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Abstract:    Given an undirected graph G = (V, E), a set of algorithms exist that will produce a 
new graph G’ = (V’, E’), such that V ⊆ V’ and E ⊆ E’, all nodes v’ ∈ V’ are strongly connected 
by the edges of E’, and that the length of edges e’ ∈ E’ is minimized according to constraints 
given by the variations of the problem.  This set of algorithms includes the minimum rectilinear 
shortest path Steiner arborescence (MRSPSA) problem and the rectilinear minimum Steiner tree 
(RMST) problem.  Applications of these algorithms allow timing, current, and various other 
analyses to be performed on partially complete layout for a design, in order to estimate VLSI 
design progress.; these algorithms have been heavily studied in literature. This paper proposes a 
genetic algorithm with direct applications to these two minimization algorithms.  Experiments 
indicate that using the genetic algorithm for these two problems produces nearly optimal results, 
with times on the same order of magnitude as existing “conventional” algorithms for the RMST 
Problem. 
 

I. Introduction and Overview 
 

Given an undirected graph G = (V, E), a set of terminals to be connected N ⊆ V, the minimum rectilinear 
Steiner tree (RMST) is an unrooted Steiner tree spanning all the terminals in N such that the sum of edge weights in 
the tree is minimized [7], and the edge weights are equal to the rectilinear distances between their two vertices.  This 
is an NP-Complete problem, as shown by Hwang and others in 1976.   

 
Given an undirected graph undirected graph G = (V, E), a set of terminals (sinks) N ⊆ V, and a unique root 

(source) node r ∈ V,  a minimum shortest path Steiner arborescence (MSPSA) is a Steiner tree rooted at r spanning 
all the terminals in N such that every source-to-sink path is a shortest path in G, and the weights of the arborescence 
is minimized [4].  In this paper, for this and all the other algorithms, we are discussing the rectilinear (Manhattan) 
version of the problem (MRSPSA).  Cong et al. discuss various types of exact algorithms for this MRSPSA 
problem, including dynamic programming, integer programming, branch-and-bound enumeration, and point out that 
the MRSPSA problem is also NP-complete.  They also cover several heuristic algorithms derived from Rao et al. 
[8]. We are interested in the RSA/G and k-IA/G heuristics, because they produce the best performance/accuracy 
tradeoff as demonstrated in [4].  It is important to note that while the RMST problem minimizes the total length of 
the tree (each edge weight is counted once); in the MRSPSA problem, each path between r and all the terminals n ∈ 
N, n ≠r is minimized, and thus the weight of the tree in MRSPSA is given by adding the total length (weight) of 
each such path (each edge could be counted multiple times). 
 

In the scope of this paper, we are only interested in the subset of input graphs G that are “rectilinear-complete”.  
This means that the points in V have assigned plane coordinates, and that the weight of an edge between any two 
points in V is equal to the rectilinear distance between those two points.  Furthermore, any two points in V can be 
connected to each other (the graph is free of “unusable blocks” or “obstructions”).  We can assume this without loss 
of applicability, because (1) at the beginning stages of VLSI design no such obstructions are present, and (2) the 
edges produced can later have physical layers assigned to them so that they do not conflict with the objects they pass 
above or beneath.  Given this assumption, the input to the algorithm can consist simply of the set N for the MRST 
problem, and the pair I = (N, r), for the MRSPSA problem.  The equivalent graph G = (V, E) can be generated from 
N by the procedure described in Section III of this paper.  
 



As described above, these two algorithms can produce graphs that solve two common VLSI design problems: 
(1) connecting a number of points in layout together using the minimum amount of wiring (such as for the power 
and ground nets in IC’s), and (2) providing wiring to send a signal from a given source (or driver, or root) to one or 
more receivers (or sinks), with the minimum delay (and thus, usually, minimum length) between the driver and the 
receivers. This allows the designers, in the intermediate steps of VLSI Physical Design, to perform timing or 
current-limit analysis on missing or partially complete layout for a design, in order to estimate progress and to test 
and validate the results of previous steps such as block and cell placement. 

