
620 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

Context-Based Adaptive Binary Arithmetic Coding
in the H.264/AVC Video Compression Standard

Detlev Marpe, Member, IEEE, Heiko Schwarz, and Thomas Wiegand

Abstract—Context-Based Adaptive Binary Arithmetic Coding
(CABAC) as a normative part of the new ITU-T/ISO/IEC stan-
dard H.264/AVC for video compression is presented. By combining
an adaptive binary arithmetic coding technique with context mod-
eling, a high degree of adaptation and redundancy reduction is
achieved. The CABAC framework also includes a novel low-com-
plexity method for binary arithmetic coding and probability esti-
mation that is well suited for efficient hardware and software im-
plementations. CABAC significantly outperforms the baseline en-
tropy coding method of H.264/AVC for the typical area of envis-
aged target applications. For a set of test sequences representing
typical material used in broadcast applications and for a range of
acceptable video quality of about 30 to 38 dB, average bit-rate sav-
ings of 9%–14% are achieved.

Index Terms—Binary arithmetic coding, CABAC, context mod-
eling, entropy coding, H.264, MPEG-4 AVC.

I. INTRODUCTION

NATURAL camera-view video signals show nonstationary
statistical behavior. The statistics of these signals largely

depend on the video content and the acquisition process. Tradi-
tional concepts of video coding that rely on a mapping from the
video signal to a bitstream of variable length-coded syntax ele-
ments exploit some of the nonstationary characteristics but cer-
tainly not all of it. Moreover, higher order statistical dependen-
cies on a syntax element level are mostly neglected in existing
video coding schemes. Designing an entropy coding scheme for
a video coder by taking into consideration these typically ob-
served statistical properties, however, offers room for significant
improvements in coding efficiency.

Context-Based Adaptive Binary Arithmetic Coding(CABAC)
is one of the two entropy coding methods of the new ITU-
T/ISO/IEC standard for video coding, H.264/AVC [1], [2]. The
algorithm was first introduced in a rudimentary form in [7] and
evolved over a period of successive refinements [8]–[17]. In
this paper, we present a description of the main elements of the
CABAC algorithm in its final standardized form as specified in
[1]. Unlike the specification in [1], the presentation in this paper
is intended to provide also some information on the underlying
conceptual ideas as well as the theoretical and historical back-
ground of CABAC.

Entropy coding in today’s hybrid block-based video coding
standards such as MPEG-2 [3], H.263 [4], and MPEG-4 [5] is
generally based on fixed tables of variable-length codes (VLCs).

Manuscript received April 10, 2003; revised May 6, 2003.
The authors are with the Fraunhofer-Institute for Telecommunications –

Heinrich-Hertz Institute (HHI), 10587 Berlin, Germany.
Digital Object Identifier 10.1109/TCSVT.2003.815173

For coding the residual data in these video coding standards,
a block of transform coefficient levels is first mapped onto a
one-dimensional list using a pre-defined scanning pattern. This
list of transform coefficient levels is then coded using a com-
bination of run-length and variable length coding. Due to the
usage of VLCs, coding events with a probability greater than
0.5 cannot be efficiently represented, and hence, a so-called
alphabet extensionof “run” symbols representing successive
levels with value zero is used in the entropy coding schemes
of MPEG-2, H.263, and MPEG-4. Moreover, the usage of fixed
VLC tables does not allow an adaptation to the actual symbol
statistics, which may vary over space and time as well as for
different source material and coding conditions. Finally, since
there is a fixed assignment of VLC tables and syntax elements,
existing inter-symbol redundancies cannot be exploited within
these coding schemes.

Although, from a conceptual point-of-view, it is well known
for a long time that all these deficiencies can be most easily
resolved byarithmetic codes[23], little of this knowledge was
actually translated into practical entropy coding schemes specif-
ically designed for block-based hybrid video coding. One of
the first hybrid block-based video coding schemes that incor-
porate an adaptive binary arithmetic coder capable of adapting
the model probabilities to the existing symbol statistics was pre-
sented in [6]. The core of that entropy coding scheme was in-
herited from the JPEG standard (at least for coding of DCT co-
efficients) [25], and an adjustment of its modeling part to the
specific statistical characteristics of typically observed residual
data in a hybrid video coder was not carried out. As a result, the
performance of this JPEG-like arithmetic entropy coder in the
hybrid block-based video coding scheme of [6] was not substan-
tially better for inter-coded pictures than that of its VLC-based
counterpart.

The first and—until H.264/AVC was officially released—the
only standardized arithmetic entropy coder within a hybrid
block-based video coder is given by Annex E of H.263 [4].
Three major drawbacks in the design of that optional arithmetic
coding scheme can be identified. First, Annex E is applied
to the same syntax elements as the VLC method of H.263
including the combined symbols for coding of transform
coefficient levels. Thus, one of the fundamental advantages
of arithmetic coding that a noninteger code length can be
assigned to coding events is unlikely to be exploited. Second,
all probability models in Annex E of H.263 are nonadaptive
in the sense that their underlying probability distributions are
assumed to be static. Although multiple probability distribution
models are defined and chosen in a frequency-dependent way
for the combined symbols of run, level and “last” information,

1051-8215/03$17.00 © 2003 IEEE

MARPE et al.: CABAC IN THE H.264/AVC VIDEO COMPRESSION STANDARD 621

this conditioning does not result in a significant gain in coding
efficiency, since an adaptation to the actual symbol statistics is
not possible. Finally, the generic-ary arithmetic coder used
in Annex E involves a considerable amount of computational
complexity, which may not be justified in most application
scenarios, especially in view of the typically observed small
margins of coding gains.

Entropy coding schemes based on arithmetic coding are
quite frequently involved in the field of non block-based
video coding. Most of these alternative approaches to video
coding are based on the discrete wavelet transform (DWT) in
combination with disparate methods of temporal prediction,
such as overlapped block motion compensation, grid-based
warping, or motion-compensated temporal filtering [18]–[20].
The corresponding entropy coding schemes are often derived
from DWT-based still image coding schemes like SPIHT [21]
or other predecessors of JPEG2000 [35].

In our prior work on wavelet-based hybrid video coding,
which led to one of the proposals for the H.26L standardization
[19], the entropy coding method ofpartitioning, aggregation
and conditional coding(PACC) was developed [22]. One of
its main distinguishing features is related to the partitioning
strategy: Given a source with a specific alphabet size, for
instance, quantized transform coefficients, it was found to
be useful to first reduce the alphabet size by partitioning the
range according to a binary selector which, e.g., in the case of
transform coefficients, would be typically given by the decision
whether the coefficient is quantized to zero or not. In fact, range
partitioning using binary selectors can be viewed as a special
case of abinarization scheme, where a symbol of a nonbinary
alphabet is uniquely mapped to a sequence of binary decisions
prior to further processing.

This (somehow) dual operation to the aforementioned al-
phabet extension, which in the sequel we will therefore refer to
asalphabet reduction, is mainly motivated by the fact that it al-
lows the subsequent modeling stage to operate more efficiently
on this maximally reduced (binary) alphabet. In this way, the
design and application of higher order conditioning models is
greatly simplified and, moreover, the risk of “overfitting” the
model is reduced. As a positive side effect, a fast table-driven
binary arithmetic coder can be utilized for the final arithmetic
coding stage.

The design of CABAC is in the spirit of our prior work.
To circumvent the drawbacks of the known entropy coding
schemes for hybrid block-based video coding such as Annex
E of H.263, we combine an adaptive binary arithmetic coding
technique with a well-designed set of context models. Guided
by the principle of alphabet reduction, an additional binariza-
tion stage is employed for all nonbinary valued symbols. Since
the increased computational complexity of arithmetic coding in
comparison to variable length coding is generally considered
as its main disadvantage, great importance has been devoted to
the development of an algorithmic design that allows efficient
hardware and software implementations.

For some applications, however, the computational re-
quirements of CABAC may be still too high given today’s
silicon technology. Therefore, the baseline entropy coding
method of H.264/AVC [1] offers a different compression-com-

plexity tradeoff operating at a reduced coding efficiency and
complexity level compared to CABAC. It mostly relies on a
single infinite-extended codeword set consisting of zero-order
Exp-Golomb codes, which are used for all syntax elements
except for the residual data. For coding the residual data, a more
sophisticated method calledContext-Adaptive Variable-Length
Coding (CAVLC) is employed. In this scheme, inter-symbol
redundancies are exploited by switching VLC tables for various
syntax elements depending on already transmitted coding sym-
bols [1], [2]. The CAVLC method, however, cannot provide an
adaptation to the actually given conditional symbol statistics.
Furthermore, coding events with symbol probabilities greater
than 0.5 cannot be efficiently coded due to the fundamental
lower limit of 1 bit/symbol imposed on variable length codes.
This restriction prevents the usage of coding symbols with a
smaller alphabet size for coding the residual data, which could
allow a more suitable construction of contexts for switching
between the model probability distributions.

The remainder of the paper is organized as follows. In Sec-
tion II, we present an overview of the CABAC framework in-
cluding a high-level description of its three basic building blocks
of binarization, context modeling and binary arithmetic coding.
We also briefly discuss the motivation and the principles behind
the algorithmic design of CABAC. A more detailed description
of CABAC is given in Section III, where the individual steps
of the algorithm are presented in depth. Finally, in Section IV
we provide experimental results to demonstrate the performance
gains of CABAC relative to the baseline entropy coding mode
of H.264/AVC for a set of interlaced video test sequences.

II. THE CABAC FRAMEWORK

Fig. 1 shows the generic block diagram for encoding a single
syntax element in CABAC.1 The encoding process consists of,
at most, three elementary steps:

1) binarization;
2) context modeling;
3) binary arithmetic coding.
In the first step, a given nonbinary valued syntax element is

uniquely mapped to a binary sequence, a so-calledbin string.
When a binary valued syntax element is given, this initial step is
bypassed, as shown in Fig. 1. For each element of the bin string
or for each binary valued syntax element, one or two subsequent
steps may follow depending on the coding mode.

