) 16 (E) 32

(7-7) A direct mapped cache consists of 4 blocks of 16 words per block. Main memory contains 32K
blocks of 16 words each. The hit time for a cache access is 10 ns, and the miss time is 200 ns,
which includes the time to transfer the missed block from the main memory to the cache. Note:
When referring to memory, 1K = 1024. Compute the hit ratio for a program that loops 10 times
from locations 0 – 64.

(7-8) A set associative cache consists of 64 slots divided into 4-slot sets. Main memory contains 4K
blocks of 128 bytes each. Show the format of the main memory address. (Tag, Slot or Set, and Byte
fields.)

(7-9) An operating system uses a Least Recently Used (LRU) page replacement algorithm. Consider
the following page reference ordering (pages are referenced from left to right):

1, 8, 1, 7, 8, 2, 7, 2, 1, 8, 3

Which of the following is the number of page faults that are generated for this particular LRU case
assuming that the process has been allocated four page frames, and that initially, none of the pages
are in the main memory? (Circle one.)

(A) 6 (B) 5 (C) 4 (D) 3 (E) 7

(7-10) True or False (choose one): The purpose of virtual memory is to increase the speed of main
memory, and the purpose of cache memory is to increase the size of main memory.

(7-11) A direct mapped cache consists of 256 slots. Main memory contains 32K blocks of 16 words
each. Access time of the cache is 10 ns, and the time required to fill a cache slot is 200 ns. Load-
through is not used; that is, when an accessed word is not found in the cache, the entire block is
brought into the cache, and the word is then accessed through the cache. Initially, the cache is empty.
Note: When referring to memory, 1K = 1024.

(a) Show the format of the memory address (show the number of bits in the Tag, Block or Set (as
appropriate), and Byte fields, and their relative position from left to right.)

(b) Compute the hit ratio and effective access time for a program that loops 10 times from locations 15
– 52 (there is no need to divide it out, without a calculator). Note that although the memory is accessed
twice during a miss (once for the miss, and once again to satisfy the reference), a hit does not occur for
this case. To a running program, only a single memory reference is observed.

Hit ratio = No. times referenced words are in cache
Total number of memory accesses

Eff. access time =
(No. hits) (Time per hit) + (No. misses) (Time per miss)

Total number of memory accesses

(7-12) A virtual memory system has a page size of 512 bytes, eight virtual pages, and four physical
page frames. The page table is as follows:

Present bit

Page #

0

1

2

3

4

5

6

7

0

0

1

0

1

0

1

0

xx

xx

00

xx

01

xx

11

xx

Disk address

Page frame field

01001011100

11101110010

10110010111

00001001111

01011100101

10100111001

00110101100

01010001011

(a) What is the main memory address for virtual address 1024?

(b) What is the virtual address for main memory address 512?

(7-13) A memory has 224 addressable locations. What is the smallest width in bits that the address can
be while still being able to address all 224 locations?

(7-14) If a virtual memory system has 4 pages in real memory and the rest must be swapped to disk,
determine the hit ratio for the following page address system. Assume memory starts empty. Use
the First In First Out (FIFO) page replacement policy. Choose the closest answer.

PAGE REQUESTS: 2 5 3 4 1 4 7 2 1 3 1 7 4 5 4 6

(A) 10% (D) 31%

(B) 15% (E) 50%

(C) 25%

(7-15) A memory system has a two-level cache in which Level 1 is closer to the CPU than Level 2. The
hit time for the Level 1 cache is T1 and the hit time for the Level 2 cache is T2. The miss time for
the Level 2 cache is T3. On a cache miss at either level, the miss time includes the time to read in a
block and deliver the requested word. What is the effective access time of the memory system if
the hit ratios of both caches are 90%? An equation for the effective access time of a two-level
cache is shown below:

TEFF =

(No. on±chip cache hits) (Time per on±chip cache hit) +
(No. off±chip cache hits) (Time per off±chip cache hit) +
(No. off±chip cache misses) (Time per off±chip cache miss)

Total number of memory accesses

CHAPTER 8 PROBLEMS

(8-1) A hard magnetic disk with a single platter rotates once every 16 ms. There are 8 sectors on
each of 1000 tracks. An interleave factor of 1:2 is used. What is the fastest possible time to copy a
track from the top side of the platter to the corresponding track on the bottom side of the platter?
Assume that the sectors must be read in numerical order starting from 0, that the top and bottom

tracks must be mirror images, that any number of sectors can be read from the top track before
writing them to the bottom track, and that simultaneous reading and writing is not allowed (even on
different tracks.)