 
Such analysis involves knowing the resistances, capacitances, and inductances of the full signal path, and thus 

the layout must be completed by automated means.  Since these analyses are usually done (in the preliminary step) 
on a signal-by-signal basis, a full VLSI circuit is usually split into thousands of signal nets, which each signal net 
becoming a separate “completion” problem.  The algorithms used to complete the layout net are very flexible – 
indeed, their goal is to produce a strongly connected net that would most resemble a net completed by an expert 
human design engineer. Thus, it is not important that the results of this algorithm are exact; it is more important that 
they run quickly, efficiently, and produce results within reasonable tolerances, which in some cases are up to 5-10% 
error.   

 
The size of the problems expected is greatly variable; the vast majority of nets encountered in real test cases (90%) 
is less than 30 input terminals in size (|N| < 30).  However, nets of size 300 ≤ |N| ≤ 500 are very common, and some 
extreme cases exist in which |N| can reach 2000.  The algorithms currently in use for RMST and MRSPSA (non-
genetic) handle sizes of up to 400 fairly quickly, as is discussed in Section V.

 
 
III. Candidate Steiner Point Generator  

 
As discussed above, our algorithms will take in only a set of input terminals 
N, and a root r, if required. Hanan [7] showed that an RMST spanning these 
points N must lie on a complete rectangular grid, where each input point 
adds a row and a column given its X and Y coordinate.  In Figure 1, several 
Hanan points and the Hanan Grid induced by them are shown. It is easy to 
see that in the worst case, there are O(N2) such vertices.  In Figure 1 above, 
twelve such vertices are created for the five input vertices. 
 
Furthermore, Mandoi, Vazirani, and Ganley [10] provide a vertex reduction 
algorithm that reduces the number of vertices in the grid to O(N) vertices 
without any impact on the length of a minimum RMST or MRSPSA.   
Figure 2 shows the arrangement from Figure 1 with all but five of the initial 
twelve Hanan vertices removed according to the reduction algorithm.  Figure 
2 also shows the RMST that results from this arrangement.   
 
Note that only two candidate Hanan points (the gray circles in Figure 2) are 
located at an intersection of two black-outlined edges in the final RMST – in 
other words, their degree is greater than two. All such Hanan Grid points 
that appear in the final output RMST, or MRSPSA, with a degree greater 
than two will be called Steiner Points.  The rest of the Hanan Grid points 
that remain after the vertex reduction algorithm (the white points in Figure 2 
as an example) are called Candidate Points.   
 
It can be seen even from the simple example above that adding certain Steiner points induces savings in the graphs 
because they allow groups of points to “share” paths to other points.  Consider the example of Figure 3, which 
shows a simple Minimum Spanning Tree on the same graph as above.  Notice the unnecessary duplication of 
vertical edges that is necessary to connect the top two terminals, as opposed to Figure 2. Also notice the slight 
duplicate edge just below the center terminal.  Adding the bottom Steiner point eliminates this duplication; adding 
the top one consolidates the two vertical pieces into one central one, combining for large savings in overall graph 
length.  Note that savings of close-proximity Steiner points tend to interfere with each other, however:  adding point 
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A would also produce some savings, but these savings are nullified if point B is also added (point B introduces some 
savings of its own).  
 
Salowe and Warme [11] showed that an RMST of the input terminals N that 
happens to uses a set S of Steiner Points chosen from the Hanan Candidates 
will be identical to the simple minimum spanning tree (MST), as found in any 
computer science textbook, of the vertex set V = N + S.  Since the MST is an 
efficient algorithm, it remains that the difficulty (the NP-Completeness) of the 
RMST problem lies in the selection of this optimal Steiner point set S from the 
set of Hanan candidate points.  The MST algorithm over V points can be 
found in O(E + V lg V) time [9]. 
 
In similar fashion, Cong et al. demonstrate an algorithm called RSA/G that 
will efficiently generate the MRSPSA for a terminal set N and root r ∈ N 
given the optimal Steiner point set S [4].  The RSA/G algorithm runs in worst-
case O(E + V lg V) time (identical to the MST algorithm above).   
 