In the so-calledregular coding mode, prior to the actual arith-
metic coding process the given binary decision which, in the
sequel, we will refer to as abin, enters the context modeling
stage, where a probability model is selected such that the cor-
responding choice may depend on previously encoded syntax
elements or bins. Then, after the assignment of a context model
the bin value along with its associated model is passed to the
regular coding engine, where the final stage of arithmetic en-
coding together with a subsequent model updating takes place
(see Fig. 1).

1For simplicity and for clarity of presentation, we restrict our exposition of
CABAC to an encoder only view. In the text of the H.264/AVC standard [1]
itself, the converse perspective dominates—the standard normatively specifies
only how to decode the video content without specifying how to encode it.

622 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

Fig. 1. CABAC encoder block diagram.

Alternatively, thebypass coding modeis chosen for selected
bins in order to allow a speedup of the whole encoding (and de-
coding) process by means of a simplified coding engine without
the usage of an explicitly assigned model, as illustrated by the
lower right branch of the switch in Fig. 1.

In the following, the three main functional building blocks,
which are binarization, context modeling, and binary arithmetic
coding, along with their interdependencies are discussed in
more detail.

A. Binarization

1) General Approach:For a successful application of con-
text modeling and adaptive arithmetic coding in video coding
we found that the following two requirements should be ful-
filled:

a) a fast and accurate estimation of conditional probabilities
must be achieved in the relatively short time interval of a
slice coding unit;

b) the computational complexity involved in performing
each elementary operation of probability estimation
and subsequent arithmetic coding must be kept at a
minimum to facilitate a sufficiently high throughput of
these inherently sequentially organized processes.

To fulfill both requirements we introduce the important
“pre-processing” step of first reducing the alphabet size of the
syntax elements to encode. Alphabet reduction in CABAC is
performed by the application of a binarization scheme to each
nonbinary syntax element resulting in a unique intermediate
binary codeword for a given syntax element, called a bin string.
The advantages of this approach are both in terms of modeling
and implementation.

First, it is important to note that nothing is lost in terms of
modeling, since the individual (nonbinary) symbol probabilities
can be recovered by using the probabilities of the individual bins
of the bin string. For illustrating this aspect, let us consider the
binarization for the syntax element mb_type of a P/SP slice.

As depicted in Fig. 2(a), the terminal nodes of the binary tree
correspond to the symbol values of the syntax element such
that the concatenation of the binary decisions for traversing
the tree from the root node to the corresponding terminal node
represents the bin string of the corresponding symbol value. For
instance, consider the value “3” of mb_type, which signals the

Fig. 2. Illustration of the binarization for (a) mb_type and (b) sub_mb_type
both for P/SP slices.

macroblock type “P_88”, i.e., the partition of the macroblock
into four 8 8 submacroblocks in a P/SP slice. In this case, the
corresponding bin string is given by “001”. As an obvious con-
sequence, the symbol probability"3" is equal to the product
of the probabilities "0" , "0" , and "1" ,
where , and denote the (binary) probability models
of the corresponding internal nodes, as shown in Fig. 2. This
relation is true for any symbol represented by any such binary
tree, which can be deduced by the iterated application of the
Total Probability Theorem [26].

Although at this stage nothing seems to be gained, there is al-
ready the advantage of using a binary arithmetic coding engine
on the bin string instead of a -ary arithmetic coder operating
on the original -ary source alphabet. Adaptive-ary arith-
metic coding (for) is in general a computationally com-
plex operation requiring at least two multiplications for each
symbol to encode as well as a number of fairly complex oper-
ations to perform the update of the probability estimation [36].
In contrast to that, there are fast, multiplication-free variants of
binary arithmetic coding, one of which was specifically devel-
oped for the CABAC framework, as further described below.
Since the probability of symbols with larger bin strings is typi-
cally very low, the computational overhead of coding all bins of
that bin string instead of using only one pass in an-ary arith-
metic coder is fairly small and can be easily compensated by
using a fast binary coding engine.

Finally, as the most important advantage, binarization enables
context modeling on a subsymbol level. For specific bins which,
in general, are represented by the most frequently observed bins,
conditional probabilities can be used, whereas other usually less

MARPE et al.: CABAC IN THE H.264/AVC VIDEO COMPRESSION STANDARD 623

frequently observed bins can be treated using a joint, typically
zero-order, probability model. Compared to the conventional
approach of using context models in the original domain of the
source with typically large alphabet size (like e.g., components
of motion vector differences or transform coefficient levels) this
additional freedom in the design offers a flexible instrument for
using higher order conditional probabilities without suffering
from context “dilution” effects. These effects are often observed
in cases, where a large number of conditional probabilities have
to be adaptively estimated on a relatively small (coding) time
interval, such that there are not enough samples to reach a reli-
able estimate for each model.2

For instance, when operating in the original alphabet domain,
a quite moderately chosen second-order model for a given syntax
element alphabet of size will result in the intractably
large number of symbol probabilities to
be estimated for that particular syntax element only. Even for a
zero-order model, the task of tracking 255 individual probability
estimates according to the previous example is quite demanding.
However, typically measured probability density functions (pdf)
of prediction residuals or transformed prediction errors can be
modeled by highly peaked Laplacian, generalized Gaussian or
geometric distributions [28], where it is reasonable to restrict the
estimation of individual symbol statistics to the areaof the largest
statistical variations at the peak of the pdf. Thus, if, for instance,
a binary tree resulting from a Huffman code design would be
chosen as a binarization for such a source and its related pdf,
only the nodes located in the vicinity of the root node would
be natural candidates for being modeled individually, whereas a
joint model would be assigned to all nodes on deeper tree levels
corresponding to the “tail” of the pdf. Note that this design is
different from the example given in Fig. 2, where each (internal)
node has its own model.

In the CABAC framework, typically only the root node would
be modeled using higher order conditional probabilities. In the
above example of a second-order model, this would result in
only four different binary probability models instead of dif-
ferent -ary probability models with .

2) Design of CABAC Binarization Schemes:As already
indicated above, a binary representation for a given nonbinary
valued syntax element provided by the binarization process
should be close to a minimum-redundancy code. On the one
hand, this allows easy access to the most probable symbols by
means of the binary decisions located at or close to the root
node for the subsequent modeling stage. On the other hand,
such a code tree minimizes the number of binary symbols to
encode on the average, hence minimizing the computational
workload induced by the binary arithmetic coding stage.

However, instead of choosing a Huffman tree for a given
training sequence, the design of binarization schemes in
CABAC (mostly) relies on a few basic code trees, whose struc-
ture enables a simple on-line computation of all code words
without the need for storing any tables. There are four such
basic types: theunary code, the truncated unary code, the th
order Exp-Golomb code, and thefixed-length code. In addition,
there are binarization schemes based on a concatenation of

2A more rigorous treatment of that problem can be found in [23] and [24]

Fig. 3. Construction ofkth order EGk code for a given unsigned integer
symbolx.

these elementary types. As an exception of these structured
types, there are five specific, mostly unstructured binary trees
that have been manually chosen for the coding of macroblock
types and submacroblock types. Two examples of such trees
are shown in Fig. 2.

In the remaining part of this section, we explain in more detail
the construction of the four basic types of binarization and its
derivatives.

Unary and Truncated Unary Binarization Scheme: For each
unsigned integer valued symbol , the unary code word
in CABAC consists of “1” bits plus a terminating “0” bit. The
truncated unary (TU) code is only defined forwith ,
where for the code is given by the unary code, whereas
for the terminating “0” bit is neglected such that the TU
code of is given by a codeword consisting of“1” bits
only.

th order Exp-Golomb Binarization Scheme:Exponential
Golomb codes were first proposed by Teuhola [29] in the
context of run-length coding schemes. This parameterized
family of codes is a derivative of Golomb codes, which have
been proven to be optimal prefix-free codes for geometrically
distributed sources [30]. Exp-Golomb codes are constructed by
a concatenation of a prefix and a suffix code word. Fig. 3 shows
the construction of the th order Exp-Golomb (EGk) code
word for a given unsigned integer symbol. The prefix part of
the EGk code word consists of a unary code corresponding to
the value of .

The EGk suffix part is computed as the binary representation
of using significant bits, as can be
seen from the pseudo-C code in Fig. 3.

Consequently, for the EGk binarization, the number of sym-
bols having the same code length of is ge-
ometrically growing. By inverting Shannon’s relationship be-
tween ideal code length and symbol probability, we can, e.g.,
easily deduce that EG0 is the optimal code for a pdf

with . This implies that for an appropri-
ately chosen parameter, the EGk code represents a fairly good
first-order approximation of the ideal prefix-free code for tails
of typically observed pdf’s, at least for syntax elements that are
representing prediction residuals.

Fixed-Length (FL) Binarization Scheme: For the application
of FL binarization, a finite alphabet of values of the corre-
sponding syntax element is assumed. Letdenote a given
value of such a syntax element, where . Then, the

624 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

FL code word of is simply given by the binary representation
of with a fixed (minimum) number of bits.
Typically, FL binarization is applied to syntax elements with a
nearly uniform distribution or to syntax elements, where each
bit in the FL binary representation represents a specific coding
decision as e.g., in the part of the coded block pattern symbol
related to the luminance residual data.

Concatenation of Basic Binarization Schemes: From the
basic binarization schemes as described above, three more bi-
narization schemes are derived. The first one is a concatenation
of a 4-bit FL prefix as a representation of the luminance related
part of the coded block pattern and a TU suffix with rep-
resenting the chrominance related part of coded_block_pattern.

