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I have been frustrated with currently available SPICE models for transformers, 
particularly SPICE models that included the core losses and saturation for power when 
applied to power converter applications.  This paper presents new SPICE models that I 
hope are useful. 

The manufacturers' data for core loss parameters, both for real transformer designs and 
for SPICE models, is woefully inadequate. This paper includes suggestions for more 
useful data as well as hints to mine more information from present data. 

This presentation includes an appendix "Core losses in SPICE models from core 
manufacturers' data".  The reader may wish to look over this section before studying the 
SPICE models, as the relationships developed in the appendix are the basis for some of 
the SPICE models. 

Contents: 

• Basic ideal transformer 

• Multiple winding ideal transformer 

• Magnetizing inductance, saturation and hysteresis, Simple model 
Hysteresis loop 
Curve fitting 

• Four turn transformer with hysteresis and core losses, simple model. 

• Winding resistance and leakage inductance, simple model. 
Loss and energy test points 

• Core loss, part 2, low and high frequency effects 
Curve fitting 

• High frequency effects in the windings 
Eddy currents 
Skin effect 
Proximity effects 
Multi-layer windings 

• Transformers with coaxial or interleaved windings 



Basic ideal transformer: 

 

The SPICE model above shows a basic ideal transformer model using a behavioral 
current source and a behavioral voltage source.  The voltage source V1 is used as a 
current reference for the behavioral current source B1.  V1 is set to 0 V so that it has no 
effect on the circuit.  The turns-ratio may be set in the behavioral functions, but I chose to 
make it a parameter {N}, set using a SPICE parameter statement ".PARAM N=1" so that 
it is easy to vary without editing the SPICE model itself.  The returns are common in this 
model, but they may be isolated. 

This is developed into a family of SPICE models and SPICE model components of 
increasing complexity (multiple windings, saturation, core loses for high and low 
frequency, winding losses).  The simpler models are useful for many applications, and 
simplicity is good if it does the job. 
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Multiple-winding ideal transformers 

There are a number of ways to model a multiple-winding transformer in SPICE, but I 
have chosen to normalize all windings to a one turn linking connection, terminal Vc. 

The SPICE model below is for a four winding transformer having a 10 turn push-pull 
primary winding and two 1 turn secondary windings.  In the SPICE model, each section 
of a multi-tap or split winding is modeled separately, with a separate turns parameter for 
each ({N1}, {N2}, etc).  Each is referred to a single turn "core" winding, connected by 
the common terminations Vc.  No distinction is made whether a winding is a primary or 
secondary winding in the model, as transformers are reciprocal devices.  Any external 
interconnections are made after the winding sections are defined.  The windings are 
isolated, but in SPICE, having a connection to ground is preferred, so the isolated 
windings are each connected to ground using very high value resistor, 1 MΩ in the 
example. 

 

If the transformer being modeled has windings that are connected together to make a 
tapped winding, it is preferred to connect sections through a low value resistance, so that 
the node names are not altered, but that is discretionary.  In the example, R13 (12 pΩ) 
connects the nodes V1r and V2 to make the center-tap of the primary winding.  Using the 
example above, it is very easy to make an ideal SPICE model for a transformer having 
any number of windings.  Some care must be taken with nomenclature for "turns".  The 
windings may also be called a 20 turn center-tapped primary with a 2 turn split secondary 
winding. 
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Magnetizing inductance, saturation and hysteresis, 
Simple model: 

The SPICE model core functions are coupled to the single turn linking connection Vc 
through a single turn transformer model.  A voltage source is needed to operate the 
SPICE model, and a square wave ac is preferred. 

 

The resistor Ri limits the current when the core saturates and also is the magnetizing 
current measurement point for the hysteresis loop display.  The voltage source Vim is the 
current reference for the behavioral current source.  Vim is set to 0 V so that it does not 
affect the circuit.   

Caution:  Current can be measured in a component.  DO NOT use a component as a 
current measurement point if the measurement is used in the circuit in any way that might 
feedback to change the current, even minutely.  It will cause errors, slow the simulation 
and may prevent convergence.  Use a voltage source set to 0 V. 

The inductor Lm models the magnetizing inductance and the resistor Rh1 models the 
core losses.  The core loss will be modeled with a more complex circuit later, but this is a 
useful starting point and is sufficient for many applications. 

The flux B is modeled as the volt-seconds on the inductor Lm, scaled appropriately.  The 
voltage Vm is integrated with respect to time with the behavioral current source B3.  The 
current charges the capacitor Cb to a voltage B.  The value of Cb is the scaling factor to 
convert volt-seconds to flux.  Volt-seconds, flux and flux density differ only by scale 
factors, so any of them may be modeled. 

Core saturation is modeled as a coupling factor, Kc.  The inductor value and current must 
remain static in saturation to conserve energy, and the flux B is asymptotic to the 
saturation flux {bsat}.  For the current to remain static, the voltage Vm across the 
inductor Lm must go to zero, and this is done by reducing the coupling factor Kc to 0 as 
the flux B goes to {bsat}.  There are many functions that can model this behavior, but the 
following was chosen for its simplicity and versatility: 
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For any exponent > 1 of the expression B/Bsat, Kc goes to 0 asymptotically, and the 
exponent controls the sharpness of the "knee", a higher exponent making the knee 
sharper. 

To model the hysteresis loop of a magnetic core using conventional units, scale factors to 
convert the input current to coercive force and to convert volt-seconds to flux density can 
be used.  However, for modeling a transformer, it may be more useful to work with the 
primary ampere-turns and volt-seconds per turn. 

The SPICE model is repeated below, with small graphs that show some of the signals and 
their timing.  The parameter statements used are copied and pasted to the upper left 
corner.  The small graphs are made using the SPICE probe function, and they carry over 
to a CAD program if the schematic is printed, copied and pasted, though they require 
some editing in CAD for appearance. 

 

Note that as v(B) approaches Bsat, the coupling factor Kc goes to zero asymptotically. 
The voltage Vm goes to zero as the coupling factor Kc goes to zero, regardless of the 
source voltage Vin, so B can never increase beyond Bsat.  In a more elaborate SPICE 
model, Bsat can be a variable, too, the output of a behavioral voltage source, perhaps to 
include temperature as a parameter. 

Although most power converter transformers do not saturate, it is important to include 
saturation so that flux walking can be detected. 
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Hysteresis loop: 

The hysteresis loop is displayed in SPICE using the oscilloscope function.  The X axis is 
the input current, Iin, and the Y axis is the flux or flux density B.  The area within the 
hysteresis loop is the core loss.  The hysteresis loop may be copied to a CAD program, 
where it may be cleaned up and scaled, if necessary, for presentation. 