(8-2) Consider a disk drive with the following characteristics:

7200 revolutions per minute rotation speed
7 msec average seek time
256 sectors per track, with 512 bytes per sector
2048 tracks per surface
16 surfaces
1 head per surface, all heads move together as a group
reading and writing cannot be done at the same time

(a) What is the total capacity of the disk drive?

(b) What is the data transfer rate in bytes per second for this drive? That is, once the head is
positioned over the sector to be read, what is the data transfer rate?

(c) What is the average time to transfer a whole sector from one track to another track?

(8-3) A number of disks, a CPU, and the main memory are all connected to the same 10 MHz 32-bit
bus. The disk has a transfer rate of 2 MBytes/sec. The CPU and main memory can both keep pace
with the bus. How many disks can be simultaneously transmitting?

CHAPTER 9 PROBLEMS

(9-1) Construct an SEC code for EBCDIC ‘T’. When constructing the code, number the bits from
right to left starting with 1 (the same way it is done in the book).

(9-2) Construct the SEC code for the Unicode character ‘1/4’ = 00BC16 using even parity. Hint: check
bits go in positions that correspond to powers of 2.

(9-3) If 7-digit telephone numbers are assigned so that misdialing one digit results in an unassigned
number, how many numbers can be assigned?

(9-4) For SEC of 7-digit phone numbers, we need to add check digits such that the Hamming
distance(H.D.) is 3 (for error correction of p digits, we need H.D. = 2p+1. For SEC, p=1 so H.D. is 3).
How many check digits should we add?

(9-5) In alphabetic encryption (AE), a string of characters is mapped into a different, longer string of
characters consisting of only upper case letters. The AE code is shown below:

Letter Code Letter Code Letter Code
 A 00000 J 01001 S 10010
 B 00001 K 01010 T 10011
 C 00010 L 01011 U 10100
 D 00011 M 01100 V 10101
 E 00100 N 01101 W 10110
 F 00101 O 01110 X 10111
 G 00110 P 01111 Y 11000
 H 00111 Q 10000 Z 11001
 I 01000 R 10001

(a) Compute the checksum word for the AE characters C, D, E, F and G. Use both longitudinal and
vertical redundancy checking.

(b) A receiver sees the following bit pattern, which is Hamming encoded using even parity (the
way it is done in the book). What AE character was transmitted?

(9-6) A single-user workstation is attached to a local network. The workstation accesses files over the
network from a file server. The average access time is 0.09 seconds per page. A similar stand-alone
workstation accesses files from its own local disk with an average access time of 0.03 seconds per
page. A particular program accesses and processes a 300-page file. The time to process the file
once the data is in memory is 45 seconds. What is the ratio of the total time to access and process
the file for the local network workstation to the total time for the stand-alone workstation?

(A) 3/1 (D) 5/2

(B) 4/3 (E) 1/1

(C) 8/5

APPENDIX A PROBLEMS

(A-1) The combinational circuit given below is implemented with two NAND gates. To which of the
following individual gates is it equivalent?

a
b

(A) NOT (B) OR (C) AND (D) XOR (E) NOR

(A-2) Derive function x represented by the following circuit. The prime symbol (') has the same
meaning as overbar.

x

a

b

a
b
c

(A) ab + a'bc' (B) (a + b)(a' + b + c') (C) ab + a'bc' (D) (ab)(a'bc') (E) bc'

(A-3) Design a binary-to-Gray code converter using an 8-to-1 MUX, a 4-to-1MUX, and a 16-to-1
MUX. Use the truth table shown below:

x2 x1 x0 | z2 z1 z0
---------+---------
 0 0 0 | 0 0 0
 0 0 1 | 0 0 1
 0 1 0 | 0 1 1
 0 1 1 | 0 1 0
 1 0 0 | 1 1 0
 1 0 1 | 1 1 1
 1 1 0 | 1 0 1
 1 1 1 | 1 0 0

(A-4) Design a circuit that implements function p below using AND, OR, and NOT gates. DO NOT
change the form of the equation. The circuit should implement this function exactly.

f(i0, i1, i2) = i2(i0i1 + i0i1)

(A-5) Label and connect the MUXes shown below to implement function F:

00

01

10

11

F

F(A,B,C,D) = AB(CD + CD) + AB(CD) + AB(CD + CD)

0

1

0

1

0

1

(A-6) The black box in the following figure consists of a combinational logic unit that uses only AND,
OR, and NOT gates.

