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Despite the name, “imaginary” numbers are very important in the physical
sciences. Many problems in quantum mechanics require complex numbers in
order to solve them, and for most problems complex numbers provide us with
better methods.

1 The Complex Plane

1.1 Real and Imaginary Parts as Cartesian Coordinates

One very important idea about complex numbers is that of the complex plane.
You've probably already seen the real numbers represented as a “number line.”
Each real number is described by a single coordinate.

We can then describe a complex number z with two coordinates: one for the
real part (R(z)), and one for the imaginary part (3(z)). We usually represent
this with the real part along the z-axis, and the imaginary part along the y-axis.
So the complex number 3 + 44 is equivalent to the point (3,4).

arg(z)

Figure 1: The Complex Plane

Exercise 1. What Cartesian point is equivalent to the complex number 6¢7
What about —27

1.2 Modulus and Argument as Polar Coordinates

In the standard 2D plane, polar coordinates label a point using a distance
from the origin r and an angle 6 from the z-axis. Just as we used Cartesian



coordinates to represent the complex plane in the previous subsection, we will
now use polar coordinates. The distance r is called the modulus, or magnitude,
and is represented as |z| for the complex number z. The angle is called the
argument of the number, and is frequently referred to as arg(z).

Exercise 2. For the complex number z = a + ib, what is |z| in terms of a and
b? [Hint: think back to trigonometry.]

Exercise 3. For z = a +ib, what is arg(z) in terms of a and b? For the special
case of a real number (b = 0) what is arg(z)?

Exercise 4. For a complex number z with modulus r and argument 6, what
are a and b such that z = a + ib?

Complex numbers can be used to do Euclidean plane geometry. To learn
more about this, look into Tristan Needham’s book Visual Complex Analysis.

2 Complex Conjugates

The conjugate of a complex number z is denoted by either z* or zZ. It is the
number such that zz* = |z|>. There is a very simple rule to find the complex
conjugate of any complex number: simply put a negative sign in front of any ¢
in the number. Thus 3+ 4¢ has 3 —4¢ as its complex conjugate, and the complex
conjugate of e /3 is e'™/3,

Exercise 5. Show that (a + ib)(a — ib) = a® + b?
Exercise 6. Show that (r e¥)(r e7%) =12
Exercise 7. What is the complex conjugate of a real number?

Exercise 8. What is the geometric meaning of the complex conjugate? In other
words, start by taking a point in the complex plane. In the Cartesian picture,
how does the act of taking the complex conjugate move the point? What about
in the polar coordinate picture?

3 Euler’s Formula

Euler’s formula is a very important relation which connects the Cartesian com-
plex plane to the polar complex plane. Euler’s formula is

e = cos(#) + isin(h) (1)
This equation can be derived from the power series expansions for the functions
e”, sin(z) and cos(x).

Exercise 9 (Advanced). Prove Euler’s formula. [Hint : what’s the Taylor
series (or MacLaurin series, actually) of e*? So what if you replace z by i6
(remembering that i?" = (—1)")? Now what are the series expansions for
cos(f) and sin(6)?]



If we multiply each side of Euler’s formula be r = |z|, we get re? =
r(cos(f) + isin(f)). The right size should look familiar from exercise 4. So
we can use 7€'’ to represent any complex number z with modulus |z| = r and
argument arg(z) = 6. As we showed in exercise 6, when we multiply the com-
plex number r € by its complex conjugate, we get r2, which is independent
of . Since all the dependence of the argument (i.e.angle in the polar plane) of
z =r €' is contained in the €%’ term, we refer to this term as a “phase factor.”
Exercise 10. Using Euler’s Formula, show that the simple rule for complex
conjugation gives the same results in either real/imaginary form or modu-
lus/argument form. [Hint: take a complex number z = re? and define a and b
such that re? = a + ib. Then take the complex conjugate.]

Exercise 11. Two other formulae are often grouped in with Euler’s formula.
They are:

cos(f) = % (ew + e*ie) (2)
and )
sin(f) = % (ew — efw) (3)

Prove these using Euler’s formula as given in equation 1. [Hint: sin(—z) =
—sin(x) and cos(—x) = cos(x).]

Exercise 12 (Advanced). There’s a famous formula in mathematics which
combines several of the most important mathematical constants: e, 7, ¢, and 1.
Construct a formula which is equal to zero, using each of those constants once
in your expression. [Hint : remember that 6 in €* is in radians.]

4 Powers and Roots of Complex Numbers

Although explicit formulae for powers and roots exist for complex numbers
written as the sum of their real and imaginary parts, it is often easier to calculate
them using Euler’s formula. Namely, to find 2%, we first write z as r €’ and

then use
2T = (’I“ ez@) = pEeife

When looking for nth roots, remember that /z = 24" and use the same
procedure.

Exercise 13. What is the square root of 7?7
Exercise 14. Prove de Moivre’s formula,
(cos(f) +isin(f))" = cos(nd) + isin(nd)

where 6§ € R and n € N. [Hint : (e®)¢ = €%]



Exercise 15 (Advanced). The technique described above can be used to find
many trigonometric identities. By first taking the trig function, then using the
formulae given by equations 2 and 3, doing some math with the result, and then
converting them back to trigonometric forms, you can rather easily obtain many
results from trigonometry. As an example, try

sin?(6) 4 cos?(f) = 1

(To the real show-offs: try [ da sin®(az) cos?(az) = — i sin(4az) + £)
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