 

The importance of scaling correctly is illustrated by the above hysteresis loops:  They are 
the SAME hysteresis loop, scaled differently!  Successful curve fitting requires 
comparison of similar curves using the same scale factors. 

Curve fitting: 

The first parameter to be simulated is the magnetizing inductance.  Rh1 is set to a high 
value, such as 1 MΩ, and Lm is set to the measured or estimated magnetizing inductance 
for a one turn winding.  The figure below shows the magnetizing line as the inductor Lm 
is varied from 10 uH to 40 uH. 

 

Do not worry about the shape of the corners for now, look only the slope of the line near 
the X axis.  Be sure that the coordinate scale factors are correct or the curves cannot be 
matched by visual comparison, and slope calculations will be necessary. 

The "roundness" of the corners may be adjusted next.  This is accomplished by varying 
the exponent in the expression for Kc in the behavioral voltage source B12, with 
reference to the SPICE model schematic above. 
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As the exponent is increased, the corners get sharper.  The graph below shows exponents 
of 2, 4 and 8, using the 40 uH curve from the graph above. 

 

Next the core losses are modeled by varying the value of the resistor Rh1.  As the resistor 
R1 is reduced in value, the hysteresis loop opens up. 

As the SPICE model is refined, Rh1 will be replaced with a more complex function, but it 
will be resistive in nature and represents a loss whenever a voltage is applied and the core 
is not saturated. 

The graph below shows the change in the model hysteresis loop as the value of the 
resistance Rh1 changes, for Rh1 = 1 MΩ, 5 Ω and 2.5 Ω. 

 

The parameters (L2, the exponent and R1) can then be tweaked to refine the match to be 
as close a fit as possible.  If the shape is not just right, at least ensure that the area 
enclosed is as close a match as possible. 
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SPICE model, 4 turn transformer with 
hysteresis and core losses, simple model: 

The SPICE model below adds the core loss and hysteresis functions to the ideal four 
winding transformer presented above.  The loss and hysteresis functions join the 
transformer at the node Vc. 
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Winding resistance and leakage inductance, simple model: 

The SPCE model below is for a two winding transformer with the hysteresis and core 
losses from the previous example, plus winding resistance and winding leakage 
inductance.  In this example, some of the component values are in SPICE parameter 
statements, so that they can be changed without editing the schematic.  This is 
discretionary. 

 

Note:  This model has not been run and verified, since it does not have a voltage source 
and loads, so there may be errors in the functions.  It is included as an example for 
discussion and qualitative analysis. 
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Loss and energy test points: 

The test points and the behavioral functions that generate them (red box) are not a 
functional part of the SPICE model.  Their purpose is to provide a display of the 
transformer's losses and stored energy:  Core loss Pc, core energy Ec, winding loss Pw 
and winding energy Ew1 and Ew2.  They are calculated as I2R and ½ I2L, and may be 
summed, if desired, when more than one component has losses or stored energy. 

The test points for losses are obvious for a SPICE model that is concerned about 
efficiency, but the test points for energy require an explanation.  In understanding losses 
in a power converter, it is important to account for stored energy and look for 
discontinuities and reversals.  If the energy changes abruptly, it very likely results in a 
loss in another component.  In the case of transformers, when the transformer switches 
polarity, the stored energy is very likely to be dissipated in the MOSFETs and attributed 
to "switching losses".  While not entirely incorrect, it is more productive to identify the 
origin of the losses as it may lead to improvements in efficiency 

A transformer may seem to be very efficient, if only the core and winding losses are 
identified, but a poorly designed transformer that has excessive leakage inductance may 
cause the overall efficiency of a power converter to be quite poor. 

Note that the behavioral equations for the energy test points Ec, Ew1 and Ew2 contain the 
terms "Sgn(i(Lm))" "Sgn(i(L1))" and "Sgn(i(L2))".  The purist may say that this is 
incorrect, energy is always positive, but I believe that it is important to distinguish the 
direction of current flow in the energy test points.  Thus the magnitude of the signal is the 
amount of stored energy and the polarity of the signal indicates the direction of current 
flow.  The importance of this is that we are looking for rapid changes in stored energy so 
that we can account for the energy, and particularly where it goes.  If the change is 
between equal currents of opposite polarity, the transition is much less apparent if the 
Sgn() term is not used. 

More windings can be added to the transformer SPICE model simply by adding 
additional similar SPICE winding sections.  They can be copied and pasted, then edited.  
I have chosen to give each winding its own SPICE parameter statement, but similar 
windings, such as the two halves of a push-pull winding, can use the same SPICE 
parameters. 

The SPICE models above are simple models, not including high and low frequency 
effects except to the extent that they can be lumped into the simple components.  
However, they will be useful for many applications.  Once a model is validated for a 
particular transformer, it can be converted to a SPICE sub-circuit so that it can be placed 
as a component into higher order assemblies. 

Caution:  A SPICE model may have very limited range of usefulness in simulating a real 
transformer.  Be sure that the parameters of the model closely match the simulated 
conditions. 
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Core loss, part 2:  low and high frequency effects: 

Classic theory of magnetic core losses teach that at a given frequency, the maximum flux 
density B̂ determines core losses.  If this is true, pulse-width modulation (pwm) for 
voltage regulation does not increase losses.  Twice the voltage for half the time is the 
same B̂ , so the losses are the same.  Unfortunately, this behavior is a low frequency 
phenomenon, and most present-day power converters operate at high frequency. 

At high frequency, core losses are resistive in nature, that is, proportional to V2.  Twice 
the voltage has four times the losses.  If the duty-cycle is 0.5, then the average losses are 
one half of four, that is, doubled.  The generalized expression for relative average loss at 
reduced duty-cycle d is 

d
PPd

1=  

where Pd is the average power at a reduced duty-cycle d, and P1 is the power with 
a duty-cycle of 1.0 (or 100 %). 

This will be an unpleasant surprise to those who think that pwm is an efficient design. 

Hint:  To determine which loss model applies, look at the slope of the curve for the loss 
density at the flux density B̂ and frequency of interest in the core material data curves.  If 
the slope on the log-log graph is nearly +2, the losses are resistive.  If it is more nearly 
+3, the more complex low frequency loss model is appropriate.  If the slope is an 
intermediate value, the SPICE model should have mixed characteristics with a frequency-
dependant cross-over. 

The derivation of the following asymptotic models is in Appendix A.  The units are from 
that derivation, and do not follow MKS standards, so do not apply them generically. 

For the low frequency case, the asymptote for the instantaneous power PL' is 

R
EPL

2

=′  mW/cm3 

where 
Ba

R
*
32

=  for B > 0. 