Both the second and third concatenated scheme are derived
from the TU and the EGk binarization. These schemes, which
are referred to asUnary/ th order Exp-Golomb(UEGk) bina-
rizations, are applied to motion vector differences and absolute
values of transform coefficient levels. The design of these con-
catenated binarization schemes is motivated by the following
observations. First, the unary code is the simplest prefix-free
code in terms of implementation cost. Secondly, it permits a
fast adaptation of the individual symbol probabilities in the sub-
sequent context modeling stage, since the arrangement of the
nodes in the corresponding tree is typically such that with in-
creasing distance of the internal nodes from the root node the
corresponding binary probabilities are less skewed.3 These ob-
servations are only accurate for small values of the absolute
motion vector differences and transform coefficient levels. For
larger values, there is not much use of an adaptive modeling
leading to the idea of concatenating an adapted truncated unary
tree as a prefix and a static Exp-Golomb code tree as a suffix.
Typically, for larger values, the EGk suffix part represents al-
ready a fairly good fit to the observed probability distribution,
as already mentioned above. Thus, it is reasonable to speedup
the encoding of the bins related to the EGk suffix part in CABAC
by using the fast bypass coding engine for uniformly distributed
bins, as further described in Section III-D.

For motion vector differences, UEGk binarization is con-
structed as follows. Let us assume the value of a motion
vector component is given. For the prefix part of the UEGk
bin string, a TU binarization with a cutoff value of is
invoked for . If is equal to zero, the bin
string consists only of the prefix code word “0”. If the condition

holds, the suffix is constructed as an EG3 codeword
for the value of , to which the sign of is
appended using the sign bit “1” for a negative and the sign
bit “0” otherwise. For values with , the
suffix consists only of the sign bit. Noting that the component
of a motion vector difference represents the prediction error at
quarter-sample accuracy, the prefix part always corresponds to
a maximum error component of samples. With the choice
of the Exp-Golomb parameter , the suffix code words are
given such that a geometrical increase of the prediction error
in units of two samples is captured by a linear increase in the
corresponding suffix code word length.

3The aspect of a suitable ordering of nodes in binary trees for optimal mod-
eling and fast adaptation has been addressed in [31], although in a slightly dif-
ferent context.

TABLE I
UEG0 BINARIZATION FOR ENCODING OF ABSOLUTE VALUES OF

TRANSFORMCOEFFICIENTLEVELS

UEGk binarization of absolute values of transform coefficient
levels (abs_level) is specified by the cutoff value for
the TU prefix part and the order for the EGk suffix
part. Note that the binarization and subsequent coding process
is applied to the syntax element

, since zero valued transform coefficient levels are
encoded using a significance map, as described in more detail
in Section III-B. The construction of a bin string for a given
value of coeff_abs_value_minus1 is similar to the construction
of UEGk bin strings for the motion vector difference compo-
nents except that no sign bit is appended to the suffix. Table I
shows the corresponding bin strings for values of abs_level from
1 to 20, where the prefix parts are highlighted in gray shaded
columns.

B. Context Modeling

One of the most important properties of arithmetic coding is
the possibility to utilize a clean interface between modeling and
coding such that in the modeling stage, a model probability dis-
tribution is assigned to the given symbols, which then, in the
subsequent coding stage, drives the actual coding engine to gen-
erate a sequence of bits as a coded representation of the sym-
bols according to the model distribution. Since it is the model
that determines the code and its efficiency in the first place, it is
of paramount importance to design an adequate model that ex-
plores the statistical dependencies to a large degree and that this
model is kept “up to date” during encoding. However, there are
significant model costs involved by adaptively estimating higher
order conditional probabilities.

Suppose a pre-defined setof past symbols, a so-calledcon-
text template, and a related set of contexts
is given, where the contexts are specified by amodeling func-
tion operating on the template. For each symbol

to be coded, a conditional probability is estimated
by switching between different probability models according to
the already coded neighboring symbols . After encoding

MARPE et al.: CABAC IN THE H.264/AVC VIDEO COMPRESSION STANDARD 625

Fig. 4. Illustration of a context template consisting of two neighboring syntax
elementsA andB to the left and on top of the current syntax elementC.

using the estimated conditional probability , the prob-
ability model is updated with the value of the encoded symbol

. Thus, is estimated on the fly by tracking the ac-
tual source statistics. Since the numberof different conditional
probabilities to be estimated for an alphabet size ofis equal to

, it is intuitively clear that the model cost, which
represents the cost of “learning” the model distribution, is pro-
portional to .4 This implies that by increasing the numberof
different context models, there is a point where overfitting of the
model may occur such that inaccurate estimates of
will be the result.

In CABAC, this problem is solved by imposing two severe re-
strictions on the choice of the context models. First, very limited
context templates consisting of a few neighbors of the current
symbol to encode are employed such that only a small number
of different context models is effectively used. Second, as
already motivated in the last section, context modeling is re-
stricted to selected bins of the binarized symbols. As a result,
the model cost is drastically reduced, even though the ad-hoc
design of context models under these restrictions may not re-
sult in the optimal choice with respect to coding efficiency. In
fact, in a recently conducted research, it has been shown that
additional gains can be obtained by applying the novel GRASP
algorithm for an optimized selection of context models using
larger context templates within the CABAC framework [31].
However, the improvements are quite moderate compared to
the drastic increase in complexity required for performing the
two-pass GRASP algorithm.

Four basic design types of context models can be distin-
guished in CABAC. The first type involves a context template
with up to two neighboring syntax elements in the past of the
current syntax element to encode, where the specific definition
of the kind of neighborhood depends on the syntax element.
Usually, the specification of this kind of context model for a
specific bin is based on a modeling function of the related bin
values for the neighboring element to the left and on top of the
current syntax element, as shown in Fig. 4.

The second type of context models is only defined for
the syntax elements of mb_type and sub_mb_type. For
this kind of context models, the values of prior coded bins

are used for the choice of a model for
a given bin with index . Note that in CABAC these context
models are only used to select different models for different
internal nodes of the corresponding binary trees, as already
discussed in Section II-A.

4Rissanen derived a refinement of that model cost measure by also taking
into account that the precision of estimating the probabilities increases with the
number of observations [24]

TABLE II
SYNTAX ELEMENTS AND ASSOCIATEDRANGE OFCONTEXT INDICES

Both the third and fourth type of context models is applied
to residual data only. In contrast to all other types of context
models, both types depend on the context categories of different
block types, as specified below. Moreover, the third type does
not rely on past coded data, but on the position in the scanning
path. For the fourth type, modeling functions are specified that
involve the evaluation of the accumulated number of encoded
(decoded) levels with a specific value prior to the current level
bin to encode (decode).

Besides these context models based on conditional probabili-
ties, there are fixed assignments of probability models to bin in-
dices for all those bins that have to be encoded in regular mode
and to which no context model of the previous specified cate-
gories is applied.

The entity of probability models used in CABAC can be ar-
ranged in a linear fashion such that each model can be iden-
tified by a unique so-calledcontext index . Table II contains
an overview of the syntax elements in H.264/AVC and its re-
lated context indices. The numbering of indices was arranged in
such a way that the models related to mb_type, sub_mb_type,
and mb_skip_flag for different slice types are distinguished by
their corresponding indices. Although the ordering of models in
Table II is clearly not the most economical way of housekeeping
the models in CABAC, it serves the purpose of demonstrating
the conceptual idea.

Each probability model related to a given context index
is determined by a pair of two values, a 6-bitprobability state
index and the (binary) value of themost probable symbol
(MPS), as will be further described in Section III-C. Thus, the
pairs (,) for and hence the models them-
selves can be efficiently represented by 7-bit unsigned integer
values.

The context indices in the range from 0 to 72 are related to
syntax elements of macroblock type, submacroblock type, and
prediction modes of spatial and of temporal type as well as
slice-based and macroblock-based control information. For this

626 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

TABLE III
VALUES OFCONTEXT INDEX OFFSET� DEPENDING ONCONTEXT CATEGORY

(AS SPECIFIED IN TABLE IV) AND SYNTAX ELEMENT

type of syntax elements, a corresponding context indexcan be
calculated as

(1)

where denotes the so-calledcontext index offset, which is
defined as the lower value of the range given in Table II, and
denotes thecontext index incrementof a given syntax element

. Note that the variable may depend only on the bin index,
in which case a fixed assignment of probability model is given,
or alternatively, it may specify one of the first or second type of
context models, as given above. The notation introduced in (1)
will be used in Section III-A for a more detailed description of
the context models for syntax elements of the above given type.

Context indices in the range from 73 to 398 are related to the
coding of residual data.5 Two sets of context models are speci-
fied for the syntax elements significant_coeff_flag and last_sig-
nificant_coeff_flag, where the coding of both syntax elements
is conditioned on the scanning position as further described in
Section III-B. Since in macroblock adaptive frame/field coded
frames, the scanning pattern depends on the mode decision of
a frame/field coded macroblock, separate sets of models have
been defined for both modes. The range values in the lower row
of the corresponding syntax elements in Table II specify the con-
text indices for field-based coding mode. Note that in pure frame
or field coded pictures only 277 out of the total number of 399
probability models are actually used.

The context index for coded_block_pattern is specified by the
relation of (1), whereas for all other syntax elements of residual
data, a context index is given by

(2)

where in addition to the context index offset thecontext cat-
egory(ctx_cat) dependent offset is employed. The specifi-
cation of the context categories and the related values ofare
given in Tables III and IV. By using the notation of (2), a more
detailed description of the context models for syntax elements
of residual data will be given in Section III-B.

Note that for the context-modeling process only past coded
values of syntax elements are evaluated that belong to the same
slice, where the current coding process takes place. It is also
worth noting that regardless of the type of context model, con-
ditioning is always confined to syntax element values such that
the entropy encoding/decoding process can be completely de-
coupled from the rest of the encoding/decoding operations in a
H.264/AVC encoder/decoder.