Black Box f(x, y, z)

x

y

z

The function f(x, y, z) = 1 whenever x, y are different and 0 otherwise. Which of the following
equations leads to the correct design for the combinational logic unit? The prime symbol (') in X'
has the same meaning as an overbar.

(A) x'y + xy' (B) x + y'z (C) x'y'z' + xy'z (D) xy + y'z + z' (E) x'z + xy + y'z'

(A-7) How many distinct Boolean functions of 3 variables are there? This question is not asking how
many possible unique combinations of 3 variables there can be, but rather, how many unique
functions of those 3 variables can there be?

(A) 16 (B) 64 (C) 256 (D) 512 (E) 1024

(A-8) Create a state transition diagram that outputs a 1 whenever the sequence of two-bit inputs
00→01*→11 is detected. The asterisk means that the bit-pair 01 can appear any number of times
at that position in the sequence, including not at all (zero times). Show the state transition diagram
only (do not create a state table or draw a circuit).

(A-9) Design a finite state machine (FSM) that has two control lines C0 and C1. The FSM has an
output Z that is a 1 if C1C0=00, a 0 ifC1C0=01, the value of its current output if C1C0=10, and the
complement of its current output ifC1C0=11. Just draw a state transition diagram that describes the
behavior of the FSM.

(A-10) For the FSM described by the state table shown below,

(a) What is the smallest number of flip-flops needed to implement the FSM? (Do not apply any
state reduction techniques.)

(b) How many Boolean functions need to be created to implement this FSM? That is, how many
next-state and output functions are there?

(A-11) Design a sequential machine that outputs a 1 when the last three inputs are 011 or 110. Note
that sequences can overlap, so that an input sequence of 0110 will produce an output sequence of
0011. Just show the state transition diagram. Do not reduce the diagram or draw a circuit.

(A-12) Given the state transition diagram shown below, design a circuit for this state machine using D
flip-flop(s) and one 4-to-16 decoder with OR gates. For the state assignment, use the bit pattern
that corresponds to the position of each letter in the alphabet, starting from 0 (A = 000, B = 001, C
= 010, etc.).

A

C B

D E

0/0

1/0

1/0

1/0

1/1

1/0

0/0

0/0

0/0 0/1

input/outputs

Present
State

A

Input (x)

0 1

B

C

D

E

(A-13) Design an FSM using D flip-flops and the smallest possible ROM for a remote control that
operates a TV:0, a VCR:1, and a CATV:2 device. The user selects a device by pressing the corre-
sponding key. Once a device is selected, the user can increase the channel number (3) or decrease the
channel number (4). The input (0, 1, 2, 3, or 4) is repeated on the corresponding output port (one for
each device), except for 0, 1, and 2 which produce 0's at all outputs. (Hint: The STD is easier to draw
if you use base 10.)

(A-14) Consider the following circuit which contains a 3-bit register and a black box with some
combinational logic:

Black box of
combinational logic

D1

Q1

D2

Q2

D3

Q3
CLOCK

The initial state of the circuit is Q1Q2Q3 = 000. The circuit generates the sequence

(010) → (110) → (001) → (001) → ... → (001)

on successive clock cycles. Which of the following sets of equations are implemented by the
combinational logic in the black box? The prime symbol (') in X' has the same meaning as an
overbar.

(A) D1 = Q1'Q2'Q3' D2 = Q1' D3 = Q2

(B) D1 = Q2Q3' D2 = Q1Q2' D3 = Q1Q2Q3'

(C) D1 = Q1 + Q2 D2 = Q1' D3 = Q1Q2

(D) D1 = Q1'Q2Q3' D2 = Q1'Q2'Q3' + Q1'Q2Q3' D3 = Q1Q2Q3' + Q1'Q2'Q3

(E) D1 = Q1Q2Q3' D2 = Q1'Q2'Q3' + Q1'Q2'Q3' D3 = Q1'Q2Q3'

(A-15) Design a control unit for a simple hand-held video game in which a juggler on the display
catches objects. Treat this as an FSM problem, in which you only show the state transition
diagram. Do not show a state table, state assignment, or a circuit. The input to the control unit is
a two-bit vector in which 00 means “Move Left,” 01 means “Move Right,” 10 means “Do Not
Move,” and 11 means “Halt.” The two-bit output Z is 11 if the machine is currently halted, and is
00, 01, or 10 otherwise, corresponding to the input patterns 00, 01, and 11. That is, the two-bit
output is identical to the two-bit input, except when the machine is halted, in which case the
output is 11 regardless of the input. Once the machine is halted, it must remain in the halted
state indefinitely. Show only the state transition diagram.