For the high frequency case, the asymptote for the instantaneous power PL' is 

R
EPL

2

=′  mW/cm3 

where R=256/a. 
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The "a" is from a Magnetics, Inc. approximation formulae, and it is different for the 
different frequency ranges.  B is the instantaneous volt-seconds/turn, flux or flux density 
depending up the units and scaling for the model.  E is a voltage per turn density 
function, with units of volts / turn cm2, in the example.  See Appendix A. 

 

The low frequency function is modeled as a resistor R2 whose value is a function flux, 
v(Vx), the output of a behavioral voltage source B5.  The high frequency model is simply 
a resistor Rh1.  Lm is the magnetizing inductance, as in the simple model. 

Generating v(Vx) requires two new flux generators, the behavioral current sources B1 
and B2.  Both depend upon the square wave being reasonably symmetrical, the positive 
on time being comparable to the negative on time and the voltage not changing too much, 
cycle to cycle.  About a 2:1 difference in volt-seconds is the limit for the variance, so this 
condition is not too restrictive. 

In B1, the current charges the capacitor Cbp to model the volt-seconds since the last 
negative to positive transition.  If the core saturates, the voltage Vm goes to zero, thus the 
flat top of the flux curve v(Bp) as the conditions modeled go far into saturation.  When 
the voltage reverses, the capacitor is discharged at two times the rate, but it cannot go 
negative because of the ideal diode subcircuit X1.  In the B5 voltage source, the correct 
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voltage VBp or VBn is used depending upon the polarity of Vm. and the function Rb/B is 
generated to control the instantaneous value of the resistor R2. 

Curve fitting: 

 

The curve above shows the effect of varying the parameter Rb, which controls the value 
of R2.  The green curve is a baseline, with Rb set to a very high value.  The green 
hysteresis loop is the high frequency model, though it is artificial at the present 
conditions, which are low frequency conditions.  As Rb is decreased to 0.1 Ω, the blue 
curve results, and the red curve is with Rb decreased further to 0.05Ω.  Note that the 
hysteresis curve fattens as a wedge, getting wider as B increases. 

The SPICE model above includes the low and high frequency asymptote loss 
characteristics.  It will almost certainly need addition elements, as suggested in the model 
below, to fill in the loss curve over the frequency range, with low, high and band-pass 
filters, to tweak the curve.  To begin this effort, it will be necessary to have data taken on 
real components.  I suggest a curve of average loss density for log steps of voltage vs. log 
steps of on time for applied ac square waves, and a curve of instantaneous loss density for 
step functions at log steps of voltage vs. log time, taken from negative saturation to 
positive saturation. 

 

If a SPICE model can reproduce both curves, I believe that it is successful. 
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High frequency effects in the windings: 

Eddy currents: 

While all of the "high frequency" effects are due to eddy currents, usual jargon applies 
the term to losses in the core due to currents induced in the core by the changing flux.  
These can be modeled as a winding on the core. 

My interest is in high frequency transformers for power converters, and they usually use 
ferrite cores.  Everybody "knows" that ferrites do not have eddy currents, as their 
resistivity is very high.  This may be true, but should be revisited.  A number of years 
ago, George Schaller, of Ceramic Magnetics, made two sets of cores for me that were 
designed to show if there were eddy current losses, and the loss curves fell on top of each 
other, suggesting that there are no eddy current effects.  I cannot remember the details of 
the design, and perhaps the tests were not run to a high enough frequency. 

Ferrites have an extremely high dielectric constant, of the order of 300,000 to 500,000, 
which may allow reactive currents to flow around the core.  The dielectric constant, and 
thus the capacitance, is a complex number, and the imaginary part is lossy.  I remember 
reading somewhere that there seemed to be eddy currents in ferrites with paths that were 
larger than a domain but far smaller than the core as a whole.  I do not remember the 
source, but this may explain why the core sets that Ceramic Magnetics made did not 
show any difference. 

Regardless, any eddy current losses in ferrites are lumped into the core losses, and they 
may explain why the core losses look resistive at very high frequencies.  The possibility 
of eddy currents, which may be geometry dependent, suggest that core loss tests should 
be performed on the actual core used, not just on a "standard core." 

Because eddy current losses can be lumped into the core characteristics, I do not believe 
that any special provisions are needed in the SPICE model. 

Winding losses: 

For low frequency transformers, the winding losses can be modeled simply as a resistor 
with the same value as the resistance of the wire used to make the winding.  The model 
may include temperature as a parameter to correct the resistance for temperature rise. 

At high frequency, skin effects and proximity effects are important and may dominate.  
Both are due to eddy currents, but deserve individual consideration. 
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Skin effect: 

When the current changes in a conductor, eddy currents are induced in the conductor.  
For a super-conductor, these eddy currents are permanent, and they exclude all magnetic 
fields.  For a conductor having resistance, the eddy currents die out quickly, but while 
they persist, they result in higher losses.  The eddy currents limit the penetration of the 
increased (or decreased) current into the conductor, forcing the current to flow initially 
near the surface.  This is often described as an increase in the "apparent resistance," 
sometimes called the "ac resistance". 

High frequency effects should not be modeled as a change in resistance R, if the model 
must be accurate for both voltage drop, I*R and power, I2*R.  Nor should it be modeled as 
a change in inductance L, or energy ½*I2*L will not be conserved.  It must be modeled as 
a change in current I or current distribution. 

 

The SPICE model above simulates a wire, with skin effects.  The R-L-R-L (etc.) concept 
can be found in the literature and on line, but I think that this implementation is easier to 
use.  The parameters are either the AWG gauge {AWG1} or the diameter in mm 
{Dmm1}, the wire length in meters {Lw1} and the wire temperature in ºC {Tw1}. 
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In its derivation, a conductor is divided into five concentric segments of equal area, thus 
equal dc resistance per unit length.  For a given round wire size, the dc resistance per unit 
length of each segment is five times the resistance found in any wire table for the wire 
size, and that resistance v(Rw1) is calculated in the B2 behavioral voltage source.  If the 
wire size is entered in AWG, the B1 behavioral source converts it to mm, as v(Dmm1).  
If the temperature is different than 25 ºC, correction for temperature is also calculated. 

 

The inductance is more complicated, but the value of each inductor is the inductance that 
gives the correct time constant L/R for the penetration depth, given the resistance of a 
layer.  It appears to be independent of wire size, at least approximately.  For larger wire, 
the resistance R goes down, so the time constant L/R goes up.  This is an approximation, 
but it should be sufficiently accurate for most SPICE models.  With more analysis and 
real test data, this model will be refined. 

An oscillograph of the current increments in the various layers is shown for a more 
complex SPICE model later in this presentation.  It is interesting that the inner currents 
may flow in the "wrong" direction after a current transition, and may persist after the 
source current goes to zero. 

Note that the value of the resistances does not change (unless the temperature changes).  
The current is redistributed by the L-R-L-R (etc.) function.  The model will be suitable 
for both voltage drop, I*R and power I2*R. 

