Introduction to Using Databases with Perl

Brad Marshall <brad.marshall@member.sage-au.org.au>

November 16, 2003

1 Introduction

Perl provides an excellent set of modules for talking to databases called DBI (for
Database Interface). These modules allow you to connect to a wide variety of
databases, and switch between them almost transparently - assuming the SQL
used isn’t database specific.

DBI works by providing a front end API to database access, and uses backend
modules called DBD to provide the actual communication to the databases.
There are DBD modules for most common (and not so common) databases,
ranging from MySQL, PostgreSQL, Oracle and ODBC to Excel, Google, LDAP
and flat files - see the DBI website for a full list.

This article will cover the basics of connecting, inserting and reading data
from a database, using PostgreSQL as the example backend database.

2 Perl Scripting

2.1 Modules

The first thing that’s required for using DBI is the following line in your perl
script:

use DBI;

This will load and initialise the DBI module for your script - note you don’t
need to import any of the DBD modules, they will be done as required.

2.2 Connecting
The next step is to connect to the database, via the following;:
my $dbh = DBI->connect("dbi:Pg:dbname=$db;host=$hostname",

"$user", "$password")
or die "Can’t connect to postgres db: $!\n";

This creates a database handle for the connection to the database, using
the given hostname, database, username and password. To change the type of
database you are talking to, you simply have to change the connection string to
the appropriate new database backend - for example, for MySQL the connection
string would be:

my $dbh = DBI->connect("dbi:mysql:database=$db;host=$hostname",
"$user", "$password")

2.3 Preparing Queries

Next you need to create a statement that you wish to run against the database,
such as:

my $fullquery = "SELECT * FROM table";
my $sth = $dbh->prepare ($fullquery)

or die "Can’t prepare SQL statement: ", $dbh->errstr(), "\n";
$sth->execute()
or die "Can’t execute SQL statement: ", $sth->errstr(), "\n";

This prepares and executes the statement handler for a simple SQL query
that returns all the data in the table. Preparing the statement allows the
database to parse the statement and check that it is valid SQL, and the ta-
bles and columns that you are referring to exist and you have permission to
read them, among other things.

Another option with preparing a statement is to use placeholders, or bind
values. To prepare the statement handler with placeholders, you can do:

my $sth = $dbh->prepare(SELECT 7,7 FROM table")
or die "Can’t prepare SQL statement: ", $dbh->errstr(), "\n";

You can then fill in the placeholders either using bind values, or in the
execute statement. To use bind values, you specify the values via the following:

$sth->bind_param(1l, "user");
$sth->bind_param(2, "name");

Alternatively, to fill out the values in the execute statement, you do the
following:

$sth->execute("user", "name");

2.4 Returning Data

Obviously, the next step will be getting the data that the query provided. The
simplest way is:

while(my @ary = $sth->fetchrow_array) {
Do something with Qary
}

Another option to simply view the results is:

$rows = $sth->dump_results();

2.5 Closing Handlers

To close a statement handler - even if you haven’t read all the data from it is
simple - just do the following:

$sth->finish;

2.6 Disconnecting

Once you’ve finished with a database connection it is good form to close it off
- even though it will automatically close once you reach the end of the script.

$dbh->disconnect or warn "Disconnection failed: $!'\n";

3 Conclusion

As you can see, this was a very quick run through of the basics of using DBI
which shows the easy and power of the modules. You can do far, far more
with it than covered here - for more information see “Programming the Perl
DBI” by Alligator Descartes and Tim Bunce, and the Perl DBI website at
http://dbi.perl.org/.

	Introduction
	Perl Scripting
	Modules
	Connecting
	Preparing Queries
	Returning Data
	Closing Handlers
	Disconnecting

	Conclusion