5As an exception, context index
 = 276 is related to the end of slice flag.

TABLE IV
BASIC BLOCK TYPESWITH NUMBER OF COEFFICIENTS ANDASSOCIATED

CONTEXT CATEGORIES

C. Binary Arithmetic Coding

Binary arithmetic coding is based on the principle of recursive
interval subdivision that involves the following elementary mul-
tiplication operation. Suppose that an estimate of the probability

of theleast probable symbol(LPS) is given and
that the given interval is represented by its lower boundand
its width (range) . Based on that settings, the given interval is
subdivided into two subintervals: one interval of width

(3)

which is associated with the LPS, and the dual interval of width
, which is assigned to the most probable

symbol (MPS) having a probability estimate of . De-
pending on the observed binary decision, either identified as the
LPS or the MPS, the corresponding subinterval is then chosen
as the new current interval. A binary value pointing into that in-
terval represents the sequence of binary decisions processed so
far, whereas the range of that interval corresponds to the product
of the probabilities of those binary symbols. Thus, to unambigu-
ously identify that interval and hence the coded sequence of bi-
nary decisions, the Shannon lower bound on the entropy of the
sequence is asymptotically approximated by using the minimum
precision of bits specifying the lower bound of the final interval.

In a practical implementation of binary arithmetic coding,
the main bottleneck in terms of throughput is the multiplication
operation in (3) required to perform the interval subdivision.
A significant amount of work has been published in literature
aimed at speeding up the required calculation in (3) by intro-
ducing some approximations of either the rangeor of the
probability such that the multiplication can be avoided
[32]–[34]. Among these low-complexity binary arithmetic
coding methods, the Q coder [32] and its derivatives QM and
MQ coder [35] have attracted great attention, especially in the
context of the still image coding standardization groups JPEG
and JBIG.

Although the MQ coder represents the state-of-the-art in
fast binary arithmetic coding, we found that it considerably
degrades coding efficiency, at least in the application scenario
of H.264/AVC video coding [36]. Motivated by this obser-
vation, we have designed an alternative multiplication-free

MARPE et al.: CABAC IN THE H.264/AVC VIDEO COMPRESSION STANDARD 627

binary arithmetic coding scheme, the so-calledmodulo coder
(M coder), which can be shown to have negligible performance
degradation in comparison to a conventional binary arithmetic
coder as, e.g., proposed in [37]. At the same time, our novel
design of the M coder has been shown to provide a higher
throughput rate than the MQ coder when compared in a
software-based implementation [36].

The basic idea of our multiplication-free approach to
binary arithmetic coding is to project both the legal range

of interval width and the probability range
associated with the LPS onto a small set of representative
values and ,
respectively. By doing so, the multiplication on the right-hand
side of (3) can be approximated by using a table of
pre-computed product values for
and . For the regular arithmetic core engine
in H.264/AVC, a good tradeoff between a reasonable size of
the corresponding table and a sufficiently good approximation
of the “exact” interval subdivision of (3) was found by using a
set of quantized range values together with a setof

LPS related probability values, as described in more
details in Sections III-C and III-D.

Another distinct feature of the binary arithmetic coding en-
gine in H.264/AVC, as already mentioned above, is its simpli-
fied bypass coding mode. This mode is established for specific
syntax elements or parts thereof, which are assumed to be nearly
uniformly distributed. For coding this kind of symbol in by-
pass mode, the computationally expensive probability estima-
tion will be completely omitted.

III. D ETAILED DESCRIPTION OFCABAC

This section provides detailed information for each syntax el-
ement regarding the specific choice of a binarization scheme
and the associated context models for each bin of the corre-
sponding bin string. For that purpose, the syntax elements are
divided into two categories. The first category, which is de-
scribed in Section III-A, contains the elements related to mac-
roblock type, submacroblock type, and information of predic-
tion modes both of spatial and of temporal type as well as slice-
and macroblock-based control information. In the second cate-
gory, which is described in Section III-B, all residual data ele-
ments, i.e., all syntax elements related to the coding of transform
coefficients are combined.

In addition, a more detailed explanation of the probability es-
timation process and the table-based binary arithmetic coding
engine of CABAC is given in Sections III-C and III-D, respec-
tively.

A. Coding of Macroblock Type, Prediction Mode, and Control
Information

1) Coding of Macroblock and Submacroblock Type:At
the top level of the macroblock layer syntax the signaling of
mb_skip_flag and mb_type is performed. The binary-valued
mb_skip_flag indicates whether the current macroblock in a
P/SP or B slice is skipped, and if it is not (i.e., mb_skip_flag

) further signaling of mb_type specifies the chosen mac-
roblock type. For each 88 submacroblock of a macroblock

coded in “P_8 8” or “B_8 8” mode, an additional syntax
element (sub_mb_type) is present that specifies the type of the
corresponding submacroblock. In this section, we will restrict
our presentation to the coding of mb_type, mb_skip_flag, and
sub_mb_type in P/SP slices only; for more information, the
reader is referred to [1].

Macroblock Skip Flag:For coding of the mb_skip_flag, sta-
tistical dependencies between neighboring values of the syntax
element mb_skip_flag are exploited by means of a simple but
effective context design. For a given macroblock, the related
context models involve the mb_skip_flag values of the neigh-
boring macroblocks to the left (denoted by) and on top of
(denoted by). More specifically, the corresponding context
index increment is defined by

(4)

If one or both of the neighboring macroblocks (or)
are not available (e.g., because they are outside of the current
slice), the corresponding mb_skip_flag value in (4) is set
to 0.6

Macroblock Type: As already stated above, for the bina-
rization of mb_type and sub_mb_type specifically designed
binarization schemes are used. Fig. 2(a) and (b), respectively,
shows the corresponding binarization trees for mb_type and
sub_mb_type that are used in P or SP slices, where the terminal
nodes of the trees correspond to the symbol values of the syntax
element and the concatenation of the binary decisions on the
way from the root node to the corresponding terminal node
represents the bin string of the corresponding symbol value.
Note that the mb_type value of “4” for P slices is not used
in CABAC entropy coding mode. For the values “5”–“30” of
mb_type, which represent the intra macroblock types in a P
slice, the corresponding bin strings consist of a concatenation
of the prefix bin string “1”, as shown in Fig. 2, and a suffix bin
string, which is further specified in [1].

For coding a bin value corresponding to the binary decision
at an internal node as shown in Fig. 2, separate context models
denoted by for mb_type and , , for
sub_mb_type are employed.

2) Coding of Prediction Modes:Since all samples of a mac-
roblock are predicted, the corresponding prediction modes have
to be transmitted. For a macroblock coded in intra mode, these
syntax elements are given by the intra prediction modes for both
luminance and chrominance, whereas for an inter coded mac-
roblock the reference picture index/indices together with their
related motion vector component differences have to be sig-
naled.

Intra Prediction Modes for Luma4 4: The luminance
intra prediction modes for 44 blocks are itself predicted
resulting in the syntax elements of the binary-valued
prev_intra4 4_pred_mode_flag and the mode indicator
rem_intra4 4_pred_mode, where the latter is only present if
the former takes a value of 0. For coding these syntax elements,

6In the following, the information about the “exception handling” in the def-
inition of the context index increments will be (mostly) neglected. For filling
that information gap, the interested reader is referred to [1].

628 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

two separate probability models are utilized: one for coding of
the flag and another for coding each bin value of the 3-bit FL
binarized value of rem_intra44_pred_mode.

Intra Prediction Modes for Chroma: Spatially neighboring
intra prediction modes for the chrominance typically exhibits
some correlation, which are exploited by a simple context de-
sign that relies on the related modes of the neighboring mac-
roblocks to the left and on top of the current macroblock.
However, not the modes of the neighbors itself are utilized for
specifying the context model, but rather the binary-valued in-
formation ChPredInDcMode, which signals whether the cor-
responding mode takes the typically observed most probable
mode given by the value “0” (DC prediction). Thus, the corre-
sponding context index increment for a given MB

is defined by

(5)

This context design results in three models, which are only
applied to the coding of the value representing the first bin of
the TU binarization of the current value of the syntax element
intra_chroma_pred_mode to encode. Since the value of the first
bin carries the ChPredInDcMode information of the cur-
rent macroblock , it is reasonable to restrict the application of
the three models defined by (5) to this bin only. For the two re-
maining bins, an additional (fixed) probability model is applied.

Reference Picture Index: The same design principle as before
was applied to the construction of the context models for the
reference picture index ref_idx.7 First, the relevant information
for conditioning the first bin value of ref_idx is extracted from
the reference picture indices of the neighboring macroblock or
submacroblock partitions to the left and on top of the cur-
rent partition . This information is appropriately condensed in
the binary flagRefIdxZeroFlag, which indicates whether ref_idx
with value 0 is chosen for the corresponding partition. As a
slight variation, the related context index increment was chosen
to represent four instead of three models as in the previously
discussed context designs

Application of these context models to the first bin of the
unary binarized reference picture index is complemented by the
usage of two additional probability models for encoding of the
values related to the second and all remaining bins.

Components of Motion Vector Differences: Motion vector dif-
ferences are prediction residuals, for which a context model is
established in CABAC that is based on the local prediction error.
Let denote the value of a motion vector differ-
ence component of direction re-
lated to a macroblock or submacroblock partition. Then, the
related context index increment for a given mac-

7For clarity of presentation, the reference picture list suffices l0 and l1 are
suppressed in the following exposition, both for the reference picture index and
the motion vector difference.

roblock or submacroblock partition and component () is
determined by

if
if
if

(6)

where and represent the corresponding macroblock or
submacroblock partitions to the left and on the top of the
regarded macroblock or submacroblock partition, respec-
tively.8 in (6) is only applied for the selection
of the probability model that is used to code the value of the
first bin of the binarized value of . Binarization
of motion vector differences is achieved by applying the UEG3
binarization scheme with a cutoff value of 9. That implies,
in particular, that only the unary prefix part is encoded in
regular coding mode, where four additional context models are
employed for coding the values related to the second, third,
fourth, and fifth to ninth bin of the prefix part. The values of
the bins related to the Exp-Golomb suffix part including the
sign bit are encoded using the bypass coding mode.

