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Abstract

This paper analyzes the effect of different genetic encodings used for evolving 3D agents
with physical morphologies. The complex phenotypes used in such systems often require non-
trivial encodings. Different encodings used in Framsticks – a system for evolving 3D agents
– are presented. These include a low-level direct mapping and two higher-level encodings: a
recurrent and a developmental one. Quantitative results are presented from three simple opti-
mization tasks (active height, passive height, and locomotion speed). The low-level encoding
produced solutions of lower fitness than the two higher-level encodings under similar conditions.
Results from recurrent and developmental encodings had similar fitness values but displayed
qualitative differences. Desirable advantages and some drawbacks of more complex encodings
are established.
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1 Introduction

A survey of the field [21] indicates that there are a number of recent studies of the evolution of
simulated creatures equipped with realistic physical behavior [7, 15, 18]. Most of these works can
be traced back to the influential work of Karl Sims [20]. When comparing such systems with
other evolutionary systems, we can note that the use of a physical simulation layer implements
a complex genotype–fitness relationship. Physical interactions between body parts, the coupling
between control and physical body, and interactions during body development can all add a level of
indirection between the genotype and fitness. The complexity of the genotype–fitness relationship
offers a potential for rich evolutionary dynamics.

The most important element of the genotype-to-fitness relationship is the genotype-to-phenotype
mapping, or genotype encoding. There is no obvious simple way to encode a complex phenotype –
which consists of a variable-size, structured body and a matching control system – into a simpler
genotype. Moreover, an evolutionary algorithm can perform poorly when using a certain genotype
encoding, and better when using others, for reasons not yet immediately obvious. The employed
genotype encoding can have a significant effect on the performance of the evolution. This fact
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has been recently recognized by researchers who directed efforts into developing more sophisticated
encodings [2, 3, 10]. The aforementioned evolutionary systems lack a common base for experi-
mentation1, they use different physical engines, evolutionary algorithms, and various approaches
for genotype encodings. Such differences render a comparison aimed solely at the effect of genetic
encodings difficult.

In the present work we use a single system, Framsticks, as the context of our analysis of various
genotype encodings. Framsticks is a realistic, three-dimensional simulation of agents and their
interactions [12, 15, 16]. We present the three encodings currently implemented in the system,
which include a simple low-level encoding and two higher-level ones: a direct recurrent and an
indirect developmental. The low-level encoding is the simplest, and is considered to be a special
case, while the other two are more complex, having been designed to be more evolvable. We compare
the performance of the encodings in there optimization tasks (passive and active height, velocity),
in experiments which differ only in the encoding used.

The organization of the article is as follows: Sect. 2. contains a general discussion on the effect
of different encodings. Sect. 3. and Sect. 4. provide an overview of the Framsticks system and its
three different encodings, followed by experimental results in Sect. 5. Conclusions and direction for
further work are included in Sect. 6.

2 The Role of the Genetic Encoding

Most evolutionary simulation systems distinguish between the concepts of genotype and phenotype,
and employ a mapping between the two (this mapping is the trivial identity mapping in simple GA
cases). As an evolutionary system allows for a more complex phenotype space, a more complex
genotype-to-phenotype mapping (or encoding) is called for to allow genotypes to concisely describe
complex phenotypes. Given a phenotype space, an encoding does not automatically follow: it is
possible to construct differrent genotype spaces which map into the phenotype space, and even for
one particular genotype space, it is possible to devise numerous mappings from it to the phenotype
space. Does the selection of a particular encoding have a significant effect on the outcome of the
evolutionary search? While it is hard to devise an ‘ideal’ encoding, it is certain that some encodings
perform better than others. The issue of genetic encodings has been first addressed in the context
of GAs, with the binary vs. Gray coding being one specific example [17]. These studies established
that the genetic encoding can have a noticeable effect on the evolutionary search.

The task of evolution of physical agents is difficult for several reasons. Single points in the
phenotype space are complete creatures, with a structured morphology and control (each creature
has a ‘body’ and ‘brain’). There is a variable amount of information required to describe such an
organism. The dimensionality of the search space is not fixed, and the space does not lend itself to a
straightforward neighborhood definition. Some features of the phenotypes change continuously (e.g.,
length of a body part), while others change discretely (e.g., number of body parts). Furthermore,
the evaluation of a single phenotype involves a lengthy physical simulation, which can amplify
small changes in the phenotype and lead to large changes in fitness; the imposed fitness landscape
is multi-peaked; and evaluations contain non-deterministic components. In order to deal with such
a large and complex search space, adequate genetic encodings are called for. The large number of
CPU cycles required for fitness evaluations poses an additional technical difficulty.

Let us consider the implications of a chosen genetic encoding for a phenotype space (which
we consider as given, determined by the chosen simulation rules). Typically an encoding maps
only to a subset of the phenotype space. Valid phenotypes exist which cannot be expressed by
the encoding. An example in the Framsticks system is morphologies containing cycles: although

1Recently some researchers expressed ideas about using a common physics platform [21].
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they are valid phenotypes, the default encoding (recur)2 cannot express them. The existence of
phenotypes which are impossible to encode means that entire portions of the search space are sealed
off from the search. This, nonetheless, might benefit the search, if the pruned space is smoother or
denser in high-fitness points than the entire space.