Thus, if only the set S of optimal Steiner points could be found, both the RMST and the MRSPSA become easy 
problems that can be solved very efficiently.  Note, of course, that it is not the same S of Steiner points that is 
optimal for both minimization problems as the constraints are different in each case.   
 
I now propose a Genetic Steiner Selector algorithm that will perform this selection of the optimal Steiner set. 
 
IV. GSS Algorithm for use with RMST and RSA/G 
 
Table 1: Tableau for the GSS Algorithm 
Objective: Given a set of terminals N, a possible root r ∈ N, and a set of candidate Steiner 

points C, find a subset S ⊆ C of Steiner points such that: 
 (1) the MST of the set V = N + S is the optimal RMST of N 
Or: (2) the result of the RSA/G algorithm when run on N, r, and S, returns the 

optimal MRSPSA for the pair (N, r).  
Search Space Size: 2|N| 
Representation 
Scheme: 

• Structure: Fixed-length bit string, one bit for each point in set C, so |C| bits.  Each 
candidate point is either present (utilized) or absent (unused).    

• K = 2 (alphabet size, since we’re using bits) 
• L = |C| 
• Mapping:  The points in |C| will be pre-sorted (bucketed) in one particular order 

so that points close to each other in the string will be near each other 
geometrically (since distant candidates are relatively independent compared to 
close neighbors). 

Fitness Cases: One fitness case, the input points N (and r for the arborescence version).  
Raw Fitness: The total weight of either (1) the RMST obtained by running MST on (V+S) 

or (2) the MRSPSA obtained by running RSA/G on N+S and r. 
Scaled Fitness: A scaling window of 3 generations was used; thus, scaled fitness = F_MAX3 – f(x), 

where F_MAX3 is the largest fitness value seen in the last three generations. 
Parameters: • M = |N| 

• Pc = 0.6 
• Pm = 0.03 
• G = 50 
 

Termination 
Criteria: 

Number of generations G has been exceeded – there is no way of knowing what the 
optimal value of raw fitness is for this problem. 

 

A B 



The GSS algorithm will use one bit in the encoding string to represent each candidate Steiner point.  This is a natural 
encoding, because each Steiner point candidate can be present or absent in the final  (and optimal) solution.  Since 
all subsets S ⊆ C are valid, all respective bit strings of length |C| are valid individuals as well; thus, no additional 
measures are necessary to penalize or repair invalid individuals.  This is a very natural and effective encoding for 
this problem.  It trivially follows that the search space for this problem is the set of all bit strings of length |C|, and 
thus the size of the search space is 2|C|. From Section III, the optimizations reduce the size of the candidate set |C| to 
O(|N|), where N is the input terminal set.  Thus, the size of the search space is 2|N|.  Considering that |N| often 
reaches values of 500 and above, the search space is very large indeed: 2500 ≅ 10150.  The typical search space, 230 is 
also too large for an efficient exhaustive search: 1,073,741,824 possible configurations of the tree or arborescence.   
 
The total number of schemata is (2 + 1)|N|, equal to 330 (1014) for a typical test case and 3500 (10239, an obscene 
amount) for an extremely large one. In a typical population, since we are using M = |N|, there are |N| * 2|N| schemata 
represented, or (approximately) 3*1011 for |N| = 30, 5*10152 for a large one.  
 
The genetic operators active in this algorithm are the basic crossover, mutation, and reproduction operators that 
operate on bit strings.  Since the mutation probability is non-zero, the algorithm is trivially able to explore the entire 
search space (mutation could set any bit to either 1 or 0).  
 
The population size parameter M was chosen to be |N|.  Given a problem such as this, where the length of the 
encoded individual L = O(|N|), the population size has to be directly dependent on |N|.  Attempts to set the 
population size to a lower function of |N| (such as lg |N|, and √(|N|)) resulted in a more meandering algorithm that 
did not always converge within 50 generations.   
 