SOLUTIONS

CHAPTER 1 SOLUTIONS

(1-1)

(1) mechanical - manually operated
(2) mechanical - machine powered
(3) vacuum tubes
(4) transistors
(5) integrated circuits

CHAPTER 2 SOLUTIONS

(2-1) (B) 0011 1011 0111 1111

(2-2)

(a) 5310

(b) 111000112

(c) 636316

(d) 11013

(2-3) (C) –231 to 231 – 1

(2-4) (B) the range is increased but the precision is decreased

(2-5)
(a) Smallest = .1 × b-q

Largest = (1 - b-p) × b(X - q)

(b) Smallest gap = b-p × b-q

Largest gap = b-p × b(X - q)

(c) 2 × (X + 1) × (b - 1) × bp-1 + 1

(2-6)
1 0 1 1 1 1 0 1 0 . 0
S Exponent Fraction

1/32 = (.00001)2 = 1.0 x 2-5. The 1 to the left of the radix point is dropped, which is why the fraction is
all 0's. The exponent is in excess 127 (not 128), so -5+127 = 122 for the exponent.

(2-7) (a) –.14 × 44-4 = –.2510

(b) 0 000 010000

(c) 0 111 111111

(d) 2 (sign bit) × 23 (exponent) × 3 (first digit) × 42 (remaining digits) + 1 (zero) = 769

(2-8)

0 1 0 0 0 0 1 0 1 . 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CHAPTER 3 SOLUTIONS

(3-1)

 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1

+ 0 0 1 0 0 1 + 1 0 0 1 0 1 + 0 0 0 1 1 1
------------- ------------- -------------
 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1 1 0
 No overflow Overflow No overflow

 0 1 0 1 1 0 1 1 1 1 1 0 1 0 0 0 0 1
- 0 1 1 1 1 1 - 1 0 0 1 0 1 - 0 1 1 1 0 1
------------- ------------- -------------
 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0
 No underflow No underflow Underflow

(3-2)
 1 0 1 0 1 21
 x 0 0 1 0 1 5

 1 0 1 0 1
 0 0 0 0 0
 1 0 1 0 1
 0 0 0 0 0 0
0 0 0 0 0 0

0 0 1 1 0 1 0 0 1 105

 00100 R1
 +--------
00101 | 10101
 00101

 00001

(3-3)

Step # Product Action

 0 C=0 M=10110 Q=01101 Initial values _

 C A Q _

 1 0 10110 01101 Add M to A _

 2 0 01011 00110 Shift _

 3 0 00101 10011 Shift (no add) _

 4 0 11011 10011 Add M to A _

 5 0 01101 11001 Shift _

 6 1 00011 11001 Add M to A _

 7 0 10001 11100 Shift _

 8 0 01000 11110 Shift _

(3-4)

 0 1 1 0 Multiplicand
 0 1 1 0 Multiplier
x 1 0 1 0 Booth recoded multiplier

 1 1 1 1 0 1 0 0 -1 x 0 1 1 0
+ 0 0 1 1 0 1 x 0 1 1 0

 0 0 1 0 0 1 0 0

(3-5)

 0 1 0 1 0 0 (Multiplicand)
 1 1 0 1 1 0 (Multiplier)
 0-1 1 0-1 0 Booth recoded multiplier
 x -1 2 -2 Bit-Pair recoded multiplier

 1 1 1 1 1 1 0 1 0 1 1
 + 0 0 0 0 1 0 1 0 1
 + 1 1 1 0 1 0 1 1

 1 1 1 1 0 0 1 0 1 1 1

(3-6)
Booth:
 1 1 1 1 0 1 1 0 -10 (Multiplicand)
 1 1 1 1 0 1 1 0 -10 (Multiplier)
 x 0 0 0-1 1 0-1 0 Booth recoded multiplier

 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 -10 x -2
+ 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 -10 x 8
+ 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 -10 x -16

 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 = 100

Bit-pair:
 1 1 1 1 0 1 1 0 -10 (Multiplicand)
 1 1 1 1 0 1 1 0 -10 (Multiplier)