The wire may be converted into a SPICE subcircuit, and placed where the winding 
resistance is located for each winding in the model for the winding resistance and 
inductance.  The winding leakage inductance can be lumped into the wire model, but it 
may be preferred to keep them separate. 
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Proximity effects: 

The proximity effect is harder to quantify, and there are several loss mechanisms that are 
lumped under this title: 

• The effects of current crowding due to the current in adjacent conductors. 

• Apparent current multiplication in successive layers of a multi-layer winding. 

• Eddy current losses in adjacent conductors (windings, shields). 

All are dependent upon di/dt in the winding, but the effect persists long beyond a step 
change in current, so a function of di/dt alone will not suffice in the time domain.  For 
sine excitation, di/dt is a well behaved cosine term that is useful for ac analysis.  A 
SPICE model requires that the losses be modeled in the time domain. 

An understanding of the loss mechanism points the way.  A step change of current 
induces an equal and opposite current in nearby conductors if the coupling is perfect.  So, 
the first step is to model a current equal to the difference current of the step change.  This 
current flows through a resistance, causing losses, and this current and the associated 
losses decay exponentially with time. 

 

The SPICE components above generate a waveform of the required shape.  A current 
generator I2 is programmed using the PWL function as in the chart.  Note the 50 ns rise 
times.  The zero volt voltage source V1 is used to measure the current.  The behavioral 
voltage source B1 produces a voltage Vj that is the analog of the current.  The high pass 
filter C1, R1 produce the voltage Vjd that has the desired shape.  If the time profile isn't 
quite right, a different filter circuit can be used, and the signal v(Vjd) can be scaled to any 
magnitude and combined with other functions in a behavioral source. 

Traditionally, high frequency effects are described in terms of an increase in the apparent 
resistance.  That would be easy to implement, simply increase the resistance as a function 
of Vjd. The problem with varying the resistance is that the SPICE model must use the 
function to model both the correct voltage drop and the correct losses due to the eddy 
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currents.  The voltage drop is IR, and the power is I2R.  For both of the voltage drop and 
power equations to work, it is the current I that must change, not the resistance R. 

The eddy currents are generated and coupled back to the wire through an equivalent 
coupled inductor, as shown below.  However, I do not know what is in the SPICE 
coupled inductor model, and it seemed to give anomalous and unpredictable results.  A 
transformer model could be used, incorporating inductors, but this approach rapidly 
became quite complex. 

The schematic at the left shows an eddy current 
Ie, generated by the coupled inductors as a 
function ƒ(I1) of the step current in the wire.  
The eddy current Ie causes a voltage drop when 
it passes through the resistor Re.  The model for 
the resistor Re should also reflect the skin 
effects.  Likely, it is the same or similar to Rw, 
the resistance of the wire carrying the current I1 
that induced the current Ie, or some portion of 
it.  Repeating that model as the load of a 
transformer circuit, while more rigorous, is 
awfully complex. 

The SPICE model at the left can approximate 
this simulation, and it is very simple.  If n is 
less than 1, that can be simulated as a linear 
scale factor in ƒ(I1) in the behavioral current 
source equation. 

This model provides the correct voltage drop at 
Vr1, Rw * (Ir1 + Ie).  However, since this 

circuit is a surrogate for the circuit above, the power in Rw requires careful interpretation.  
It is NOT (I1 + Ire)2 * Rw or Ir12* Rw.  The circuit is designed to reflect the correct 
voltage drop to the rest of the circuit, and it depends upon the assumption that the wire 
resistance, even with ac effects, is small compared to the load and other resistances in the 
circuit.  To calculate the power for the winding loss test point, the correct formula is 
given by the equation Pw = (I12 + Ie2) * Rw.  This is because in the more rigorous model, 
there are two resistors, and the losses (power) must be calculated in the simple model as 
if it were two separate resistors equal to Rw each with its own current. 

The SPICE model for a wire, described above, with modification, is suitable for Rw, as it 
uses unvarying resistors, with L-R filters to redistribute the currents for di/dt.  To add 
proximity effects, a behavioral current source is applied to the resistor that represents the 
outer layer of the conductor, on the premise that eddy current losses occur near the 
surface. 

The SPICE model below is for a wire with proximity effects added.  A behavioral voltage 
source has been added to calculate the losses in the wire as sum of the products of the 
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voltage across each resistor and the current through it.  Note the spikes in power 
following a step in current, either direction.  No attempt was made to scale the parameters 
correctly at this time, it is an example showing the SPICE building blocks for qualitative 
discussion. 

Spice model of wire with proximity effects 

A simple model is preferred to one that is rigorous, as long as it can model the functions 
and parameters seen and measured in a real transformer.  It is acceptable and necessary to 
tweak the parameters of the models as "fudge factors" to achieve this result. 
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The graph following shows the currents (input current i(V1), the currents in the shells of 
the wire, i(R1), i(R2), i(R3), i(R4) and i(R5), and winding loss Pw using the SPICE 
oscilloscope function.  It was copied to a CAD program and edited for appearance. 

 

Note that following a reversal of current in the wire, the currents in the core of the wire 
may continue to flow in the wrong direction for a significant time.  Note also that eddy 
currents, and their losses, persist beyond the time that the input current goes to zero.  
With zero current flow, a model that changed the "apparent resistance" by varying the 
value of a resistor could not show this effect—with 0 current, the model would show 0 
power regardless of the value of the resistor. 

No representation is made that these values are accurate; they are for qualitative analysis 
only.  While some liberties were taken to make a simpler SPICE model of losses due to 
the skin effect and proximity effects, I believe that it is adequate for most transformers. 

Multi-layer windings: 

This model should also be suitable for the layers of a multiple layer coil.  Each layer 
should be modeled as a separate wire, with all layers in series.  The injected current for 
each layer should have the same timing, but the magnitude of the injected current will be 
much larger for each successive layer. 

A model for eddy currents induced in a shield or another winding will likely affect only 
the layer adjacent to the shield or the other winding.  The loss should be reflected to the 
winding causing the eddy-currents, not the shield or other winding in which the eddy 
currents are induced, to be consistent with the model above.  I am not trying to cover all 
possible combinations of eddy currents at this time. 
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Transformers with coaxial  
or interleaved windings: 

The secondary of a coaxial transformer is made of 
formed copper, inserted into a magnetic core.  A 
number of similar assemblies are placed with their 
through holes aligned and the primary winding is then 
threaded through.  A transformer with an n : 1 turns 
ratio has n assemblies, or "elements" with a single turn primary winding.  The 
secondaries are wired in parallel, essentially constituting a fractional turn of winding 1/n 
turns. 