3) Coding of Control Information:Three additional syntax
elements are signaled at the macroblock or macroblock pair
level, which we refer to as control information. These elements
are given by mb_qp_delta, end_of_slice_flag, and mb_field_de-
coding_flag.

Macroblock-based Quantization Parameter Change: For
updating the quantization parameter on a macroblock level,
mb_qp_delta is present for each nonskipped macroblock with
a value of coded_block_pattern unequal to 0.9 For coding
the signed value of this syntax element for a given
macroblock in CABAC, is first mapped onto a positive
value by using the relation

Then, is binarized using the unary binarization
scheme. For encoding the value of the corresponding first
bin, a context model is selected based on the binary decision

for the preceding macroblock of in decoding
order. This results in two probability models for the first bin,
whereas for the second and all remaining bins, two additional
probability models are utilized.

End of Slice Flag: For signaling the last macroblock (or mac-
roblock pair) in a slice, the end_of_slice_flag is present for each
macroblock (pair). It is encoded using a specifically designed
nonadaptive probability model such that the event of a nonter-
minating macroblock (pair) is related to the highest possible
MPS probability (see Section III-C for more details on the re-
lated probability model).

Macroblock Pair Field Flag: In macroblock adaptive
frame/field coded frames, the mb_field_decoding_flag signals
for each macroblock pair whether it is coded in frame or

8The precise definition of a neighboring partition used for context modeling
of both the reference picture index and the motion vector difference is given in
[1].

9For macroblocks coded in an “intra_16�16” prediction mode, the syntax
element mb_qp_delta is always present.

MARPE et al.: CABAC IN THE H.264/AVC VIDEO COMPRESSION STANDARD 629

field coding mode. For coding this flag in CABAC, spatial
correlations between the coding mode decisions of neighboring
macroblock pairs are exploited by choosing between three
probability models. For a given macroblock pair, the selec-
tion of the corresponding model is performed by means of the
related context index increment , which is defined
as

Here, and represent the corresponding macroblock pairs to
the left and on the top of the current macroblock pair.

B. Coding of Residual Data

1) Characteristic Features:For the coding of residual data
within the H.264/AVC standard specifically designed syntax el-
ements are used in CABAC entropy coding mode. These ele-
ments and their related coding scheme are characterized by the
following distinct features.

• A one-bit symbol coded_block_flag and a binary-valued
significance map are used to indicate the occurrence and
the location of nonzero transform coefficients in a given
block.

• Non-zero levels are encoded in reverse scanning order.
• Context models for coding of nonzero transform coeffi-

cients are chosen based on the number of previously trans-
mitted nonzero levels within the reverse scanning path.

2) Encoding Process for Residual Data:Fig. 5 illustrates
the CABAC encoding scheme for a single block of transform
coefficients.

First, the coded block flag is transmitted for the given block of
transform coefficients unless the coded block pattern or the mac-
roblock mode indicates that the regarded block has no nonzero
coefficients. If the coded block flag is zero, no further informa-
tion is transmitted for the block; otherwise, a significance map
specifying the positions of significant coefficients is encoded.
Finally, the absolute value of the level as well as the sign is en-
coded for each significant transform coefficient. These values
are transmitted in reverse scanning order.

In the following, a more detailed description of each of
the major building blocks of Fig. 5 is given together with a
brief specification of the CABAC encoding procedure for the
coded_block_pattern symbol.

Coded Block Pattern: For each nonskipped macroblock
with prediction mode not equal to intra_1616, the
coded_block_pattern symbol indicates which of the six 88
blocks—four for luminance and two for chrominance—contain
nonzero transform coefficients. A given value of the syntax ele-
ment coded_block_pattern is binarized using the concatenation
of a 4-bit FL and a TU binarization with cutoff value , as
already noted in Section II-A.

Coded Block Flag: coded_block_flag is a one-bit symbol,
which indicates if there are significant, i.e., nonzero coef-
ficients inside a single block of transform coefficients, for
which the coded block pattern indicates nonzero entries. If
coded_block_flag is zero, no further information is transmitted
for the related block.

Fig. 5. Flow diagram of the CABAC encoding scheme for a block of transform
coefficients.

Scanning of Transform Coefficients: The 2-D arrays of
transform coefficient levels of those subblocks for which the
coded_block_flag indicates nonzero entries are first mapped
onto a one-dimensional list using a given scanning pattern.

Significance Map: If the coded_block_flag indicates that a
block has significant coefficients, a binary-valued significance
map is encoded. For each coefficient in scanning order, a
one-bit symbol significant_coeff_flag is transmitted. If the
significant_coeff_flag symbol is one, i.e., if a nonzero coeffi-
cient exists at this scanning position, a further one-bit symbol
last_significant_coeff_flag is sent. This symbol indicates if the
current significant coefficient is the last one inside the block
or if further significant coefficients follow. Table V shows an
example for the significance map encoding procedure.

Note that the flags (significant_coeff_flag, last_signifi-
cant_coeff_flag) for the last scanning position of a block are
never transmitted. If the last scanning position is reached and
the significance map encoding was not already terminated by
a last_significant_coeff_flag with value one, it is obvious that
the last coefficient has to be significant.

Level Information: The encoded significance map determines
the locations of all significant coefficients inside a block of
quantized transform coefficients. The values of the significant
coefficients (levels) are encoded by using two coding symbols:
coeff_abs_level_minus1 (representing the absolute value of

630 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

TABLE V
EXAMPLE FOR ENCODING THE SIGNIFICANCE MAP

the level minus 1), and coeff_sign_flag (representing the sign
of levels). While coeff_sign_flag is a one-bit symbol (with
values of 1 for negative coefficients), the UEG0 binarization
scheme, as depicted in Table I is used for encoding the values of
coeff_abs_level_minus1. The levels are transmitted in reverse
scanning order (beginning with the last significant coefficient
of the block) allowing the usage of reasonably adjusted context
models, as described in the next paragraph.

3) Context Models for Residual Data:In H.264/AVC
residual data coding, there are 12 different types of transform
coefficient blocks (denoted by BlockType in left column of
Table IV), which typically have different kinds of statistics.

However, for most sequences and coding conditions some of
the statistics are very similar. To keep the number of different
context models used for coefficient coding reasonably small, the
block types are classified into five categories as specified in the
right column of Table IV. For each of these categories, a special
set of context models is used for all syntax elements related
to residual data with the exception of coded_block_pattern, as
further described in the next paragraph.

Coded Block Pattern: Since each of the bits in the bin string
of coded_block_pattern represents a coding decision of a cor-
responding block of transform coefficients, the chosen proba-
bility models for that syntax element depend on the bin index.
For bin indices from 0 to 3 corresponding to the four 88 lu-
minance blocks, the context index increment for a given
8 8 block related to bin index bin_idx is given by

where and represent the bit of the
coded block pattern corresponding to the 88 blocks to the
left and on the top of the regarded block, respectively.

For each of the bin indices 4 and 5, which are related
to the two “chrominance” bins in the binarized value of
coded_block_pattern, a similar context assignment rule as for
the luminance bins is defined such that for both bin indices
together eight additional probability models are specified [1].

Coded Block Flag: Coding of the coded_block_flag utilizes
four different probability models for each of the five cate-
gories as specified in Table IV. The context index increment

for a given block is determined by

(7)

where and represent the corresponding blocks of the
same type to the left and on the top of the regarded block

, respectively. Only blocks of the same type are used for

context determination. The following block types are differen-
tiated: Luma-DC, Luma-AC, Chroma-U-DC, Chroma-U-AC,
Chroma-V-DC, and Chroma-V-AC. If no neighboring block

(or) of the same type exists (e.g., because the current
block is intra_16 16 coded and the neighboring block is
inter coded), the corresponding value in
(7) is set to 0. If a neighboring block (or) is outside the
picture area or positioned in a different slice, the corresponding

value is replaced by a default value. If
the current block is coded using an intra prediction mode,
a default value of one is used; otherwise, a default value of
zero is used. Thus, while six block types are distinguished
for determining the context increment, five different sets of
models (each for one category specified in the right column
of Table IV) are used for encoding the coded block flag. This
results in a total number of 20 different probability models for
the coded_block_flag bit.

Significance Map: For encoding the significance map, up to
15 different probability models are used for both the signifi-
cant_coeff_flag and the last_significant_coeff_flag. The choice
of the models and thus the corresponding context index incre-
ments and depend on the scanning position, i.e.,
for a coefficient , which is scanned at theth position,
the context index increments are determined as follows:

Depending on the maximum number of coefficients
(MaxNumCoeff) for each context category as given in Table IV,
this results in MaxNumCoeff-1 different contexts. Thus, a
total number of 61 different models for both the signifi-
cant_coeff_flag and the last_significant_coeff_flag is reserved.

Level Information: Reverse scanning of the level information
allows a more reliable estimation of the statistics, because at the
end of the scanning path it is very likely to observe the occur-
rence of successive so-called trailing 1’s, i.e., transform coeffi-
cient levels with absolute value equal to 1. Consequently, for en-
coding coeff_abs_level_minus1, two adequately designed sets
of context models are used: one for the first bin (with bin index
0) and another one for the remaining bins of the UEG0 prefix
bin string with indices 1 to 13.