More importantly, the encoding defines the topology of the phenotype space. Genetic operators
(which are encoding-specific) determine which genotypes – and the corresponding phenotypes –
are neighbors. The topology is encoding-specific: suppose phenotypes F1 and F2 are encoded by
neighboring genotypes G1 and G2 under encoding S, and encoded by Γ1 and Γ2 under encoding
Σ. Even if G1 and G2 are neighboring (there is a mutation in S which turns G1 into G2), Γ1

and Γ2 can be distant in the genotype space in Σ. For example, the recur genotypes ‘XXXX’ and
‘XLXXX’ are separated by one point mutation (insert ‘L’), but the corresponding simul genotypes
are separated by three mutations (one for each of the last three sticks). An encoding – together with
its associated genetic operators – determines which phenotypes are neighboring, and also influences
which phenotypes have a higher probability of being visited.

The phenotype space topology imposed by the encoding determines which parts of the space
are easily accessible by the search. Although the evolutionary search operates on phenotypes,
the genotype encoding indirectly influences the outcome of the search. The bias imposed by an
encoding becomes evident in the case of a random search: two random searches with different
genotype encoding yield different results, despite the identical phenotype space. A phenotype space
has an inherent topology: phenotypes of similar fitness are ‘close’ to each other. The genotype
encoding imposes another topology, by defining which phenotypes are close genetically (measured
as the number of mutations separating the corresponding genotypes). Under a good encoding,
these two topologies are more highly correlated [9]. Unfortunately, this correlation is impossible
to directly measure, because the vast complexity of the phenotype space and its fitness landscape.
Our judgments of encodings are thus subjective, based on various theoretical and experimental
observations.

Different encodings have different characteristics, and some are better suited for some types of
evolutionary search. It is hard to objectively establish these qualities of the encodings, and it is
doubtful that a single best one exists. This perspective was our motivation to expand the Framsticks
system to support several encodings at the same time.

3 The Framsticks World

The following sections contain an overview of the Framsticks system and its capabilities. The
Framsticks system simulates a three-dimensional world populated by agents. Agents are composed
of an articulated morphology (‘body’) and attached control system (‘brain’), which are described
in turn. For a more detailed presentation, consult [1, 12, 15, 16].

3.1 Body

The bodies of the agents are composed of a set of interconnected simple elements called sticks;
a stick consists of two material endpoints connected through a flexible rod. Sticks have various
physical and biological properties (mass, stamina, assimilation, etc.). Articulations exist between
sticks where they share an endpoint; the articulations are unrestricted in all three degrees of freedom
(bending in two planes plus twisting).

A wide range of physical interactions between sticks are simulated: static and dynamic friction,
damping, action and reaction forces, gravity, buoyancy (uplift pressure under water), and energy
losses from deformations; some of these forces are shown in Fig. 1. The finite element method is

2The different encodings are presented in Sect. 4.
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Figure 1: Various kinds of forces considered in the physical simulator of the Framsticks system.

used for step-by-step simulation. Collisions are simulated between stick of different agents, but not
between the sticks of a single agent (for efficiency reasons).

3.2 Brain

A Framsticks agent is also equipped with a control system, which is implemented by a network of
artificial neurons. Some neurons are specialized into sensors and effectors, for interfacing with the
mechanical body.

Generic neurons are simple processing units, similar to the ones used in standard artificial neural
networks. Every neuron has a variable number of weighted connections from other neurons, and
several parameters which influence its function. A neuron output value is updated periodically.
The updating rule is based on the standard sigmoid function:

o =
2

1 + e−i·β
− 1 (1)

In this equation o is the activation value (output), i is the sum of weighted inputs, and β is the
steepness parameter of the transfer function.

There are some extensions employed in the Framsticks neuron model, which allow for a wider
variety of neurons. Neurons possess an internal state s, which is updated with a certain inertia: s
follows i with a speed of change v, which depends on the difference between i and s:

ot =
2

1 + e−st·β
− 1 (2)

st = st−1 + vt (3)

vt = vt−1 · λ+ µ · (it − st−1) (4)

The additional tunable parameters are λ and µ. For λ = 0 and µ = 1 we get (1). The parameters
β, λ and µ can all be under genetic control.

The rules for computing neuron activation values are deterministic, however, initial activations
are set stochastically to small values. The reason for employing randomness is to discredit neural
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Figure 2: Visualisation of effectors: (a) bending and (b) rotating, and receptors: (c) equilibrium
and (d) touch. Effectors are drawn on the first of the two endpoints they influence.

networks that rely extensively on specific initial patterns, and encourage those which rely more on
the information present in the environment. The latter ones tend to produce more robust solutions.

The special neurons include effectors (muscles) and various sensors. Effectors are muscles that
can exert modulated forces at articulations they are attached to. Muscles exists in two varieties:
bending and rotating.

Sensors, also attached to sticks, include orientation and touch sensors.3 An orientation sensor
(denoted ‘G’, also called a gyroscope) measures the orientation of the stick relative to the horizontal
plane. A touch sensor (denoted ‘T’) reacts to a contact force at the end of the stick, and can detect
contact with the ground (or lack of it). Both orientation and touch sensors are useful for building
controls for locomotion and other behaviors. See Fig. 2. for an illustration of the Framsticks
effectors and sensors. Additionally, see the Appendix for more detail on the capabilities of the
system.

4 Genetic Encodings in Framsticks

4.1 Support for multiple encodings

There are multiple encodings supported by the Framsticks system, each with its own representation
and operators. The system manipulates and transforms genotype strings in various representations,
and ultimately decodes them into the internal representation used by the simulator.

Any creature can be completely described using a low-level representation, by listing all of its
components and attributes. This representation can be treated as a special genotype encoding –
special because it is a direct one-to-one mapping – which we call simul. Other higher-level encod-
ings convert their representation into the corresponding simul version (possibly through another
intermediary representation), as illustrated in Fig. 3. The reverse mapping of higher-level encodings
is difficult to compute, which is also true for biological phenotype encodings. As a consequence,
in the general case it is not possible to convert a lower-level representation into a higher-level one
(or a higher-level one into another higher-level one). Nonetheless, an approximate transformation
is possible from devel genotypes to recur genotypes, but not the other way around.