The leakage inductance of the secondary windings is very low, and when they are used in 
parallel, the inductance is effectively reduced further.  Theoretically, it is reduced by 1/n, 

being paralleled inductances, but there will 
be some leakage inductance in the 
interconnection even if it is planes in a 
printed wiring board. 

For more information on coaxial 
transformers, see "Coaxial Push-Pull 
Transformers", a pdf file at http://fmtt.com/.  

Because the primary winding and the 
secondary winding on the same side of the 
transformer are coaxial, as shown by the 
current flow in the top figure on the left, the 
leakage inductance from a primary winding 
to its coaxial secondary winding is 
extremely low. 

However, the leakage inductance to the 
other secondary winding, as shown in the 
second figure on the left, is much greater. 

The leakage inductance from secondary to 
secondary is low, as the windings have flat 
parallel conductors close together in the 
center, but it is not nearly as low as a 
primary to its coaxial secondary. 

Finally, the leakage inductance from 
primary to primary is relatively quite high. 

A similar disparity in leakage inductances is 
true for an interleaved transformer. 
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While the SPICE transformer model shown at the beginning of this paper is 
straightforward and easy to understand, it is not adequate to model the special properties 
of coaxial and interleaved transformers in critical applications.  For this, the following 
SPICE model is suggested: 

 

The behavioral current and voltage sources B1 and B2 are an ideal 1:1 transformer, and 
model one primary winding to its coaxial secondary winding.  Similarly, the behavioral 
current and voltage sources B3 and B4 model the other primary winding to its coaxial 
secondary winding.  Each has winding resistance and winding leakage inductance 
defined, and they are very low for coaxial (or interleaved) windings. 

Next, the secondary windings are coupled with a leakage inductance and a winding 
resistance, to represent the respective leakage inductance and winding resistance from 
one secondary winding to the other.  The resistance will be very low, but there will be 
significant leakage inductance.  For balance, each is center-tapped at nodes Vc and Vcr.  
The "core winding", representing the core losses, attaches to these nodes. 

In any transformer, the relationships between the windings should be reviewed, to see if 
the simple model can be improved similarly if high frequency effects are important.  
Interwinding capacitance may be important, and capacitors can be added between the 
appropriate nodes.  This is an untested model, as an example for discussion only. 
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Appendix A 

Core losses in SPICE models from core manufacturers' data: 

Loss curves and expressions are usually defined in terms of the maximum flux density B̂  
and frequency.  B̂  cannot be determined until the end of the switching cycle, thus it is 
not an instantaneous term and is not useful for the SPICE model. 

 
Magnetics, Inc. material F 
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Most manufacturers' core loss data are presented graphically.  Occasionally, loss 
expression approximation equations are given.  See Magnetics Inc., Technical Bulletin 
FC-S7, "Curve Fit Equations for Ferrite Materials." 1999, as an example.  The 
approximations appear to be quite accurate close to the points that were used to derive the 
approximation parameters, but they appear to be quite bad at other operating conditions. 

Magnetic, Inc.'s loss expression approximation is: 

dc
L BfaP ˆ**=  mW/cm3 

 Where a, c and d are constants, f is in kHz and  is in kG. B̂

For Magnetics Inc.'s F material, the constants are given as follows. 

Range a c d 

f ≤ 10 kHz 0.790 1.06 2.85 
10 kHz < f < 100 kHz 0.0717 1.72 2.66 
100 kHz ≤ f < 500 kHz 0.0573 1.66 2.68 
f ≥ 500 kHz 0.0126 1.88 2.29 

(The colors key to the calculated loss curves in the graphs above and following). 

A representative core loss vs. flux density curve is shown above.  The basic curves, 
shown in blue, are for Magnetics Inc.'s F material, transcribed from a Magnetics Inc. data 
sheet that was found "on line." 

Close to each of the lines representing Magnetics Inc.'s F material there is a dashed line 
in color, showing the results of the core loss approximations using the formula above and 
the parameters from the table above.  Considering the log-log scales, some of the errors 
are substantial, and I suspect that the base-line data itself is not very good at the extremes.  
Real data tends not to be such perfect straight lines. 

Occasionally, core loss data are presented as curves of peak flux  versus frequency.  I 
could not find this data for Magnetic, Inc.'s F material, but the core loss equations can be 
solved presented graphically that way by sweeping the frequency F for step increments 
of .  The result is the graph below, in which the solutions of the equations are the 
dashed lines, colored to correspond with the frequency range in the parameter table.  The 
solid blue lines are arbitrary curves connecting the average values as best that I could. 

B̂

B̂

The discontinuities in the solutions suggest how bad the approximations are at the limits 
of each range.  In most cases, the continuation is evident, but in the lower right corner, 
the curve for 10 G looks as if it connects with the curve for 20 G, so I added dashed black 
lines to show the connections across the discontinuities.  The solid blue 10 G line could 
not rationally relate to any of the solutions, so I placed it arbitrarily, sort of parallel to the 
20 G line. 
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Magnetic, Inc. material F 
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Parsing the manufacturers' data for SPICE-friendly parameters: 

To be useful in SPICE, a model for a transformer must use the parameters which are 
available in SPICE, principally the voltages and currents of the transformer circuit.   A 
more complex model may have other parametric inputs that affect the analysis, such as 
temperature.  Parameters that cannot be know until after a cycle is finished are less useful 
and should be avoided, such as frequency and the maximum flux density B̂ . 

Parsing out an algorithm that is restricted to voltages and currents over time from the 
manufacturers' core loss data is challenging and certainly will not produce accurate 
results.  However, a qualitative understanding of the losses may lead to new SPICE 
models that embody useful relationships in the time domain.  Then, given test specimens 
and appropriate data for the new models, quantitative analysis will be possible. 

Core losses are a function of the voltages in the circuit (including the instantaneous flux 
density B, the integral of voltage with respect to time, an easily derived function in 
SPICE).  Winding current does not enter into the core loss equation.  Provided that there 
is sufficient current to excite the core, currents in the windings can be ignored for 
calculating and modeling core losses. 

Similarly, the winding losses are a function of the currents in the circuit.  Voltage does 
not enter into the winding loss equations.  Provided that there is sufficient voltage to 
overcome the circuit impedances and cause the magnetizing current to flow, voltages can 
be ignored for calculating and modeling winding losses. 

The loss mechanisms at low frequency are different than those at high frequency, and 
many assumptions about transformer design are based upon low frequency transformer 
design.  Many of the problems of high frequency transformer design may have their root 
in incorrectly applying low frequency loss mechanisms to high frequency designs, 
particularly when pulse width modulation is used. 