 0 0 0-1 1 0-1 0 Booth recoded multiplier
 x 0 -1 2 -2 Bit-Pair recoded multiplier

 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 -10 x -2
+ 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 -10 x 8
+ 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 -10 x -16

 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 = 100

(3-7)

b0 = 0

b1 = G0 + P0b0 = G0

b2 = G1 + P1b1 = G1 + P1G0

b3 = G2 + P2b2 = G2 + P2G1 + P2P1G0

b4 = G3 + P3b3 = G3 + P3G2 + P3P2G1 + P3P2P1G0

CHAPTER 4 SOLUTIONS

(4-1) (B) max(A , B)

(4-2)
(a) 2

23
 - 2

19
 + 4

(b)

 .begin

 ld [joy_x], %r7 ! %r7 and %r8 now point to the

 ld [joy_y], %r8 ! joystick x and y locations

 ld [flash], %r9 ! %r9 points to the flash location

loop: ld %r7, %r1 ! Load current joystick position

 ld %r8, %r2 ! in %r1=x and %r2=y

 ld [old_x], %r3 ! Load old joystick position

 ld [old_y], %r4 ! in %r3=x and %r4=y

 orncc %r3, %r0, %r3 ! Form one’s complement of old_x

 addcc %r3, 1, %r3 ! Form two’s complement of old_x

 addcc %r1, %r3, %r3 ! %r3 <- joy_x - old_x

 be x_not_moved ! Branch if x did not change

 ba moved ! x changed, so no need to check y

x_not_moved: ! Your code starts here, about four lines.

 orncc %r4, %r0, %r4 ! Form one’s complement of old_y

 addcc %r4, 1, %r4 ! Form two’s complement of old_y

 addcc %r2, %r4, %r4 ! %r4 <- joy_y - old_y

 be loop ! Repeat

! This portion of the code is entered only if joystick is moved.

! Flash screen; store new x,y values; repeat.

moved:

 addcc %r0, 1, %r5

 st %r5, %r9

 st %r1, [old_x]

 st %r2, [old_y]

 ba loop

flash: #FFFFEC ! Location of flash register

joy_x: #FFFFF0 ! Location of joystick x register

joy_y: #FFFFF4 ! Location of joystick y register

old_x: 0 ! Previous x position

old_y: 0 ! Previous y position

 .end

(4-3)

(4-4)

There is more than one solution. Here is one:

0000011 001 001 101

CHAPTER 5 SOLUTIONS

(5-1) Note that %r1 goes in the rd field for an st instruction:

11 00001 000100 00010 0 00000000 00011
op rd op3 rs1 i rs2

DECODE: 1 11 000100 00 = 1808

Microinstructions: 0, 1, 1808, 1809, 40, 41, 42, 43, 44, 2047

(5-2)

1615: 000000 1 000000 0 100010 0 0 0 0001 110 00000010101

 21: 100001 0 100001 0 100011 0 0 0 0010 000 00000000000

(5-3)
00000000 00000000 0 00 00000000 0

00000111 00000011 0 01 00010101 0

11111111 11111111 1 11 11111110 1

CHAPTER 6 SOLUTIONS

(6-1) The important point in making the translation to SPARC is how to manipulate the stack frame.
Prior to the function call, the calling routine places the parameters on the stack. When the called
routine (min) is invoked, its first task should be to save the return address on the stack. There is no
need to do it here since min makes no nested calls. So, the stack pointer currently points to j, and i is
one word deeper into the stack:

 addcc %r14, -4, %r14 ! Push m onto stack frame
 ld %r14, 8, %r1 ! r1 <- i
 ld %r14, 4, %r2 ! r2 <- j
 orncc %r2, %r0, %r3 ! r3 <- ~r2
 addcc %r3, 1, %r3 ! r3 <- r3+1 (2's comp of j)
 addcc %r1, %r3, %r4 ! r4 <- i - j
 bneg J_GT_I ! branch if i<j (j>i actually)
 st %r2, %r14 ! m <- j
 ba DONE
J_GT_I: st %r1, %r14 ! m <- i
DONE: jmpl %r15, 4, %r0 ! Return value m is on stack.