Each encoding has its associated genetic operators (mutation, crossover, and optional repair),
and a decoding procedure which translates a genotype into a simul (or another ‘lower’) represen-
tation. A new encoding can be added relatively easily, by implementing these components, without
the need to work with internal representations. The Framsticks system is accompanied by the
Software Development Kit (SDK) to simplify this process [16].

In this article we describe three encodings: the direct low-level, direct recurrent, and indirect
developmental. There are other encodings which are currently under development (similarity-based,
metabolism-based, etc.). The direct low-level encoding (denoted simul, from ‘simulator’, elsewhere

3There is also a smell sensor, not used in the present work.
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recur

Figure 3: The architecture for multiple encodings. Solid arrows indicate decoding of one represen-
tation into another. Dashed arrow indicates an approximate transformation (with potential loss of
information).

also referred to as ‘f0’) is a universal encoding which directly describes any valid phenotype. The
direct recurrent encoding (recur from ‘recurrent’, ‘f1’), the original encoding in Framsticks, is signif-
icantly more compact than simul, but still preserves a one-to-one mapping between genotypic and
phenotypic parts. It uses higher-level rules to achieve compactness and transparency. The indirect
developmental encoding (devel from ‘developmental’, ‘f4’) is similar to recur, but describes the
process of creation of a creature, rather than its final form. Consequently, it supports some features
that are results of interactions during the developmental process: most importantly, modularity.

4.2 Direct low-level

The direct low-level, or simul, encoding describes agents exactly as they are represented in the
simulator. This encoding is more of a direct representation than a proper encoding, but it is
possible to use it as such. It does not use any higher-level features to make the genotype more
compact or flexible, and because of this, it is expected that this encoding is not very well suited for
evolution. Its useful characteristics are that it has a minimal decoding cost and that it is universal:
every possible agent can be described using this encoding. These properties make it possible to use
the simul encoding as an intermediary representation during the translation from other higher-level
encodings.

A simul genotype consists of a list of descriptions of all the objects the agent is composed of:
parts, joints, neurons, and neuron items (connections, sensors, effectors). Every description specifies
all the attributes of the object explicitly (except those which are equal to their default value). A
sample genotype is provided in Fig. 4. All objects are implicitly numbered by their position in the
list, and these absolute order numbers are used for later reference (e.g., each neuron has a reference
to the part it is attached to). The absolute reference numbers are global properties, and are affected
by a change in the number or order of the objects. Generally the simul encoding does not impose
any restriction on the phenotypes4, and it even allows morphologies with cycles (such as the one
illustrated in Fig. 5.a). This is not true of the other two encodings. Further details of this format
can be found in [13].

In order to use simul as a true encoding, both genetic operators are implemented. Point

4There is one small restriction present, however: the orientation of parts is always zero. The orientation of a
part influences both how receptors (‘T’) and muscles work. Touch sensors always ‘look’ in one direction, and muscles
work along the same axis. This is not a serious restriction, as muscles can still produce various movements. In other
representations, the orientation of a part is determined by a ‘growing axis’.
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p:D=0

p:1, m=2, vol=2, D=0

p:2, m=3, vol=3, D=3

p:2.50017, -0.000170005, -0.865927, D=5

p:2.50017, 0.000170005, 0.865927, 3, vol=3, D=7

p:3.50017, 0.000170005, 0.865927, D=9

p:2.00051, 0.000340067, 1.73215, D=11

j:0, 1, dx=1, D=0

j:1, 2, 1.5706, dx=1, D=3

j:2, 3, rz=-1.047, 1, D=5

j:2, 4, rz=1.047, 1, D=7

j:4, 5, rz=-1.047, 1, D=9

j:4, 6, rz=1.047, 1, D=11

Figure 4: A sample simul genotype. This genotype corre-
sponds to the phenotype shown in Fig. 7.b – recur genotype
‘XRRX(X,X(X,X))’. Lines starting with a ‘p:’ represent ma-
terial endpoints, while lines starting with a ‘j:’ represent
rods joining two endpoints. The first two numbers after ‘j:’
are the references for the two endpoints.

mutation of a genotype is straightforward: it either changes one attribute of one object, or (less
frequently) removes an existing object or adds a new one. In either case, mutation affects exactly
one element of the agent. The simul encoding does not offer a straightforward method for crossover.
Thus we based crossover on phenotypic geometry: both morphologies are cut in two parts using
a plane randomly positioned in space, and the two halves from each of the agents are grafted
together. Neurons follow the part they are attached to, and broken links are reconnected to recover
lost functionality. Such an example is shown in Fig. 5. In a special case, when two identical parents
are crossed over, the resulting offspring is identical to the parents.

4.3 Direct recurrent

The direct recurrent, or recur, encoding was the first one employed in the Framsticks system. This
higher-level encoding was designed so that genotypes are compact and robust in face of genetic
operators. Being easily understood and manipulated by humans was also a consideration.

The details of the recur encoding had been covered in [12, 14, 15], so only a brief overview
is given here. In a recur genotype, the component sticks of a morphology are described using a
string as follows: each stick is represented by a letter ‘X’, and two consecutive ‘X’s represent two
sticks joined together. If there is a stick joined to several other sticks, they are represented using
the structure ‘X(X ... , X ... , X ... )’. This is sufficient to represent any cycle-free stick
topology, see Fig. 6. for some examples.