In the graph of loss vs.  for differing frequencies above (the first graph in this 
appendix), notice the slopes of the lines.  Because it is a log-log graph, the slopes of the 
lines are the exponent of the function, in this case, the exponent of the function, the 
parameter d in the core loss approximation equations.  The highest frequency line, 1000 
kHz, has a much lower slope than the lowest frequency line, 1 kHz.  This is reflected in 
the value of d in the chart above, 2.85 for the lowest frequency range and 2.29 for the 
highest.  To make this more apparent, see the red line "A" on the graph near the 1 kHz 
line, which has the same slope as the 1000 kHz data.  Also see the two amber lines with 
slopes of +3 and +2, for comparison. 

B̂

B̂

Notice also the spacing of the lines.  Being a log-log graph, the spacing is a function of 
the exponent c of the frequency parameter f in the loss approximation, 1.06 for the lowest 
frequency range and 1.88 for the highest.  This is shown by the arrows "B" and "C".  "B" 
is the vertical space between 500 kHz and 1000 kHz, and "C" is the vertical space 
between 5 kHz and 10 kHz. 
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For low frequencies, the approximation curve is nearly 

31 ˆ** BfaPL =  mW/cm3 

For high frequencies, it is more nearly 

22 ˆ** BfaPL =  mW/cm3 

These asymptotes confirm that there is a different loss mechanism at high frequencies. 

It is taught and generally accepted that the energy expended to go around a hysteresis 
loop is constant as long as  is constant.  In more advanced treatments, we learn that the 
hysteresis loop may be fatter at high frequencies, an effect that is sometimes attributed to 
"eddy currents."  It is also taught and generally accepted that ferrites do not have eddy 
currents.  Taken to its logical conclusion, this "proves" that if pulse width modulation is 
used to adjust for input voltage changes, the  remains constant and so do the core 
losses. 

B̂

B̂

B̂

Unfortunately, this is not so.  However, quantifying the actual losses and predicting them 
has been daunting. 

The graph following uses the same equations as the graph above showing core loss vs. 
frequency, but the result is divided through by the frequency in Hz.  The loss units are 
shown as mW/Hz cm3, for consistency with the previous graph, but mW/Hz will be 
recognized as the product of power and time (t = 1/f), milliwatt-seconds, or millijoules.  
The graph thus shows the energy to go around the hysteresis loop with a constant  at 
different frequencies.  As before, the dashed colored lines are the results of the 
calculations using the Magnetics, Inc. approximation formula and parameters.  The solid 
blue lines are my attempt to smooth the curves.  There is no representation of any 
accuracy at all, but it may be useful as a qualitative analysis. 

At lower frequencies, it can be seen that the energy remains fairly constant if  is 
constant, but above 10 kHz, the energy per cycle rises a lot.  This confirms that the core 

B̂

loss mechanisms are different at higher frequencies, and the classic relationship is not 
useful in the higher frequency range used by many modern power converters. 
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Part of the problem of applying manufacturers' core loss data to power converter design 
is that it is taken using sine wave excitation.  Power converters use square wave ac or 
pulse width modulated square wave ac pulses.  Anecdotal evidence suggests that there is 
at least a qualitative relationship between sine wave excitation and square wave 
excitation and that the losses are lower using square waves. 
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Converting  to applied voltage is possible with square wave excitation, given the 
frequency, as the units of  are a constant times volt-seconds, where the time is half the 
period, 1/2F.  Dividing by seconds leaves the voltage function.  In other words, knowing 
the maximum flux density  and the time period over which the flux built up (one half 
cycle), the applied voltage necessary to reach that  can be determined. 

B̂
B̂

B̂
B̂

In the Magnetics Inc. approximations,  is given in kilogauss, and F is in kilohertz,.  
Therefore, the staring point is the magnetic equation for voltage in CGS units. 

B̂

810****ˆ*4 −= NFAcBE  

Solving for : B̂

810*
***4

ˆ
NFAc

EB =  gauss 

Let N = 1, so the voltage is in Volts/turn, and let Ac = 1 cm2.  , in kilogauss with F in 
kilohertz, becomes: 

B̂

210*
*4

ˆ
kHzF

EB =  kilogauss 

Plugging that into the Magnetics, Inc. approximation should yield curves that 
qualitatively approximate the loss vs. frequency for various applied square wave voltages.  
Because the equations don't know about saturation, the results for low frequency are 
unbounded, so I added a function to blank the result if  is greater than three kilogauss.  
The lines in the upper left corner show the three kilogauss limit, and they would be one 
continuous line if the approximations were precise.  The X axis is taken to 10 MHz, but 
there is no illusion of any validity at that frequency.  The graphs were extended to better 
show the changing slope with frequency, and in particular, that it is tending to go flat. 

B̂

This graph is interpreted as the loss per cm3 versus frequency with a constant voltage 
square wave excitation, with a 1 turn winding and a 1 cm2 core area.  Thus the curves are 
for constant volts per turn density, V/N cm2.  With 100 volts applied to a 10 turn winding 
on a core having an area of 2 cm2, use the 5 V line (100 V / 10 * 2).  The core loss for the 
frequency on the X axis is the result in mW/cm3 read from the graph, multiplied by the 
core volume in cm3. 
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Volts per turn cm2. 

Notice the short lines A and B.  The positions and coordinates are arbitrary, but their 
slopes have significance.  They are segments of graphs plotted for the two equations from 
above, which noted the trends of the exponents of the Magnetics, Inc. approximation 
equations at low and high frequency. 

For low frequencies, the approximation curve is nearly 

A   mW/cm3 31 ˆ** BfaPL =

For high frequencies, it is more nearly 

B   mW/cm3 22 ˆ** BfaPL =

The latter is a straight horizontal line, which is the same as for a fixed value resistor.  A 
look at the equation for B̂ 2ˆ and plugging B into the second loss approximation equation 
B shows why. 
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 210*
*4

ˆ
kHzF

EB =  

 4
2

2
2 10*

*16
ˆ

kHzF
EB =  

When this expression for  is plugged into the power loss equation B,  is the same 
as , so they cancel, leaving  

B̂ 2
kHzF

2f

 B 42 10**
16

EaPL =  

Thus the losses are independent of frequency, and a resistor may therefore be an 
appropriate model for core losses at very high frequencies. 

Applying similar substitutions for the low frequency model: 

A   mW/cm3 31 ˆ** BfaPL =

Solve for 3B̂ : 

 6
3

3
3 10*

*64
ˆ

kHzF
EB =  

kHzF  is the same as , so the  is cancelled, leaving  f 1f

 A 4
2

3

10**
64 kHz

L F
EaP =  

Returning to the graph above, in view of these equations, we can begin to parse the 
asymptotes.  For the high frequency end, the spacing for the various voltages vertically 
should be as E2, so each increment of 10 x in voltage should be two decades apart.  This 
is not really what is shown, but it is very roughly the pattern, if one visualizes the curves 
extending further. 