(6-2) 10 00010 100110 00010 1 0000000001010

(6-3) be 3

(6-4)

Symbol Value/ All numbers are given in base 10
K EQU 77
P EQU 1

ORG 32

JUMP MAIN
PMUL: SUB 2,R0

LOAD A,R1
BZERO ANOTZ
LOAD 0,R1
JUMP DONE

ANOTZ: LOAD B,R3
BZERO BNOTZ
LOAD 0,R3
JUMP DONE

BNOTZ: LOAD 0,R1
STORE R1,A
BZERO PMUL

DONE: JUMP DONE
A: 12
B: 15

K 77

P 1

MAIN X

PMUL 36

A 88

ANOTZ 56

DONE 84

B 92

BNOTZ 72

(6-5)

.macro mov arg1,arg2

orcc %r0, arg1, arg2

.endmacro

(6-6) The program would still work correctly, but the return would go to the nop instruction that
follows the call, thus wasting an instruction cycle.

(6-7) When the code finishes execution:

(1) A is incremented by 2;

(2) B has the original value of A;

(3) The stack is restored to its original state.

(6-8) 1 + PbPtb = 1 + (.25)(.20) x 3 = 1.15

(6-9) Move the Add R7, R8, R9 line after the LW instruction

CHAPTER 7 SOLUTIONS

(7-1) Teff = .95 × 100ns + .05 × 800ns = 135ns

(7-2) Tag: 8 bits Set: 4 bits Word: 7 bits

(7-3)
 < page# >< offset >
2050 = 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 (virtual)
4096 = 1 0 0 0 0 0 0 0 0 0 0 1 0 (physical)

 25 = 0 0 0 0 0 0 0 0 1 1 0 0 1 (physical)
4121 = 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 (virtual)

(7-4) (a) 0, 2, 4, 5, 3, 11, 10

(b) 0, 2, 4, 5, 3, 11, 2, 10

(7-5) (a) (N - M) / N

(b) (M - F) / M

(c) T1×(N - M) / N + T2 × (M - F) / M + T3 × F

(7-6) (C) 10

(7-7)

Iteration #1: 5 misses and 60 hits

Iterations #2 - #10: 2 misses and 63 hits per iteration

Hit ratio = hits/misses = (60 + 9 x 63) / (65 x 10) = 96.56%

(7-8)

Tag Set Byte

8 bits 4 bits 7 bits

(7-9) (B) 5; page faults: 1, 8, 7, 2, 3

(7-10) False

(7-11) (a)

Tag Slot Byte

7 bits 8 bits 4 bits

(b) Hit ratio = (34 + 9 x 38) / (10 x 38) = 376 / 380 = 98.94%

Teff = [(4 misses x 210ns/miss) + (34 + 9 x 38) hits x 10 ns/hit] / 380 accesses = 12.1 ns

(7-12) (a) 00000000000

(b) This address is in Page #1 which is not present, so there is no virtual address.

(7-13) 24

(7-14) (D) 31%

(7-15) Teff = .9 × T1 + .9 × (1 - .9) × T2 + [1 - .9 × (1 - .9)] × T3

CHAPTER 8 SOLUTIONS

(8-1)

(1) Read 0, 1, 2, 3 on first rotation.

(2) Write 0, 1, 2, 3; read 4, 5, 6, 7 on second rotation

(3) Write 4, 5, 6, 7 on third rotation.

Total time = 3.0 rotations x 16 ms/rotation = 48 ms.

(8-2) (a) 16 surfaces x 2048 tracks/surface x 256 sectors/track x 512 bytes/sector = 232 bytes

(b) 7200 rev/min x 1/60 min/sec x 1 track/rev x 256 sectors/track x 512 bytes/sector = 15.7
MB/sec

(c) Avg seek time = 7ms.

Avg rotational delay = [1/7200 min/rev x 60 sec/min]/2 = .00417s = 4.17ms

Sector read/write time = 1/8 x [1/7200 min/rev x 60 sec/min] = .00104s = 1.04ms

Avg transfer time = [7ms + 4.17ms + 1.04ms read] + [7ms + 4.17ms + 1.04ms write] = 24.42ms

(8-3) 106 words/s per bus × 1/(.5 × 106) s/word per disk = 20 disks/bus

CHAPTER 9 SOLUTIONS

(9-1)

 1 1 1 0 1 0 0 1 0 1 1 1
-- -- -- -- -- -- -- -- -- -- -- --
12 11 10 9 C8 7 6 5 C4 3 C2 C1

(9-2)

 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0
-- --
21 20 19 18 17C16 15 14 13 12 11 10 9 C8 7 6 5 C4 3 C2 C1

(9-3) We want a Hamming distance of 2 between valid numbers, in base 10. In base 2, we looked for
even/odd parity, which can be generalized to mod2(sum of digits in number) = 0 for even parity. We
want mod10(sum of digits in number) = 0 for this problem. So, mod_10(4+4+5+2+6+5+4) = 0 is a
valid telephone number (445-2654) whereas mod_10(4+4+5+3+5+2+3) = 6 is not (445-3523).