The initial population of individuals was completely random; in a sense, it is already being primed by eliminating 
large amounts of completely useless Steiner point candidates during the pre-processing discussed in Section III.  
There was no easy way that I found to “start the algorithm off” with a couple well-chosen Steiner points.   
 
Since the crossover operation is disruptive to schema of large defining length, we want alleles (bits in this case) that 
are dependent on each other to be in close proximity in the bit string.  Since close-proximity Steiner points affect 
each other’s savings, whereas distant Steiner points are practically completely independent, we have a simple 
scheme to sort candidate points to map them to close locations inside the bit string.  We simply divide the bounding 
box of all the input terminals N into squares like a chessboard, which are numbered from 1 to A2, where A is the size 
of the board.  The points are then sorted according to the chessboard square number – the additional cost of O(N lg 
N) is irrelevant compared to later processing.  Currently, A is chosen so that A2 is on the same order of magnitude as 
|N|, but a more complicated scheme could be developed.  Even this simple modification helped speed the 
convergence of the algorithm and allowed the decrease of the G parameter (number of generations allowed before 
termination). 
 
The mutation parameter was set relatively high to promote convergence within 50 generations due to the large bit 
string lengths for this algorithm in the large test cases. 
 
The fitness was initially set as a ratio between (Individual’s Tree Weight) / (Tree Weight with no Steiner Points).  
However, this seemed to lead to poorer differentiation between individuals.  The average length of an optimal 
Steiner tree, from experimental data, seems to be only 15-20% shorter than a simple MST on the same terminal 
input set.  Practically all the ratios were thus between 1.0 and 0.80, and even with the additional fitness scaling 
performed by GENESIS, did not perform as well.  When fitness was set to Max_Weight – IndividualWeight (linear 
fitness rather than a ratio), the algorithm converged quicker. 
 

 
V. Experimental Results 
 

The experiments were run using the GENESIS 5.0 software in C by John J. Grefenstette.  The elitist strategy 
option was given, and the Fitness Scaling Window was set to 3 as described above. The machine being used for the 
results was a Pentium-4 1800 MHz with 2GB of memory, running Red Hat Linux kernel version 2.2.17, owned by 
Intel Corporation. 



 
The fitness calculations (and thus the RSA/G and the MST algorithms) were implemented in C++ on the same 

platform and combined with GENESIS.  Tests were performed on sets of points of given size |N|, with all the points 
evenly and randomly distributed in a square between (0,0) and (10000, 10000).  This tends to be the worst-case 
scenario, as in randomly chosen points there are the most Hanan Grid Lines – points in actual layout tend to have 
large groupings along the same X or Y coordinate, and thus reduce the possible number of Hanan Candidate points. 
 
On all various sizes, the GSS times are significantly slower than the already existing (and optimized) 1-IBS Steiner 
algorithm implemented in C++ derived from Robins [1], [3] (See Chart 1).  However, the trend-lines seem to 
demonstrate that the 1-IBS algorithm increases at a faster rate: the best-fit power trend-line for the GSS times is 
O(|N|2.993), whereas the best-fit power trend-line for the 1-IBS algorithm is O(|N|3.92).  This is an encouraging result 
for further study.  The error performance of this GSS algorithm, however, was very good; the average error margin 
between the Total Tree Length on 1-IBS and the GSS algorithm was 1.2%, with the GSS algorithm usually getting 
slightly lower lengths. This level of error is nearly insignificant given the applications of these algorithms as 
discussed in this paper. 
 
The best, average, and worst fitness curves of a single run on a population size of 240 (and a |N| size of 240) is given 
in Figure 2 (for the DSS-MST version).  The worst-of-population starts out at 101% of the MST length (adding 
some Steiner points actually increased the total length), and then increases to 102% for the duration of the run.  The 
best-of-population drops to 84% in Generation 1 from 89% in Generation 0, and then has several step-like drops, the 
biggest of which happen at generation 1, 12, and 39.  For most of the end of the run, it is completely converged and 
does not change after Generation 40.   The average population fitness varies up and down a bit, but it seems there 
are no huge meanderings of the curve – this is to be expected, because the fitness function here is inherently not 
deceptive – there is very rarely one particular point that produces huge gains and requires a set of others be turned 
off. Overall, the average decreases smoothly.  The average is very close to the best-of-generation near the end of the 
run, which can suggest either (1) a lack of population diversity in that run toward the end, or (2) that for this 
particular problem, many individuals that include a set of several Steiner critical points produce nearly identical and 
nearly optimal results. 
 