For the low frequency end, the slope is determined by the  in the denominator, so the 
slope -2 on the log-log graph. 

2
kHzF

The line spacing is determined by the E3 in the numerator, Pl increases 3 decades for each 
voltage increment of 10 x.  The 0.1V curve and the 1 V curve are somewhat less than 3 
decades apart, but agree with the pattern, approximately. 

A graph was plotted showing a family of asymptotes that meet the criteria, and the 
asymptotes as a set were moved around to make a "best fit" to the hypothetical data.  The 
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match is not too bad for the lower voltages, but the hypothetical data is so uncertain that 
it would be unwise to draw too many conclusions until there is confirming "real" data 
from bench tests. 

 

Frequency is not a useful parameter in SPICE, so it is desirable to find the losses as a 
function of time, that is, in the time domain.  Frequency is the inverse of time, the period 
of an ac cycle.  For calculating B̂ , one half the period is used, so t = 1/2F, and F = 2/t.  
Substituting into the equation for B̂  gives: 

210*
8
*ˆ −=

tEB  kG 

where t is in milliseconds, to be consistent with the kHz used in the Magnetics, Inc. 
approximations.  Substituting into the approximation gives: 

dc tE
t

aPl )
8
*(*)

*2
1(*=  
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This transformation is easy, graphically, with a left-right mirror image of the curve for 
loss vs. frequency.  Match the 1 kHz line to the 500 ms line, so the time is the on time for 
a half-cycle of the ac frequency. 

 

Assuming that no math errors were made, this graph should predict losses in a waveform 
expressed in terms of on-time just as well as the graph expressed in frequency.  Because 
the original equation is in terms of B̂ ( that is, Bmax at the end of the on-time), not B, 
instantaneous, this does NOT give us the instantaneous power vs. time. 

This curve makes a lot more sense as a presentation of core loss data for transformer 
design, particularly pwm transformers.  It is my theory that this graph is also useful for 
duty-cycles less than 1.  In the graph above, find the core loss for the actual voltage and 
pulse width, then multiply by the duty-cycle.  At this time, this is speculation, but if it is 
confirmed, it will be a powerful new tool for pwm transformer and inductor design. 
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The curve below builds on the concept of the graph above of power density vs. the on-
time voltage pulse.  Each of the colored curves is a first half of a 100 mV ac square-wave, 
with the positive going on-time shown, measured from t = 0, part of a continuous ac 
square wave.  In a log-log plot, 0 is infinitely far to the left, so all pulses are drawn from 
the 10 ns line.  The second half of each cycle is symmetrical negative going, part of a 
continuous ac square wave, but this is shown only for the first pulse and the cross-over of 
the last pulse, to reduce clutter. 

 

The first pulse, the red line and red hatch, starts at t = 0 at a voltage of 100 mV, and ends 
at 20 ns, continuing negative to – 100 mv, then starting the next cycle at 40 ns.  Thus it 
defines a square wave having a period of 40 ns or a frequency of 25 MHz.  The average 
power for a 25 MHz ac square wave is placed at the midpoint of the cycle, which is the 
trailing edge of the positive pulse, and has the same color.  The second pulse, the green 
line and green hatch, starts at t = 0 and ends at 40 ns, so its period is 80 ns and its 
frequency is 12.5 MHz.  The average power for a 12.5 MHz square wave is placed at the 
center of its cycle, the trailing edge of the positive pulse.  The final pulse, a blue line, 
starts at t = 0 and continues to t = 1.28 ms, for a period of 2.56 ms and a frequency of 390 
Hz.  The average power for that point is estimated and plotted. 

This curve is actually a crude piece-wise integration, and the true instantaneous power 
curve in the time domain may be the derivative of this curve.  This would be a fortunate 
result for the prospects of making a good SPICE model.  Differentiating the curve is 
daunting, but differentiating the asymptotes is easier.  
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For low frequencies, the curve of the asymptote is 

A   mW/cm3 31 ˆ** BfaPL =

For high frequencies, the curve of the asymptote is 

B   mW/cm3 22 ˆ** BfaPL =

Substituting 
t

f
*2
1

=  and 210*
8
*ˆ −=

tEB  kG 

Gives: 

For low frequencies, the asymptote is: 

A  32 )10*
8
*(*

*2
1* −=

tE
t

aPL  mW/cm3 

A  6
3

33

10*
8
**

*2
1* −=

tE
t

aPL  mW/cm3 

A  623 10***
512

−= tEaPL  mW/cm3 

Differentiating: 

A  63 10***
256

−=′ tEaPL  mW/cm3 

To get rid of one of the Es in the E3 and the t, 

210*
8
* −=

tEB  

210**8* BtE =  

A 62 10*)*(**
256

−=′ tEEaPL  mW/cm3 

A 622 10*)10**8(**
256

−=′ BEaPL  mW/cm3 

A 42 10***
32

−=′ BEaPL  mW/cm3 
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A 
B

L R
EP

2

=′  mW/cm3 

where 
Ba

RB *
32

=  for B > 0. 

This can be modeled in SPICE as the voltage across a resistor.  The value of the resistor 
RB is determined by a behavioral source as a function of the inverse flux or flux density 
B.  However, this is not the same flux or flux density B used in the saturation model.  It 
will have to be modeled separately, as it resets for each voltage reversal. 

For high frequencies, the asymptote is: 

B   mW/cm3 22 ˆ** BfaPL =

Substituting 
t

f
*2
1

=  and 210*
8
*ˆ −=

tEB  kG 

B  22 )
8
*(*)

*2
1(* tE

t
aPL =  mW/cm3 

The t2s cancel, leaving  

B  2*
256

EaPL =  mW/cm3 

That is a constant, so the derivative is the same. 

B  
h

L R
EP

2

=′  mW/cm3 

where Rh = 256/a, 

Thus the high frequency SPICE model is simply the voltage across a resistor. 

That is a lot of equations with many chances to make errors.  If correct, then the core loss 
function can be modeled as two resistors modeling the asymptotes for the low and high 
frequency cases.  The resistor that dominates at low frequency is a function of 1/B. 

A real core has an inductance which is complex.  The real part is purely inductive and the 
imaginary part is resistive, that is, it is lossy.  Both components have significant non-
linearity, so their counterparts in a SPICE model may need corrective curve-fitting 
functions or step-wise approximations.  It may not be possible to make a SPICE model 
that is accurate over very much of a range of operation. 
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Low frequency core losses, 
graphical solution: 

(This analysis was done first, and provided 
the insight for parsing the manufacturers' 
data.) 

Knowing the strong relationship between B̂  
and the core loss, it is intuitively reasonable 
that the core loss would be much higher at 
low frequencies with a constant voltage 
square-wave applied.  However, it is not at all 
intuitive, to me at least, what impedance 
model, if any, would produce that result. 