Let denote the accumulated number of already
encoded/decoded trailing 1’s, and let denote the
accumulated number of encoded/decoded levels with absolute
value greater than 1, where both counters are related to the cur-
rent scanning positionwithin the processed transform coeffi-
cient block. Note that both counters are initialized with the value
of 0 at the beginning of the reverse scanning of levels and that
the numbers of both counters are monotonically increasing with
decreasing scanning indexalong the backward scanning path.
Then, the context for the first bin of coeff_abs_level_minus1 is
determined by the current value NumT1, where the following
additional rules apply. If more than three past coded coeffi-
cients have an absolute value of 1, the context index increment
of three is always chosen. When a level with an absolute value
greater than 1 has been encoded, i.e., when NumLgt1 is greater
than 0, a context index increment of 4 is used for all remaining
levels of the regarded block. Thus, for encoding the first bin

MARPE et al.: CABAC IN THE H.264/AVC VIDEO COMPRESSION STANDARD 631

TABLE VI
EXAMPLE FOR DETERMINATION OF CONTEXT INDEX INCREMENTS FOR

ENCODING THEABSOLUTEVALUES OF TRANSFORMCOEFFICIENTLEVELS

with bin_index , as shown in the second (light gray-shaded)
column of Table I, the corresponding context index increment

bin index at the scanning positionis given
as

bin index

if
otherwise.

For encoding the bins with bin index (as shown
in the dark gray-shaded columns in Table I), the context index
increment bin index is determined by NumLgt1
with a maximum context index increment of 4, i.e.,

bin index

bin index

For all bins of the UEG0 suffix part of
coeff_abs_level_minus1 (with bin index greater than 13) as
well as for the sign information coeff_sign_flag, the bypass
coding mode is used for all block types. Thus, the total
number of different probability models for encoding the level
information is 49.10

Table VI shows an example of the determination of the con-
text index increment bin index) used for encoding
the absolute value of levels of significant transform coefficients.
Note that the transform coefficient levels are processed in re-
verse scanning order, i.e., from the ninth position to the first
position in scanning order.

C. Probability Estimation

As outlined in Section II-C, the basic idea of the new multi-
plication-free binary arithmetic coding scheme for H.264/AVC
relies on the assumption that the estimated probabilities of each
context model can be represented by a sufficiently limited set
of representative values. For CABAC, 64 representative proba-
bility values were derived for the LPS by
the following recursive equation:

(8)

Here, both the chosen scaling factor and the cardi-
nality of the set of probabilities represent a good com-
promise between the desire for fast adaptation (; small

10Note that for the chrominance DC blocks, there are only four different
models for the bins of coeff_abs_level_minus1 with indices 1 to 13, since at
maximum four nonzero levels are transmitted.

Fig. 6. LPS probability values and transition rules for updating the probability
estimation of each state after observing a LPS (dashed lines in left direction) and
a MPS (solid lines in right direction).

), on one hand, and the need for a sufficiently stable and ac-
curate estimate (; larger), on the other hand. Note that
unlike, e.g., in the MQ coder, there is no need to tabulate the
representative LPS probability values in
the CABAC approach. As further described below, each prob-
ability value is only implicitly addressed in the arithmetic
coding engine by its corresponding index.

As a result of this design, each context model in CABAC can
be completely determined by two parameters: its current esti-
mate of the LPS probability, which in turn is characterized by
an index between 0 and 63, and its value of being ei-
ther 0 or 1. Thus, probability estimation in CABAC is performed
by using a total number of 128 different probability states, each
of them efficiently represented by a 7-bit integer value. In fact,
one of the state indices is related to an autonomous,
nonadaptive state with a fixed value of MPS, which is only used
for encoding of binary decisions before termination of the arith-
metic codeword, as further explained below. Therefore, only
126 probability states are effectively used for the representation
and adaptation of all (adaptive) context models.

1) Update of Probability States:As already stated above, all
probability models in CABAC with one exception are (back-
ward) adaptive models, where an update of the probability esti-
mation is performed after each symbol has been encoded. Ac-
tually, for a given probability state, the update depends on the
state index and the value of the encoded symbol identified ei-
ther as a LPS or a MPS. As a result of the updating process, a
new probability state is derived, which consists of a potentially
modified LPS probability estimate and, if necessary, a modified
MPS value.

Fig. 6 illustrates the probability values
for the LPS estimates together with their corresponding transi-
tion rules for updating the state indices. In the event of a MPS,
a given state index is simply incremented by 1, unless a MPS
occurs at state index 62, where the LPS probability is already at
its minimum, or equivalently, the maximum MPS probability is
reached. In the latter case, the state index 62 remains fixed until
a LPS is seen, in which case the state index is changed by decre-
menting the state index by an amount illustrated by the dashed
line in Fig. 6. This rule applies in general to each occurrence of
a LPS with the following exception. Assuming a LPS has been

632 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

encoded at the state with index , which corresponds to the
equi-probable case, the state index remains fixed, but the MPS
value will be toggled such that the value of the LPS and MPS
will be interchanged. In all other cases, no matter which symbol
has been encoded, the MPS value will not be altered. The deriva-
tion of the transition rules for the LPS probability is based on
the following relation between a given LPS probability and
its updated counterpart :

if a MPS occurs
if a LPS occurs

where the value of is given as in (8).
With regard to a practical implementation of the probability

estimation process in CABAC, it is important to note that all
transition rules can be realized by at most two tables each
having 63 entries of 6-bit unsigned integer values. Actually,
it is sufficient to provide a single table TransIdxLPS, which
determines for a given state indexthe new updated state index

in case an LPS has been observed.11 The
MPS-driven transitions can be obtained by a simple (saturated)
increment of the state indexby the fixed value of 1 resulting
in an updated state index .

2) Initialization and Reset of Probability States:The basic
self-contained unit in H.264/AVC video coding is a slice. This
fact implies in particular certain restrictions on the backward
adaptation process of probability models as described in the
previous paragraph. Since the lifetime of the backward adap-
tation cannot exceed the duration of the whole slice encoding
process, which in turn may represent a substantial amount of
the whole adaptation process, all models have to be re-initial-
ized at the slice boundaries using some pre-defined probability
states. In the absence of any prior knowledge about the source,
one possible choice would be to initialize each model with
the equi-probable state. However, CABAC provides a built-in
mechanism for incorporating somea priori knowledge about
the source statistics in the form of appropriate initialization
values for each of the probability models. This so-called
initialization process for context modelsallows an adjustment
of the initial probability states in CABAC on two levels.

Quantization Parameter Dependent Initialization: On the
lower level of adjustment, there is a default set of initializa-
tion values, which are derived from the initially given slice
quantization parameter SliceQP, thus providing some kind of
pre-adaptation of the initial probability states to the different
coding conditions represented by the current value of the
SliceQP parameter.

Training sequences have been used to fit the initial probability
state of each model to the quantization parameter. By using a
linear regression, a pair of parameters (,) was obtained for
each probability model with context index ,

), from which the corresponding SliceQP dependent initial
probability state is derived during the initialization process by
applying the procedure shown in Fig. 7.

11The specific values of this state transition table can be found in [1].

Fig. 7. SliceQP dependent initialization procedure. First, one of the admissible
probability states� (numbered between 1 and 126) is derived from the given
parameters (� , �) and SliceQP. Then, in a second step� is translated into
the probability state index� and the value of the MPS($).

Slice-Dependent Initialization: The concept of a low-level
pre-adaptation of the probability models was generalized by
defining two additional sets of context initialization parame-
ters for those probability models specifically used in P and B
slices. In this way, the encoder is enabled to choose for these
slice types between three initialization tables such that a better
fit to different coding scenarios and/or different types of video
content can be achieved.12 This forward-adaptation process re-
quires the signaling of the chosen initialization table, which is
done by specifying the corresponding table index (0–2) in the
slice header. In addition, an increased amount of memory for
the storage of the initialization tables is required. However, ac-
cess to this memory of approximately 3 kB is needed only once
per slice. Note that a chosen initialization table triggers for each
probability model the same low-level SliceQP dependent initial-
ization procedure as described in the previous paragraph. De-
pending on the slice size and the bit rate which, in turn, depend
on the amount of data that can be used for the backward adapta-
tion process of the symbol statistics, bit-rate savings of up to 3%
have been obtained by using the instrument of slice-dependent
context initialization [13].

D. Table-Based Binary Arithmetic Coding

In this section, we present some more detailed information
about the binary arithmetic coding engine of H.264/AVC. Ac-
tually, the CABAC coding engine consists of two subengines,
one for the regular coding mode, which includes the utilization
of adaptive probability models, and another so-called “bypass”
coding engine for a fast encoding of symbols, for which an
approximately uniform probability is assumed to be given. The
following presentation of the basic features of the CABAC
coding engine also involves aspects of renormalization,
carry-over control, and termination.

1) Interval Subdivision in Regular Coding Mode:Fig. 8 il-
lustrates the binary arithmetic encoding process for a given bin
valuebinVal using the regular coding mode. The internal state
of the arithmetic encoding engine is as usual characterized by
two quantities: the current interval rangeand the base (lower
endpoint) of the current code interval. Note, however, that the
precision needed to store these registers in the CABAC engine
(both in regular and bypass mode) can be reduced up to 9 and
10 bits, respectively. Encoding of the given binary valuebinVal
observed in a context with probability state indexand value

12For a description of an example of the nonnormative table selection process,
please refer to [13].

MARPE et al.: CABAC IN THE H.264/AVC VIDEO COMPRESSION STANDARD 633

Fig. 8. Flow diagram of the binary arithmetic encoding process including the
updating process of probability estimation (in gray shaded boxes) for a single
bin value (binVal) using the regular coding mode.

of is performed in a sequence of four elementary steps
as follows.