Various attributes of sticks are specified using modifier letters. Modifiers change the value of
a certain property in a relative manner, starting with an implicit default value. Lowercase letters
denote modifiers which decrease, and capital letters denote modifiers which increase the value of an
attribute by a fixed factor. Repeated letters achieve a compound effect, for example, ‘lX’ represents
a short stick, while ‘LLLX’ a very long one. Furthermore, modifiers are ‘fuzzy’ and do not only
affect the first following stick, but later ones as well, with a decreasing weight. For example, the
lengths of the sticks in the genotype ‘XLLXXX’ are 1.00, 2.00, 1.51, and 1.255 respectively. There are
modifiers for basic attributes (present also in the simul encoding), and some recur-specific ones,
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(a) (b) (c)

Figure 5: A simul crossover example. (a) The two parent structures; shown with their cutting
planes. (b) The separated parents; dashed lines are joints which are broken, and the two halves
shaded in black are used in the child. (c) The child structure; dotted lines are newly created joints.

‘X’ ‘XX(X,X)’
(a) (b)

‘XXX(XX,X(X,X))’ ‘XXX(,,,XX(X(X,X),X(X,X,,)))’
(c) (d)

Figure 6: Examples of genotypes describing bodies of increasing complexity. (a) Single stick, (b)
two joined sticks branching into single sticks, (c) recurrent branching, (d) recurrent branching with
some branches missing.
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Symbol Meaning

R Rotation of branching plane by 45◦

Q Skew of branching plane
C Curvedness
L Length
F Friction
M Muscle strength

Table 1: Modifier symbols in recur. ‘RRR’ rotates the current branching plane by 3 · 45◦ = 135◦;
‘rr’ by −90◦, etc.

‘CXlXlXlX’ ‘XRRX(X,X(X,X))’ ‘CCXXX(XXX,XXX)’
(a) (b) (c)

Figure 7: Examples of recur modifiers. (a) Shortening and curvedness, (b) rotation of branching
plane by 90◦, (c) tendency for curving.

such as the curving angle between two sticks. Modifiers and their meanings are listed in Table 1.
Related examples of genotype-phenotype pairs are presented in Fig. 7.

Neurons are represented by the symbols ‘[ ... ]’, inserted after the stick they are attached
to. There are various parameters specified for a neuron: type (‘|’ for bending muscle, ‘@’ for
rotating muscle, etc.), a comma-separated list of connections in the format ‘<input>:<weight>’,
where input is either an integer, in which case it denotes another neuron using relative numbering
(-1 means the previous, +2 the second next one, etc.), or a sensor (‘T’, ‘G’, etc.). Fig. 8. presents
three examples with explanations: ‘X[0:5]’ is a stick with a neuron which has a single recurrent
link from itself, ‘X[@1:3]X[G:-2]’ is two sticks, both with one neuron, the second connected to a
gyroscope sensor, and the first connected to the second, and driving a bending muscle.

The recur encoding has specialized genetic operators. Mutation either adds a new modifier, a
new stick or neuron, or deletes an existing modifier, stick, or neuron, or changes the parameters
of an existing neuron. Crossover operates on the genotype strings in a straightforward way: it
swaps randomly isolated substrings among two strings. However, cut points are restricted to logical
positions (i.e., the multiple characters describing a single neuron are never separated).

The recur encoding has several properties resulting from its design features. Important prop-
erties are:

– Linkage between body parts is done implicitly, rather than using explicit references to parts

9



0

1

0 2

‘X[0:5]’ ‘X[@1:3]X[G:-2]’ ‘XX[@0:0][|1:1,-1:2]X[-2:3]’

(a) (b) (c)

Figure 8: Examples of describing linkage between body and control. (a) Single stick and neuron,
not connected functionally, (b) two sticks: one with a rotating muscle, the other with a G receptor,
(c) example of a more complex NN and two kinds of neurons for the same joint. The body shape,
the neural network, and the genotype is shown in each case. Note that the neural networks are
shown with inputs arranged to the left and outputs to the right, which results in a different ordering
of the neurons than in the genotypes.

(eg., ‘XX’ implicitly creates a link between the two sticks).

– Linkage between neurons is done using relative rather than absolute numbering. Relative
numbering is susceptible to disruptions only if the added (removed) neuron is between the
two ends of the link, but resistant otherwise. The latter cases are more frequent, and links
specified by absolute numbering would be broken in such cases.

– Attribute changes propagate along the body structure.

– Implicit default values and automatic constraints are used extensively (e.g., if there is a link
from a sensor, there must be a sensor).

– Control elements (sensors, effectors) are described near the elements controlled.

Now we can list the characteristics of the recur encoding:

1. Non disruptive. Small changes to the genotype generally cause small changes to the phenotype.
The changes can propagate to multiple sites, but in a continuous and structured manner.

2. Crossover-friendly. Substrings retain at least part of their meaning when isolated and inserted
into another context. Disrupted references are fixed by automatic constraints and implicit
rules.

3. Human-friendly. The relationship between a genotype and its phenotype is relatively easy to
understand by a human user, so genotypes can be be analyzed and modified by hand.

4. Complete. The genotype specifies every aspect of the phenotype completely (albeit not all
directly).

5. Minimal redundancy. There are no genotype parts with no influence over the genotype.

In summary, the direct recurrent encoding uses higher-level constraints, and is potentially more
effective in an evolutionary search than the direct low-level encoding. However, this conjecture
needs to be tested empirically.
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Figure 9: A sample devel genotype represented as a tree. The genotype is ‘<X>RR<<X><<X>X>X>X’,
equivalent to the recur genotype presented in Fig. 7.b.