Since only 1/10 of the numbers will come out as mod_10() = 0, only 10% of the possible numbers can
be assigned.

(9-4) For each of the 107 valid phone numbers, there is an uncorrupted version, and 9×7 ways to
corrupt each of the 7 original digits, plus 9r ways to corrupt each of the r check digits.

The following relationship must hold:

107(9×7 + 9r + 1) <= 10(7 + r)

which simplifies to

64 + 9r <= 10r

for which r = 2 is the smallest value that satisfies the relation.

(9-5) (a)

 C 1 00010
D 0 00011
E 1 00100
F 0 00101
C 0 00110
Chk 0 00110

(b) The letter ‘M’

(9-6) (B) 4/3

APPENDIX A SOLUTIONS

(A-1) (C) AND

(A-2) (B) (a + b)(a' + b + c')

(A-3)

000
001
010
011
100
101
110
111

0
0
0
0
1
1
1
1

X2 X1 X0

Z2

00
01
10
11

X1 X0

Z1

0000
0001
0010
0011
0100
0101
0110
0111

0
0
0
0
1
1
1
1

Z0

X2
X2
X2’
X2’

X2 X1X0 0

1000
1001
1010
1011
1100
1101
1110
1111

0
0
0
0
1
1
1
1

(A-4)

f(i0, i1, i2)i2

i0

i1

(A-5)

0

C

A B

CC

D

0 D

DD

D

(A-6) (A) x'y + xy'

(A-7) (C) 256

(A-8)

A B

00/0

10/0

11/1

00/0
01/010/0

11/0

01/0

(A-9)

A B

01/0

00/1
11/1

01/0
11/0

10/1

00/1

11/0

(A-10) (a) 3

(b) 4

(A-11) There is more than one solution. Here is one:

0/0

0/0

1/1

0/0

1/0

1/0

0/0 1/0
B

A

C

E

F

D

G

0/0

1/1

0/0

0/1

1/0

1/0

(A-12) [Partial solution]

Present
State

Input (x)

0 1

A 000/0 001/0

B 001/0 010/0

C 010/0 011/0

D 011/0 100/1

E 100/1 000/0

(A-13) [Partial solution] Here is the state table:

PS Input (in base 10)
 0 1 2 3 4
 +-------+-------+-------+-------+-------+
A | A/000 | B/000 | C/000 | A/300 | A/400 |
 +-------+-------+-------+-------+-------+
B | A/000 | B/000 | C/000 | B/030 | B/040 |
 +-------+-------+-------+-------+-------+

C | A/000 | B/000 | C/000 | C/003 | C/004 |
 +-------+-------+-------+-------+-------+

State Assignment:

PS Input

 000 001 010 011 100

 +--------------+--------------+--------------+--------------+--------------+

A:00|00/000 000 000|01/000 000 000|10/000 000 000|00/011 000 000|00/100 000 000|

 +--------------+--------------+--------------+--------------+--------------+

B:01|00/000 000 000|01/000 000 000|10/000 000 000|01/000 011 000|01/000 100 000|

 +--------------+--------------+--------------+--------------+--------------+

C:10|00/000 000 000|01/000 000 000|10/000 000 000|10/000 000 011|10/000 000 100|

 +--------------+--------------+--------------+--------------+--------------+

For an implementation, you can use two D flip flops for the state bits, and label them s1 and s0 (left to
right), and a ROM with 5 address lines and 11 data out lines. Then drew a table that shows the ROM
contents; here are a few locations:

Address Value
00000 00 000 000 000
00001 01 000 000 000
 ...
10100 10 000 000 000

(The rest are don't cares, same for a few in the middle. Only 15 entries in the ROM are needed).

(A-14) (D) D1 = Q1'Q2Q3' D2 = Q1'Q2'Q3' + Q1'Q2Q3' D3 = Q1Q2Q3' + Q1'Q2'Q3

(A-15)

 A B

11/11
00/00

Halted
Not

halted

01/01

10/10

00/11
01/11
10/11
11/11