In the first and major step, the current interval is subdivided
according to the given probability estimates. This interval subdi-
vision process involves three elementary operations as shown in
the topmost box of the flow diagram in Fig. 8. First, the current
interval range is approximated by a quantized value
using an equi-partition of the whole range into
four cells. But instead of using the corresponding representa-
tive quantized range values , , , and explicitly in
the CABAC engine, is only addressed by its quantizer
index , which can be efficiently computed by a combination of
a shift and bit-masking operation, i.e.,

Then, this index and the probability state indexare used
as entries in a 2-D table TabRangeLPS to determine the (approx-
imate) LPS related subinterval range , as shown in Fig. 8.
Here, the table TabRangeLPS contains all 644 pre-computed
product values for and in 8-bit
precision.13

Given the dual subinterval range for the MPS,
the subinterval corresponding to the given bin valuebinVal is
chosen in the second step of the encoding process. IfbinVal is
equal to the MPS value , the lower subinterval is chosen so that

is unchanged (right path of the branch in Fig. 8); otherwise,
the upper subinterval with range equal to is selected (left
branch in Fig. 8).

In the third step of the regular arithmetic encoding process
the update of the probability states is performed as described
in Section III-C (gray shaded boxes in Fig. 8), and finally, the
fourth step consists of the renormalization of the registersand

(“RenormE” box in Fig. 8) as further described below.

13For the specific values of TabRangeLPS, the reader is referred to [1].

Fig. 9. Flow diagram of the binary arithmetic encoding process for a single
bin value (binVal) using the bypass coding mode.

2) Bypass Coding Mode:To speed up the encoding (and de-
coding) of symbols, for which
is assumed to hold, the regular arithmetic encoding process as
described in the previous paragraph is simplified to a large ex-
tent. First, a “bypass” of the probability estimation and update
process is established, and second, the interval subdivision is
performed such that two equisized subintervals are provided in
the interval subdivision stage. But instead of explicitly halving
the current interval range , the variable is doubled before
choosing the lower or upper subinterval depending on the value
of the symbol to encode (0 or 1, respectively). In this way, dou-
bling of and in the subsequent renormalization is no longer
required provided that the renormalization in the bypass is op-
erated with doubled decision thresholds (see Fig. 9).

At this point, however, one might argue that ideally no
arithmetic operation would be required if the binary symbols
to encode would be directly written to the bitstream, i.e., if the
whole arithmetic coding engine would be bypassed. Since it is
by no means a trivial task to multiplex raw bits with an arith-
metic codeword without performing some kind of termination
of the codeword, and since the bypass coding mode is intended
to be used for symbols which, in general, are not grouped
together, this kind of “lazy coding mode” as e.g., established in
JPEG2000 [35] is ruled out in the present context.

3) Renormalization and Carry-Over Control:A renormal-
ization operation after interval subdivision is required whenever
the new interval range no longer stays within its legal range
of . Each time renormalization must be carried out, one
or more bits can be output. However, in certain cases, the po-
larity of the output bits will be resolved in subsequent output
steps, i.e., carry propagation might occur in the arithmetic en-
coder. For the CABAC engine, the renormalization process and
carry-over control of [37] was adopted. This implies, in partic-
ular, that the encoder has to resolve any carry propagation by
monitoring the bits that are outstanding for being emitted. More
details can be found in [1].

4) Termination of Arithmetic Code Word:A spe-
cial fixed, i.e., nonadapting probability state with index

was designed such that the associated table entries
, and hence are determined by a

fixed value of 2 regardless of the given quantized range index
. This guarantees that for the terminating syntax element in

a slice which, in general, is given by the LPS value of the end

634 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

TABLE VII
INTERLACED TEST SEQUENCES

of slice flag,14 7 bits of output are produced in the related
renormalization step. Two more disambiguating bits are needed
to terminate the arithmetic codeword for a given slice. By
preventing the decoder from performing a renormalization after
recovering the terminating syntax element, the decoder never
reads more bits than were actually produced by the encoder for
that given slice.

IV. EXPERIMENTAL RESULTS

In our experiments for evaluating the coding efficiency of
CABAC, we addressed the coding of television sequences for
broadcast, a typical target application for the Main profile of
H.264/AVC. The set of interlaced standard definition sequences
used for testing CABAC is listed in Table VII.

All simulations were performed using the Main profile of
H.264/AVC. An IDR-picture was inserted every 500 ms and two
nonreference B frames were inserted between each pair of an-
chor frames. The motion search was conducted in a range of

samples for three reference frames.
All encoding mode decisions including the motion search, the
macroblock mode decision, and the macroblock and picture-
based frame/field decision were performed using the simple and
effective Lagrangian coder control presented in [38]. Bit rates
were adjusted by using fixed values of the quantization param-
eter (QP) for an entire sequence. The value of QP for B pictures
was set to , where is the
quantization parameter for I and P pictures.

In our experiments, we compare the coding efficiency of
CABAC to the coding efficiency of the baseline entropy coding
method of H.264/AVC. The baseline entropy coding method
uses the zero-order Exp-Golomb code for all syntax elements
with the exception of the residual data, which are coded using
the coding method of CAVLC [1], [2].

In Fig. 10, the bit-rate savings of CABAC relative to the de-
fault entropy coding method of H.264/AVC are shown against
the average PSNR of the luminance component for the five in-
terlaced sequences of the test set. It can be seen that CABAC
significantly outperforms the baseline entropy coding method
of H.264/AVC for the typical area of target applications. For the
range of acceptable video quality for broadcast application of
about 30–38 dB and averaged over all tested sequences, bit-rate
savings of 9% to 14% are achieved, where higher gains are ob-
tained at lower rates.

14Another terminating symbol is given by the LPS value of the bin of the
macroblock type indicating the PCM mode as further specified in [1].

Fig. 10. Bit-rate savings provided by CABAC relative to the baseline entropy
coding method CAVLC of H.264/AVC.

V. CONCLUSION

The CABAC design is based on the key elements of bina-
rization, context modeling, and binary arithmetic coding. Bina-
rization enables efficient binary arithmetic coding via a unique
mapping of nonbinary syntax elements to a sequence of bits,
which are called bins. Each bin can either be processed in the
regular coding mode or the bypass mode. The latter is chosen for
selected bins in order to allow a speedup of the whole encoding
(and decoding) process by means of a simplified nonadaptive
coding engine without the usage of probability estimation. The
regular coding mode provides the actual coding benefit, where
a bin may be context modeled and subsequently arithmetic en-
coded. As a design decision, in general only the most prob-
able bin of a syntax element is context modeled using previ-
ously coded/decoded bins. Moreover, all regular coded bins are
adapted by estimating their actual pdf.

The estimation of the pdf and the actual binary arithmetic
coding/decoding is conducted using an efficient table-based ap-
proach. This multiplication-free method enables efficient imple-
mentations in hardware and software.

The CABAC entropy coding method is part of the Main
profile of H.264/AVC [1] and may find its way into video
streaming, broadcast, or storage applications within this profile.
Experimental results have shown the superior performance of
CABAC in comparison to the baseline entropy coding method
of VLC/CAVLC. For typical test sequences in broadcast appli-
cations, averaged bit-rate savings of 9% to 14% corresponding
to a range of acceptable video quality of about 30–38 dB were
obtained.

ACKNOWLEDGMENT

The authors would like to thank G. Blättermann for im-
plementing and testing parts of the algorithm. Thanks to G.
Heising, L. Winger, F. Bossen, R. Kurceren, M. Karczewicz, J.
Lainema, B. Haskell, T. Suzuki, Y. Kikuchi, R. van der Vleuten,
and G. Sullivan for useful discussions.

MARPE et al.: CABAC IN THE H.264/AVC VIDEO COMPRESSION STANDARD 635

REFERENCES

[1] “Draft ITU-T Recommendation H.264 and Draft ISO/IEC 14 496-10
AVC,” in Joint Video Team of ISO/IEC JTC1/SC29/WG11 & ITU-T
SG16/Q.6 Doc. JVT-G050, T. Wieg, Ed., Pattaya, Thailand, Mar. 2003.

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H.264/AVC Video Coding Standard,”IEEE Trans. Circuits Syst.
Video Technol., vol. 13, pp. 560–576, July 2003.

[3] “Generic Coding of Moving Pictures and Associated Audio Informa-
tion—Part 2: Video,” ITU-T and ISO/IEC JTC1, ITU-T Recommenda-
tion H.262—ISO/IEC 13 818-2 (MPEG-2), 1994.

[4] “Video Coding for Low Bitrate Communications, Version 1,” ITU-T,
ITU-T Recommendation H.263, 1995.

[5] “Coding of Audio-Visual Objects—Part 2: Visual,” ISO/IEC JTC1,
ISO/IEC 14 496-2 (MPEG-4 Visual version 1), Apr. 1999; Amendment
1 (version 2), Feb. 2000; Amendment 4 (streaming profile), Jan. 2001.

[6] C. A. Gonzales, “DCT Coding of Motion Sequences Including Arith-
metic Coder,” ISO/IEC JCT1/SC2/WP8, MPEG 89/187, MPEG 89/187,
1989.

[7] D. Marpe, G. Blättermann, and T. Wiegand, “Adaptive Codes for
H.26L,”, Eibsee, Germany, ITU-T SG16/Q.6 Doc. VCEG-L13, 2001.

[8] D. Marpe, G. Blättermann, G. Heising, and T. Wiegand, “Further Results
for CABAC Entropy Coding Scheme,”, Austin, TX, ITU-T SG16/Q.6
Doc. VCEG-M59, 2001.

[9] D. Marpe, G. Blättermann, and T. Wiegand, “Improved CABAC,”, Pat-
taya, Thailand, ITU-T SG16/Q.6 Doc. VCEG-O18, 2001.

[10] D. Marpe, G. Blättermann, T. Wiegand, R. Kurceren, M. Karczewicz,
and J. Lainema, “New results on improved CABAC,” in Joint Video
Team of ISO/IEC JTC1/SC29/WG11 & ITU-T SG16/Q.6 Doc. JVT-
B101, Geneva, Switzerland, Feb. 2002.