For the RSA/G version of the algorithm, DSS-RSA/G actually ran slightly faster than the 
comparable DSS-MST algorithm for the same input sizes.  However, the MRSPSA 2-IdeA/G 
heuristic shown in Cong et al. [4], produces results nearly indistinguishable from DSS-RSA/G in 
accuracy (average error was less than 3.0%), at a time that is several orders of magnitude faster 
than DSS could produce.  Despite several attempts to modify the genetic algorithm parameters 
for this problem run, the times achieved were nowhere near enough to compete with the 2-
IdeA/G (or even other, slower heuristics) presented in [4]. 
Chart 1. 
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VI. Conclusion 
 

I have presented a genetic algorithm application to the common Steiner minimum tree and minimum shortest-
path arborescence problem. The GSS algorithm is an entirely brand-new class of Steiner Tree and Arborescence 
algorithms, as far as the author is aware.  For the RMST problem, it consistently produces results with average 
quality (error margin) just as good as other popular heuristic and/or randomized in the field (the 1-IBS Iterated 
Batch Steiner heuristic by Robins et al. is one of the most powerful results/time heuristics currently available and, 
on average, produces results within 5% from optimal).  For the MRSPSA problem, it also produces results nearly 
indistinguishable in quality (length) from the existing heuristics outlined by Cong et al. [4].   

 
The results generated by GSS show that this a problem that is well within reach of the genetic algorithm 

approach, and that the evolutionary operators are very well able to evaluate schemata for this problem in order to 
arrive at a nearly optimal solution. 

 



The times taken to achieve these goals, however, is the only issue with the GSS algorithm.  For the RMST 
problem, the algorithm seems to be relatively competitive, performing only 3.5 times slower for a input size of 500 
terminals.   With the rates of ascent of both algorithms compared, it is possible that for larger input sizes (|N| around 
1000), the GSS algorithm will perform much better than 1-IBS.  This shows that genetic algorithms can be applied 
in this area with relative success; the implementation of 1-IBS used has been heavily modified and optimized over a 
long period (over 6 months) by me and other developers; the actual fitness calculations performed in the GSS 
algorithm were very spottily optimized. 

 
In the MRSPSA problem, however, the times produced by the GSS algorithm are nowhere near what is needed 

to compete with other existing algorithms in this field.  A truly innovative new encoding and problem formulation 
would have to be found in order to produce results that will be applicable and useful. 
 
VI. Future Work 
 

The main concentration of further research in this area will be on the promising results demonstrated by DSS in 
the RMST problem field.  There are two approaches which may very well yield very competitive results.  First, the 
Genetic algorithm parameters and encoding may be re-examined, and perhaps a way will be found to achieve 
consistent convergence on slightly smaller populations sizes or within fewer generations.  A 50% improvement in 
the population size required with bring the DSS-MST algorithm directly within striking distance of the 1-IBS 
heuristic for larger data sizes (|N| > 400).   Furthermore, serious improvements (at the cost of memory) can be made 
using memoization due to the huge amount of identical computations that happens while evaluating the fitness of 
identical or extremely similar Steiner trees.  Also, for large sizes of the input, various distant components of the tree 
are practically independent from each other; an addition of one Steiner node affects only one small area in the entire 
tree.  Thus, an iterative or incremental evaluation method can be introduced (one such algorithm already exists, 
create by the author  [unpublished], which computes in O(N) time the new RMST generated by adding a new 
Steiner point to a previous Steiner tree.  This algorithm could be modified to handle the crossover and mutation 
operations to prevent recomputation of the entire tree, for a very considerable speedup (up to tenfold). 
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