The graphs at the right show four wave-
shapes having the same period and having the 
same B̂ , therefore all would have the same 
core loss at low frequencies.  Note:  these 
graphs show B̂ , the maximum flux density, 
not B, the instantaneous flux density. 

It seems reasonable that core losses would 
occur only when there is voltage applied to 
the winding.  In the second graph, 1 volt is 
applied for 1 unit of time.  The core loss 
presumable occurs over the entire pulse 
width, say 1 watt. 

In the third graph, 2 volts are applied for half 
the time.  Since the average loss is the same, 
the loss during the pulse must be 2 watts.  
Similarly in the fourth graph, 4 volts are 
applied for one fourth the time, and the power 
must be 4 watts to make the average correct. 

Thus, the core loss is directly proportional to the voltage, V/Y, where Y is a yet to be 
defined resistance function.  With a fixed resistor, the power relationship is the voltage 
squared, V2/R. 

Power is the product of current and voltage.  With a resistor, it can also be expressed as 
V2/R or I2R.  With a uniform voltage, a varying power could be modeled using a variable 
current source or a variable resistor.  If the instantaneous power is uniform with time, a 
resistor X that varied as the voltage would produce the power suggested above, V2/X, if 
X = V*R1, where R1 is the value at V = 1 volt. 
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We still do not know if the losses are uniform over 
the time that voltage is applied, and other data 
suggests that it is not.  Whatever the curve, though, 
to produce the result observed at low frequency, it 
must scale with voltage and compress with time 
uniformly across the examples. 

In SPICE models, the values of resistors (and other 
components) can be variable, defined by 
expressions.  Rather than put a complicated 
expression in the resistance definition, I prefer to 
generate a voltage in a behavioral voltage source, 
and set the resistance by entering R=v(Rx), where 
Rx is the voltage of the behavioral source. 

This allows different parameters to be brought into 
the expression for the value of the resistance, which 
can be useful for curve fitting.  The power in the 
resistor is calculated as the current times the voltage 
and the product can be summed with the power of 
other resistors in the core loss model to give the total 
core loss as a test point.  (In a similar manner, the 
value of inductors and capacitors can be controlled 
by expressions, but that is not recommended if the 
energy stored in the component must be conserved.) 

If pulses are viewed in isolation, are the losses the 
same?  Or are there some history phenomena? At the 
right are five graphs of different waveforms.  For the 
same voltage and time (volt-seconds, or B), are the 
losses always the same?  What happens with losses 
at the beginning of a pulse?  The voltage is applied, 
and the core starts to dissipate power, but at what 
level?  The duration of the pulse is not yet known, so 
it could be 500 ns (1 MHz) or 500 ms (1 Hz), the initial conditions are the same.  It seems 
that the losses in the initial 500 ns must be those consistent with a 1 MHz frequency, that 
is, quite low.  After 5 us, the power must be at a level consistent with a 100 kHz 
frequency, and after 50 us, the power must be at a level consistent with a 10 kHz 
frequency.  That is, after voltage is applied, the losses must be quite low at first and rise 
as time goes on. 
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The graphs below show four waveforms.  With a constant voltage applied, they have an 
binary relationship, 8xB, 4xB, 2xB and B, also F/8, F/4, F/2 and F.  The green and blue 
lines show the relative power if the graphs represent low frequency excitation (blue) and 
high frequency excitation (green).   Note:  These graphs show B̂ , the maximum flux 
density, not B, the instantaneous flux density. 

Frequency, excitation, power density 

1 kHz, 100 mV, 10 mW/cm3. 
 
1 MHz, 500 mV, 0.17 mW/cm3. 
 
 
 
 
2 MHz, 500 mV, 0.15 mW/cm3. 

2 kHz, 100 mV, 3.0 mW/cm3. 
 
 
 
 
 
 
4 MHz, 500 mV, 0.13 mW/cm3. 

4 kHz, 100 mV, 0.8 mW/cm3. 
 
 
 
 
 
 
 
8 MHz, 500 mV, 0.12 mW/cm3. 

8 kHz, 100 mV, 0.33 mW/cm3. 

The values are from the graph of loss vs. frequency for 
various applied voltages, above.  Note that the average 
power does not change very much at high frequency, 
but changes dramatically at low frequency for the sa
relative changes in B and F. 

me 
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The graphs below show the voltage and time for maximum flux densities of B, 2xB, 5xB 
and 10xB at 10 kHz and 10 MHz.  The data is very uncertain at 10 MHz, but is included 
for qualitative purposes.  For each condition, the voltage and the power is given, both on 
the curve and for the asymptote (with reference to the graph above of loss density . 
frequency. 

For the lower frequency, 10 kHz, a 10 times increase in B results in about a 1000 times 
increase in the loss power density, or three orders of magnitude.  At 10 MHz, a 10 times 
increase in B results in about a 100 times increase in the loss power density. 

Note:  These graphs show B̂ , the maximum 
flux density, not B, the instantaneous flux 
d
 
Frequency Voltage Curve Asympto
H
 
10 M  100 m .0.0024 0.001

ensity. 

te 
z V mw/cm3 mw/cm3 

  4 
10 k 100 m, 0.018 0.07 

 4 6 
10 k  200 m 1.1 0.5 

10 k 500 m 13.0 4.0 

   
10 k 1.0 80 70 

 

 
 
10 M 200 m 0.01 0.00

 
 
 
 
10 M 500 m 0.11 0.03 

 
 
 
 
 
10 M 1.0 0.18 0.14
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Returning to the consideration of the low frequency power loss relationships, with fixed 
B̂ and variable frequency, the power density varied as V/X, where X is an undefined 
resistance function.  By contrast, the usual voltage relationship to power is V2/R. 

With fixed frequency and a variable B̂ , the power density varies as 3B̂ , while the voltage 
varied as V.  Since B̂  is volt-seconds, and the time is constant, then the power was 
varying as V3.  If the power varies as V with B̂  fixed and as V3 with B̂  varying, it seems 
that V2 is attributable to the varying B̂ .  Thus it seems that assuming that the core loss 
varied as 3B̂  is incorrect, it has to be: 

X
BVPL

2ˆ*
=  

where X is a constant, a scale factor. 

To express this as a function of time, so that it can be differentiated, consider that B̂  is 
volt-seconds.  Substituting B̂ =V * t, we get: 

X
tVPL

23 *
=  

Taking the derivative: 

X
tVPL

**2 3

=′  

This can be restated as  

X
tVVPL
)*(**2 2

=′  

X
BVPL

**2 2

=′  

Note, having been differentiated, PL
' is instantaneous power density and B is the 

instantaneous flux density. 

This has the form V2/R if R varies as 1/B. 
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