[11] H. Schwarz, D. Marpe, G. Blättermann, and T. Wiegand, “Improved
CABAC,” in Joint Video Team of ISO/IEC JTC1/SC29/WG11 & ITU-T
SG16/Q.6 Doc. JVT-C060, Fairfax, VA, Mar. 2002.

[12] D. Marpe, G. Heising, G. Blättermann, and T. Wiegand, “Fast
arithmetic coding for CABAC,” in Joint Video Team of ISO/IEC
JTC1/SC29/WG11 & ITU-T SG16/Q.6 Doc. JVT-C061, Fairfax, VA,
Mar. 2002.

[13] H. Schwarz, D. Marpe, and T. Wiegand, “CABAC and slices,” in Joint
Video Team of ISO/IEC JTC1/SC29/WG11 & ITU-T SG16/Q.6 Doc.
JVT-D020, Klagenfurt, Austria, July 2002.

[14] M. Karczewicz, “Analysis and simplification of intra prediction,” in
Joint Video Team of ISO/IEC JTC1/SC29/WG11 & ITU-T SG16/Q.6
Doc. JVT-D025, Klagenfurt, Austria, July 2002.

[15] D. Marpe, G. Blättermann, G. Heising, and T. Wiegand, “Proposed
cleanup changes for CABAC,” in Joint Video Team of ISO/IEC
JTC1/SC29/WG11 & ITU-T SG16/Q.6 Doc. JVT-E059, Geneva,
Switzerland, Oct. 2002.

[16] F. Bossen, “CABAC cleanup and complexity reduction,” in Joint Video
Team of ISO/IEC JTC1/SC29/WG11 & ITU-T SG16/Q.6 Doc. JVT-
E086, Geneva, Switzerland, Oct. 2002.

[17] D. Marpe, H. Schwarz, G. Blättermann, and T. Wiegand, “Final CABAC
cleanup,” in Joint Video Team of ISO/IEC JTC1/SC29/WG11 & ITU-T
SG16/Q.6 Doc. JVT-F039, Awaji, Japan, Dec. 2002.

[18] D. Marpe and H. L. Cycon, “Very low bit-rate video coding using
wavelet-based techniques,”IEEE Trans. Circuits Syst. Video Technol.,
vol. 9, pp. 85–94, Apr. 1999.

[19] G. Heising, D. Marpe, H. L. Cycon, and A. P. Petukhov, “Wavelet-Based
very low bit-rate video coding using image warping and overlapped
block motion compensation,”Proc. Inst. Elect. Eng.—Vision, Image and
Signal Proc., vol. 148, no. 2, pp. 93–101, Apr. 2001.

[20] S.-J. Choi and J. W. Woods, “Motion-compensated 3-D subband coding
of video,” IEEE Trans. Image Processing, vol. 8, pp. 155–167, Feb.
1999.

[21] A. Said and W. Pearlman, “A new, fast, and efficient image codec based
on set partitioning in hierarchical trees,”IEEE Trans. Circuits Syst.
Video Technol., vol. 6, pp. 243–250, June 1996.

[22] D. Marpe and H. L. Cycon, “Efficient pre-coding techniques for wavelet-
based image compression,” inProc. Picture Coding Symp., 1997, pp.
45–50.

[23] J. Rissanen and G. G. Langdon Jr, “Universal modeling and coding,”
IEEE Trans. Inform. Theory, vol. IT-27, pp. 12–23, Jan. 1981.

[24] J. Rissanen, “Universal coding, information, prediction, and estima-
tion,” IEEE Trans. Inform. Theory, vol. 30, pp. 629–636, July 1984.

[25] W. B. Pennebaker and J. L. Mitchell,JPEG: Still Image Data Compres-
sion Standard. New York: Van Nostrand Reinhold, 1993.

[26] A. Papoulis, Probability, Random Variables, and Stochastic Pro-
cesses. New York: McGraw-Hill, 1984, pp. 37–38.

[27] M. J. Weinberger, J. Rissanen, and R. B. Arps, “Application of universal
context modeling to lossless compression of gray-scale images,”IEEE
Trans. Image Processing, vol. 5, pp. 575–586, Apr. 1996.

[28] A. N. Netravali and B. G. Haskell,Digital Pictures, Representation and
Compression. New York: Plenum, 1988.

[29] J. Teuhola, “A compression method for clustered bit-vectors,”Inform.
Processing Lett., vol. 7, pp. 308–311, Oct. 1978.

[30] R. Gallager and D. Van Voorhis, “Optimal source codes for geometri-
cally distributed integer alphabets,”IEEE Trans. Inform. Theory, vol.
21, pp. 228–230, Mar. IT-1975.

[31] M. Mrak, D. Marpe, and T. Wiegand, “A context modeling algorithm
and its application in video compression,” presented at the IEEE Int.
Conf. Image Proc. (ICIP), Barcelona, Spain, Sept. 2003.

[32] W. B. Pennebaker, J. L. Mitchell, G. G. Langdon, and R. B. Arps, “An
overview of the basic principles of the Q-coder adaptive binary arith-
metic coder,”IBM J. Res. Dev., vol. 32, pp. 717–726, 1988.

[33] J. Rissanen and K. M. Mohiuddin, “A multiplication-free multialphabet
arithmetic code,”IEEE Trans. Commun., vol. 37, pp. 93–98, Feb. 1989.

[34] P. G. Howard and J. S. Vitter, “Practical implementations of arithmetic
coding,” in Image and Text Compression, J. A. Storer, Ed. Boston,
MA: Kluwer, 1992, pp. 85–112.

[35] D. Taubman and M. W. Marcellin,JPEG2000 Image Compression: Fun-
damentals, Standards and Practice. Boston, MA: Kluwer, 2002.

[36] D. Marpe and T. Wiegand, “A highly efficient multiplication-free binary
arithmetic coder and its application in video coding,” presented at the
IEEE Int. Conf. Image Proc. (ICIP), Barcelona, Spain, Sept. 2003.

[37] A. Moffat, R. M. Neal, and I. H. Witten, “Arithmetic coding revisited,” in
Proc. IEEE Data Compression Conf., Snowbird, UT, 1996, pp. 202–211.

[38] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sullivan,
“Rate-constrained coder control and comparison of video coding stan-
dards,”IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp. 688–703,
July 2003.

Detlev Marpe (M’00) received the Dipl.-Math. de-
gree (with highest honors) from the Technical Uni-
versity Berlin (TUB), Berlin, Germany, in 1990.

From 1991 to 1993, he was a Research and
Teaching Assistant in the Department of Mathe-
matics, TUB. Since 1994, he has been involved
in several industrial and research projects in the
area of still-image coding, image processing, video
coding, and video streaming. In 1999, he joined
the Fraunhofer–Institute for Telecommunications
– Heinrich Hertz Institute (HHI), Berlin, Germany,

where as a Project Leader in the Image Processing Department, he is currently
responsible for projects focused on the development of advanced video coding
and video transmission technologies. He has published more than 30 journal
and conference articles in the area of image and video processing, and he
holds several international patents. He has been involved in the ITU-T and
ISO/IEC standardization activities for still image and video coding, to which he
contributed more than 40 input documents. From 2001 to 2003, as an Ad-hoc
Group Chairman in the Joint Video Team of ITU-T VCEG and ISO/IEC
MPEG, he was responsible for the development of the CABAC entropy coding
scheme within the H.264/AVC standardization project. His research interests
include still image and video coding, image and video communication,
computer vision, and information theory.

Mr. Marpe received the Prime Prize of the 2001 Multimedia Start-up Compe-
tition from the German Federal Ministry of Economics and Technology for his
role as Cofounder of daViKo GmbH, a Berlin-based start-up company focused
on developing server-less multipoint videoconferencing products for Intranet or
Internet collaboration.

Heiko Schwarz received the Dipl.-Ing. degree
in electrical engineering in 1996 and the Dr.-Ing.
degree from the University of Rostock, Germany, in
2000.

In 1999, he joined the Fraunhofer–Institute for
Telecommunications – Heinrich Hertz Institute
(HHI), Berlin, Germany. Since then, he has con-
tributed successfully to the ITU-T Video Coding
Experts Group (VCEG) and the Joint Video Team
(JVT) standardization efforts. His research interests
include image and video compression, video

communication, and signal processing.

636 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

Thomas Wiegandreceived the Dr.-Ing. degree from
the University of Erlangen-Nuremberg, Germany,
in 2000 and the Dipl.-Ing. degree in electrical
engineering from the Technical University of
Hamburg-Harburg, Germany, in 1995.

He is the Head of the Image Communication
Group in the Image Processing Department, Fraun-
hofer–Institute for Telecommunications – Heinrich
Hertz Institute (HHI), Berlin, Germany. During 1997
to 1998, he was a Visiting Researcher at Stanford
University, Stanford, CA, and served as a Consultant

to 8x8, Inc., Santa Clara, CA. From 1993 to 1994, he was a Visiting Researcher
at Kobe University, Kobe, Japan. In 1995, he was a Visiting Scholar at the
University of California at Santa Barbara, where he began his research on video
compression and transmission. Since then, he has published several conference
and journal papers on the subject and has contributed successfully to the ITU-T
Video Coding Experts Group (ITU-T SG16 Q.6—VCEG)/ISO/IEC Moving
Pictures Experts Group (ISO/IEC JTC1/SC29/WG11—MPEG)/Joint Video
Team (JVT) standardization efforts and holds various international patents in
this field. He has been appointed as the Associated Rapporteur of the ITU-T
VCEG (October 2000), the Associated Rapporteur/Co-Chair of the JVT that
has been created by ITU-T VCEG and ISO/IEC MPEG for finalization of the
H.264/AVC video coding standard (December 2001), and the Editor of the
H.264/AVC video coding standard (February 2002).

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