4.4 Indirect developmental

The indirect developmental encoding describes an agent by specifying its developmental process
rather than its final form. A preliminary description of this encoding has been included in [14].
The encoding models a set of interacting phenotypic parts which execute actions specified by the
genotype. This encoding is inspired by the cellular developmental encoding of Gruau [7], but is
extended to include the body as well. Developmental encodings have been applied to evolution
of neural networks [11, 23, 8, 4, 19], and more recently to both neural networks and morphologies
[5, 6, 2, 3, 10], and have been found to be superior to direct encodings, by producing more structured
and modular phenotypes. Extra complexity and unnecessarily large phenotypes are reported as
disadvantages.

Using the devel encoding, creatures are built by passing through a developmental phase. A
developing creature consists of a set of interconnected cells, which can be undifferentiated or dif-
ferentiated (sticks or neurons). Cells execute genetic codes which alter their properties, or create
new cells through division. After a division the newly created cells execute different codes (they
differentiate). At this point the genetic codes fork, which is why the entire genotype is organized
as a tree. Development of a creature starts out as a single undifferentiated cell. As new cells are
created, they follow their instruction in parallel. Undifferentiated cells can mature into sticks (‘X’)
or neurons (‘N’). Development halts when all cells mature [7, 19].

Devel is similar to recur insofar as it uses similar genetic symbols (‘X’, ‘[ ... ]’, etc.). In
recur the genotype is traversed, and the codes are interpreted by an external builder process,
which creates the parts of the creature. In devel the codes are interpreted by the developing
parts themselves. Recur codes consist of ones that generate new parts, and modifiers that change
properties of parts that are to be created. Devel also has analogous modifiers, but these affect
existing parts.

A devel genetic code tree is represented as a string, generated by traversing the tree pre-order
(for each node, first the node is described, then its subtrees). A division ‘<’ is followed by the codes
executed by the parent cell, until the corresponding stop code ‘>’, then by the codes executed by
the daughter cell. If either of the codes is itself a tree, the same rule is applied recursively. This
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Figure 10: Example of the repetition operator in genotype ‘rr<X>#5<,<X>RR<<llX>LX>LX>>X’.

way the ‘<’ and ‘>’ codes also act like nested parentheses. An example is presented in Fig. 9: the
genotype ‘<X>RR<<X><<X>X>X>X’ is shown as parsed into a tree structure. The resulting genotype
(Fig. 7.b) consists of six sticks, easily seen from the fact that the tree contains six terminal nodes
(and five branching nodes).

The devel encoding supports repetition of the same code portion more than once. This is
implemented by the repetition code ‘#’, which has two subtrees (like ‘<’): the first is the code which
is repeated, and the second is the rest, executed after the repetitions. The ‘#’ code also specifies the
number of repetitions. The repeated subtree can contain an arbitrary number of codes, including
divisions. In this case only daughter cells will continue the repetition, not both of them.

The repeated genotype portion can consist of a single node or a subtree of arbitrary size. If the
repeated subtree includes only a modifier, the effect of the modifier will be enhanced, but no new
parts will be created. If it includes a division (‘<’), multiple copies of the element will be created.
The simplest case is the repetition of a single stick or neuron. The repeated portion can contain
multiple division codes, and even nested repetition codes. For example, the genotype presented in
Fig. 10. features a repeated body segment consisting of three sticks.

Phenotype modularity produced through developmental repetitions can be contrasted with mod-
ularity produced through phylogenic gene duplication. During evolution a genotype portion encod-
ing body substructures can be duplicated (especially by crossover). However, even if the resulting
duplicated phenotypic structures are identical, they are no longer encoded by the same genetic
codes, and thus will evolve independently. In the case of devel encoding, repeated identical body
parts are encoded by shared genetic codes. This opens up the possibility of mutations which affect
all copies simultaneously [19]. Modularity is argued to be a useful property when evolving complex
entities [7, 2]. However, the modularity in devel encoding is somewhat limited in that modules are
identical, and cannot diverge or differentiate.

The devel encoding is accompanied by specialized genetic operators: mutation affects a single
node in the genotype tree (it is similar to the recur mutation). Crossover isolates and swaps
subtrees from the genotype trees, which is the standard method used in genetic programming.

The devel encoding is similar to the recur encoding in that it uses analogous genetic codes, and
every devel genotype can be translated into an approximate recur genotype. Differences include
support for modularity and the mechanism for propagating attribute values from one element to
another. In devel, when a cell divides, the new cell inherits the attributes of the old cell. The effect
is similar to how modifier effects are propagated in recur. But the propagation-by-division is more
flexible: for example, dividing neurons can duplicate their existing connections (see Fig. 11. for an
example). This provides one way to compress information needed to describe a neural network.

In conclusion, the devel encoding is similar to the recur encoding, but uses some features of a
developmental encoding. It supports segmentation and modular body layouts, features which are
not supported by recur. However, devel is not a full-fledged developmental encoding, because its
support for modularity is limited: repeated modules are always identical. (This is also true of the
encoding used in [10], but not of the one used in [3].)
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Figure 11: Example of multiplication of neural links when a cell is divided. The devel genotype is
‘<X>N<[*:0]>[-1:10]<><>’ (the corresponding recur is ‘X[*:0][-1:10][-2:10][-3:10]’).

Characteristic Simul Recur Devel

Genotype complexity Medium Medium High
Interpretation complexity Low Medium Medium

Body constraints None High High
Brain constraints None Low Low

Modularity None None High
Compression None None Variable
Redundancy None Low Low

Table 2: Characteristics of the presented genetic encodings.

4.5 Characteristics of the Three Encodings

In this section we attempt to summarize the characteristics of the three encodings, and chart
the differences in Table 2. We include the following characteristics in the comparison. Genotype
complexity refers to the internal structural complexity of genotypes, and the degree of dependencies
between genes5. The simul and recur encodings have medium complexity, while the devel encoding
has somewhat higher complexity, due to the repetition structures.

Interpretation complexity refers to the algorithmic complexity of the process of interpretation of
a genotype. Simul direct encoding requires very low overhead, while the two higher level encodings
require extra memory. Body and brain constraints are present if the encoding inherently limits
which phenotypes are expressable. Simul has no such limitation, while both higher level encodings
impose at least one major constraint (no cycles allowed) and some minor ones (some attribute
values can be set with limited precision, etc.). Modularity refers to the encoding’s ability to produce
identical or similar phenotypic units encoded by shared genes. Only devel qualifies in this category.
Compression refers to encodings which can encode a number of phenotypic parts in a lesser number
of genotypic parts; this property is related to modularity. Finally, an encoding has redundancy if it
permits genotypes with unexpressed portions. This can happen under both recur and devel, but
not extensively.

5We use the word ‘gene’ loosely, referring to the smallest element of a genotype (a letter in the genotype string),
or a set of adjacent elements (a substring of the genotype string).
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Setting Value

Population size 200
Cloning probability 20%
Crossing-over probability 16%
Point-mutation probability 64%
Initial distance from the ground 0.1

Table 3: GA settings used in the experiments.

The three encodings differ in several characteristics, which makes it impossible to analyze the
effect of one particular feature in isolation. Constructing encodings which differ in no more than
one feature would be possible only if these encodings have much in common (e.g., a common
meta-encoding). This contradicts our purpose to test fundamentally different approaches to encode
organisms. In different encodings operators are inherently different in most cases.

5 Empirical Comparison

In order to analyze the different encodings, we compared their performance against the same tasks.
We kept the fitness function and other settings constant in all the runs, and changed only the
genetic encoding used. We present results in the case of three optimization tasks: passive height
maximization, active height maximization, and locomotion velocity.

The first two tasks required maximization of the average height of the agent, as measured by
the geometric center of body parts. In order to limit evolution to static morphologies, in the
first task we turned off the simulation of neural networks. This limitation was removed for the
second task, which opened up the possibility of movement to enhance fitness. The motion of a
creature may increase the height on average, but morphology is still the dominant factor. The
height maximization tasks are relatively simple compared to the full potential of the Framsticks
system, but enables us to analyze results easily, just by looking at static images.

The third task was maximization of locomotion speed on land. This task required a coordinated
set of body parts (limbs), and control structures (effectors, neurons, and usually sensors). Various
results for locomotion using Framsticks have been reported previously in [15, 14].

5.1 System parameters

The evolutionary algorithm used was a steady-state GA, with the most important parameters listed
in Table 3. Genotypes were selected using tournament selection with size 2. When a genotype was
selected for reproduction, it was modified in 80% of the cases. If it was modified, it was mutated
(80% probability) or crossed over. If a genotype was not modified, it was cloned, which served to
lengthen the average lifetime of genotypes, to get fitness values sampled more than once. This was
needed because of the nondeterministic nature of the simulation (random initialization of neuron
states). The fitness of a genotype was defined as the average of the fitness values of the multiple
individuals sharing the genotype.

These settings were a result of a tedious experimentation and adjustment process. For every
combination of genetic encoding and task we executed 10 final runs, for a total of 3 × 3 × 10 = 90
runs.
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Setting Height (passive and active) Velocity

Performance measurement interval 50 500
Simulation time after stabilization 1000 5000
Number of evaluations in a single run 40,000 60,000

Table 4: Parameters of fitness formula and the number of evaluations in a single evolutionary run.
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Figure 12: Best, average, and worst fitness values during an evolutionary run.

Further settings are detailed in Table 4. All values concerning time are in simulation steps,
and values concerning distance are in simulation units. For comparison, the default stick length
is 1.0. Every evaluation was started with a stabilization period, during which no performance
measurements were taken, and neurons were kept inactive. This was done in order to prevent the
use of the potential energy resulting from the initial placement and position of the creatures.

5.2 Results – Quantitative analysis

In a quantitative analysis the notion of best individual is important, but complicated by the fact
that fitness evaluations are non-deterministic. A fitness can depend on how many times a genotype
had been evaluated. The more evaluations, the more stable and reliable is a fitness estimate.

We reproduce a typical fitness profile from a velocity-oriented experiment. Fig. 12. plots various
fitness values against time. The middle line is the mean fitness of the population. The lines above
(best(2)) and below (worst(2)) are the best and worst fitness values of genotypes evaluated at
least two times. Lines best(1) and worst(1) are the best and worst fitness values of all genotypes
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Figure 13: Best fitness values found in the three tasks: (a) passive average height, (b) active average
height, (c) average velocity. Mean values are shown with standard deviations.

(including those evaluated only once). As it can be seen, best(1) and worst(1) vary widely. Therefore
we decided to define the ‘best’ genotype as the genotype with highest mean fitness, evaluated at
least two times (best(2)). Thus ‘best’, ‘highest’, etc., are used with such meaning in the forthcoming
discussion.

Charts in Fig. 13 summarize the fitness results for the three tasks and three genetic encodings.
The bars show averages of best individuals taken from the 10 runs; standard deviations are also
shown. In all three tasks, the worst was the simul encoding. Recur and devel were comparable.
Statistically, the difference was important between devel and simul in task (a), and between
recur and simul, and devel and simul in task (b). In task (c), no differences were statistically
significant6.

It may seem interesting that active height maximization did not yield better results than the
passive one. One explanation is that static constructs alone were sufficient to produce solutions
very close to physical limits. The fitness result values, taken together with attempts to manually
construct agents (described in more detail below), indicate that the value of 2.50 for average height
of the center is very hard to exceed. This is due to some physical limitations: the maximum stick
length is 2.00, and the high elasticity of sticks and joints makes them unable to bear large weights.
The disadvantage of a moving design (e.g., jumping) is instability, and apparently, in this regime
the disadvantage was stronger than the benefit. Motion might be better, however, in increasing
maximal height rather than average height (as in the case of a big leap followed by collapse).

6Tests were conducted with the assumption of normal distribution of results and after testing the hypothesis of
equal variances. The significance level was 0.01.
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Figure 14: Representative best agents in passive height maximization task, simul encoding.

5.3 Results – Qualitative analysis

5.3.1 Height, passive agents

In this task three kinds of construction were typical, with variable intensity of branching: from
antenna-like creatures through tree- and bush-like creatures (Fig. 14). Typical simul solutions had
a triangular base (90% of agents), which allowed for high stability and stiffness. This shows the im-
portance of cycles in the morphology. Using cycles it is possible to convert some of the compressing
forces into pulling forces, which are handled better by sticks. If cycles were not available, we would
have expected even lower maximum fitness values.

Using the simul encoding, one of the observed kinds of solutions was a number of sticks erected
from a base. Such a structure allowed for a high position of the geometric center with high stability
and stiffness (Fig. 14.d). With recur, in 50% of the agents base points were joined not at ground
level, but above (Fig. 15.a, b, c). One of the exceptions was the bush-like agent with 4353 parts
(Fig. 15.d). In the case of the devel encoding, the influence of modularity was observed in structures
resembling a spiral, a chain, or a segmented backbone (Fig. 16).

Although evolved creatures were stable during their normal evaluation period, in most cases they
were knocked out of balance with minimal effort. Some minimal motion could usually be observed
even in the case of passive agents, due to elastic forces and non-equilibrium initial conditions. In
some cases agents flipped over spontaneously when simulated for times exceeding the length used
during the evolution. This shows the extreme degree of adaptation to the given environment and
peculiarities of the fitness evaluation.

5.3.2 Height, active agents

This task is similar to the passive height task, but with the possibility of using neural networks
to generate movement. Many resulting structures were similar to ones from the previous task. In
simul and recur, about 40% of agents appeared to be moving purposefully; the rest were moving
in a way that did not deteriorate their fitness or did not move at all (Fig. 17.a, b). A purposeful
movement was usually stretching and straightening (Fig. 17.c), with an orientation sensor as the
signal source. Among devel agents no purposeful movement was observed, but some interesting
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Figure 15: Representative best agents in passive height maximization task, recur encoding.
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Figure 16: Representative best agents in passive height maximization task, devel encoding.
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Figure 17: Representative best agents in active height maximization task. Recur encoding.

(a) (b) (c) (d) (e)

Figure 18: Representative best agents in active height maximization task. Devel encoding.

constructions emerged (Fig. 18).7

5.3.3 Velocity

In this task, evolved agents had small bodies (small weight), and used neural networks with effectors
and receptors. This task is not so severely imitated by simple physical constraints as the height
tasks, and there was a higher variety among the observed strategies.

Among agents evolved for velocity the most frequently encountered structure consisted of a few
sticks, branched or bent (Fig. 20.b). The last stick was moved by a bending muscle, and used as a
limb for pushing back. The branching on the other end stabilized the direction of the locomotion
(if an agent fell down after a jump, it turned over and got into the same orientation, due to the
stabilizing limbs). Consecutive small jumps resulted in locomotion in one direction (Fig. 19.a).

Another popular solution was a construction with two pushing limbs, with a body perpendicular
to the direction of the locomotion (Fig. 20.a). Usually only one limb had a muscle, and the other
served as stabilization, moving passively, and helping sustain the direction of movement.

7Another peculiarity of the height maximization task was noted while trying to design solutions by hand. In a
simple active setup, a vertical beam is balanced by a muscle at its base. The muscle needs to switch from pulling to
pushing as the beam passes the vertical direction. However, an orientation receptor is most sensitive to the horizontal
direction, so it cannot be placed directly on the beam. In order to use an orientation sensor, it should reside on
a horizontal stick, or large neuron biases need to be used. These solutions are less probable, as they require the
co-occurance of several changes.
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Figure 19: Representative best agents in velocity maximization task. Simul encoding.

Apart from the common designs, many different strategies could be observed, some illustrated
here. The agent shown in Fig. 19.b. had three limbs (two pushing back, one pulling), the one in
Fig. 19.c. used a triangular structure for pushing, and the one in Fig. 20.c. had a symmetrical body
with two pushing limbs.

Since solutions had small bodies, there were no evident general differences between morpholo-
gies in the case of the three encodings. There was no room for segment repetitions and large scale
modularity. Subjectively, the movement of recur and devel solutions appeared as somewhat bi-
ologically more plausible than simul movements. Neural networks, receptors, and effectors were
very precisely tuned to the morphology, showing a tight coupling between morphology and control.

5.4 Comparison to human-designed agents

Designing agents by hand is a very complex process, in professional applications it requires planning
and extensive knowledge about how the control system, receptors, and effectors work, as well as
knowledge about the simulator. Designing neural networks for control by hand is especially difficult
and tedious. For this reason, human-built agents usually have lower fitness than agents produced
by evolution. However, human creations are often interesting qualitatively. Human designs have
such properties as explicit purpose, elegance, simplicity (minimum of means), and often symmetry
and modularity. These features are opposed to evolutionary results, which are characterized by
hidden purpose, complexity, implicit and very strong interdependencies between parts, as well as
redundancy and randomness.

The difficult process of designing neural networks can be circumvented by a hybrid solution:
bodies can be hand-constructed, and control structures evolved for it. It is possible to turn off
evolution of body parts (using simul or recur). This approach can yield interesting creatures
[1, 12, 14, 16], often resembling creatures found in nature.

We tried to design agents by hand for the presented tasks, without much success. The locomotion
task is simply too complex for a new good solution to be designed by hand in a reasonable amount
of time. We expected to be more successful in the simpler task of active height, but we managed
to produce higher scores in only a single, extreme case. A simul structure in the form of the
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Figure 20: Representative best agents in velocity maximization task. (a, b) Recur encoding, (c)
devel encoding.

edges of two cubes, one on top of the other, with carefully designed stick lengths and coordinates,
obtained a fitness (2.51) above the best found in evolution. This solution is special because it had a
clear overall design, and relied on some coordinates of different endpoints being precisely the same
(‘exact coordinates’), which rarely happens during evolution. Moreover, this structure employs
cycles, so comparison to results from recur and devel is unfair, since cycles are not available in
those encodings. The fact that a single hand-crafted design scored higher does not diminish the
results of the evolution but rather strengthens them, because of the peculiar circumstances required.

6 Conclusions

Three different encodings were tested in the presented experiments, and the solutions produced are
considered to be successful for the given tasks in all three cases. However, there were some important
differences in the degree of success. The simul encoding performed worse than the two higher-level
encodings. The most important differences between these encodings are that simul has a minimal
bias and is unrestrictive, while the higher-level encodings (recur and devel) restrict the search
space, and introduce a strong bias towards structured phenotypes. Also, the genetic operators of
the higher-level encodings are generally less disruptive than the operators working on lower-level
genotypes. Note that the issues of genetic operators and the imposed structure of an encoding are
strongly related. Based on our results, we conclude that a more structured genotype encoding,
with genetic operators working on a higher level, is beneficial in the evolution of 3D agents. The
presence of a bias towards structured phenotypes can overcome the apparent limitation that entire
regions of the search space are not accessible by the search.

Comparing devel to recur, we found that the two performed similarly, although devel is some-
what more complex than recur. In this case the extra complexity of the encoding (support for
modularity) did not result in better solutions. Modularity in evolved agents was not very frequent
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(in the case of velocity task, very rare), which we attribute to the fact that the selected tasks were
not very complex.

Another conclusion supported by results presented in this article is that despite similar fit-
ness values, bias introduced by the encoding may be useful in some applications (engineering and
robotics, for example). Different structures yield different dynamics, energy consumption, durability
etc., although these criteria were not considered in the optimizations reported here. The significant
influence of a chosen encoding can be clearly seen in the agents we obtained: those with low-level
direct encoding simul displayed neither order nor structure. The two encodings restricting mor-
phology to a tree produced more clear constructions, and for developmental encoding segmentation
and modularity could be observed.

Each higher-level encoding introduces a specific bias into solutions. Introducing a new, sophis-
ticated genotype encoding may be worthwhile even if it does not lead to higher fitness solutions,
because it may facilitate the emergence of new evolutionary ‘ideas’. Evolutionary search biased
towards different areas of the search space usually results in qualitatively different solutions.

On a general note, it was found that the apparent redundancy in evolved individuals was often
an illusion, as any minor change proved deleterious. This shows the strength of implicit relations
between parts within the evolved agents. It was usually impossible to construct solutions by hand
which exceeded or matched the fitness of evolved individuals. These findings indicate that solutions
found by evolution were highly optimal and difficult to improve upon.

Future work

Work is currently under way on the Framsticks system to implement a universal environment for
various experiments. Many experiments could be performed in addition to the ones presented here,
of which we mention only a few. Estimates for the ‘ruggedness’ of an imposed fitness landscape
allows testing of the conjecture about the ‘smoothness’ of various encodings, without the bias of the
evolutionary algorithm [22]. Control experiments using devel with support for repetition turned
off can be used to isolate the effect of this particular feature.

Similar experiments should be conducted with different, more complex tasks, and specifically,
with tasks that require multiple behaviors (e.g., locomotion and foraging). Numerous ideas exist
regarding new encodings, including a similarity-based encoding, and an encoding based on simple
models of cell metabolism, which allow for a gradual way of modeling interactions between body
parts during development. Finally, work is under way on applications of a phenotype similarity
measure, which allows for speciation and automatic taxonomy analysis [13].

Appendix

We include here a screenshot from the Framsticks simulator (Fig. 21), showing a detailed view
of an agent. The picture shows the body and brain of a recur creature from a speed-oriented
experiment. The left pane shows a schematic view of the body (neural links are shown in blue, the
body is shown in black). The inset in the upper-left corner is the corresponding genotype. The
inset in the lower-left corner is a ‘solid’ rendering of the same creature. The right pane shows the
neural network of the creature. Receptors and effectors are shown as small icons, two touch sensors
on the left, and four muscles on the right (three rotating and one bending). Two smaller windows
graph the current output signal of two chosen neurons. The color of neural links reflects the signal
value. Note that one touch sensor is selected (white square); its location is shown in body (white
small filled circle).

23



Figure 21: Screenshot of a creature inspection window from the Framsticks application. See text
for details.
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