

© Copyright 2007 Garry McGlennon

Chapter 4

Message Queues

In today’s environment we are increasingly subject to a greater degree of disconnection

from our data sources. This may be for a number of different reasons, such as not being

physically connected in the case of mobile users. Alternatively we may be using a less

reliable networking infrastructure such as the internet. Although we live in this

environment, we need a solution to account for missing or dropped connections to our

data source. One possible solution to this dilemma is the use of Message Queues which

allow for guaranteed delivery of messages or data, enabling your applications to work in a

connected or disconnected environment. The technology provides many other important

features as well and I will cover those throughout the discussion.

I will be covering this topic over the next two Chapters as it deserves the extra

attention. Although I‟ll be using two Chapters, there is still much that could have been

written, however the aim is to provide you with the knowledge you need to implement the

majority of the tasks related to Message Queues.

Message Queues 101

Given that MSMQ (Microsoft Message Queue) is probably fairly new to a lot of you, I’d

like to begin by defining a number of terms that you should understand to ensure proper

use of this technology.

 * MSMQ: According to Microsoft it is a development tool that includes a
store and forward protocol model to be used for developing messaging
applications. MSMQ is also part of Microsoft‟s Distributed interNet
Application (DNA) methodology and is designed to be used as part of a
distributed application. Specifically, MSMQ is designed to help
developers add a communications infrastructure to distributed
applications. MSMQ also helps solve two problems:

1. Unavailability of communications with servers or clients, and

2. Communications between disparate systems and components.

 * Asynchronous: A process within a multitasking system whose
execution can proceed independently, "in the background". Other
processes may be started before the asynchronous process has finished,
thereby not having to wait for a result. The actual processing may be
performed on a separate machine at a time long after it was initiated
(similar to setting up a batch).

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 2

 * Synchronous: A synchronous process requires that each end of an
exchange of communication respond in turn without initiating a new
process. This means that when a call is made synchronously, the process
will wait or stop until the process has completed before going onto the
next process (or step). This is the exact opposite of asynchronous where
the first process doesn‟t wait for the calls completion. Therefore each
call requires a response to the previous call before a new one can be
initiated. Most of the programs we write call functions to perform
certain tasks. When you call a function in your program your call is said
to be “synchronous” as the execution of the calling code only resumes
after the called function has exited.

 * Message Queue: An area where you can add messages representing a
task (such as a sales order) where it will remain until an application
receives it, which does not necessarily need to be the one that put it
there. The application may also be on a different server or even a
different operating system on the other side of the world.

 * MSMQ: This is Microsoft‟s version of Message Queuing, and the one
we will be using throughout this Chapter. However, IBM also has a
popular product known as MQSeries which does basically the same job.
Although it is possible to „bridge‟ the two products, it is outside the
scope of this Book.

 * Private Queues: These are queues that reside on your local computer,
which most of the examples will use.

 * Public Queues: These queues can be either on your local computer or
normally on a central server. You must be running Windows NT Server
4.0 or higher to create these however.

Given that we will only be using Microsoft‟s Message Queuing, I‟ll refer to it as

MSMQ and Message Queues simply as MQ from this point on.

A Simple Analogy

Now that we have covered the more academic definition let’s consider how they relate to

the real world, by looking at a simple analogy making use of our new terminology to

reinforce the ideas. Assume we are in the situation where we need to inform a customer

that their bill is overdue. You have several ways in which you can communicate this to

them.

Your first option might be to make a phone call, which is a synchronous process that

has several steps. These steps are; Pickup the phone, Dial the phone number, Wait for

caller to respond by answering the phone, Begin speaking, Hang up the phone when call is

finished. This process is synchronous because you can‟t start speaking until they have

answered the phone, in other words each step requires the previous step to have been

completed first. If you are unable to complete any one of the steps, such as they never

answer the phone (they know you‟re calling using caller ID) then you can‟t complete the

process. The advantage of this synchronous method is that you are immediately aware of

the success or failure of the process. The disadvantage is that you are unable to perform

any other tasks during this time, which if they answer may be lengthy.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 3

Your second option is to send them a letter via the postal service (I hear people still

use this method). This would be an asynchronous process which also has several steps.

These steps are; Write letter, Address the letter, Send the letter, Postie picks the letter up,

Postal Service sorts the letter, Postie delivers the letter, Receiver opens and reads the

letter, Receiver rips the letter up while mumbling „I‟m not paying this!‟. This process is

synchronous until we send it (ie you can‟t send a letter you haven‟t written or addressed),

but it then becomes asynchronous from this point. Once we send the letter (Post Box =

Public or Private Message Queue) we can start doing other things while another process

(postal service = MSMQ) continues the processing, which is then delivered to the intended

recipient (customer opens mail box = custom application reads destination queue) who

then reads it. The advantage here is that we are able to continue doing other work even

though the process hasn‟t finished yet. The disadvantage however is that we don‟t know if

the process was successful, that is if the letter was delivered correctly or if the receiver

actually read the letter. We can overcome some of these disadvantages by using registered

mail which will at least tell us if the letter was delivered correctly, but it can‟t tell us if it

was read. MSMQ has several ways of overcoming most of the limitations of the

asynchronous model as well which we discuss later in the Chapter.

Using another option such as email is very similar to the traditional postal service, in

that from the moment you send your message it becomes an asynchronous process relying

on the receiver to regularly check their mail. Again some email systems have features that

allow acknowledgement of receipt and acknowledgement of the message being read.

The Mechanics

MQ applications also communicate by using messages, much like email and the postal

service. A message can be almost any type of data, including simple text or more complex

binary data. Messages can be used to communicate between different computers or on the

same computer. MSMQ also supports transactional messages which like their database

equivalents can be used to ensure that a unit of work is carried out as an atomic operation

or put another way; everything succeeds or fails as a whole. Transactional messages can

also be used to ensure that a message is only delivered once, and to ensure that all

messages are delivered in order. You can even have positive and negative

acknowledgment messages sent to confirm that messages have reached or were retrieved

from the destination queue.

MSMQ supports two types of delivery method: express and recoverable. The choice

between the two comes down to a matter of trading performance and resource use for

reliability and failure recovery. Express messages use fewer resources and are faster than

recoverable messages. However, express messages cannot be recovered if the computer

which is storing the message fails, because with the express method the messages are only

stored in memory and are not written to disk. Recoverable messages on the other hand use

more resources and are slower than express messages, but they can be recovered should

something go wrong with any of the computers involved, such as a failure; because the

messages are stored on disk not just in memory. For this reason, if you are building an

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 4

application that requires that a message be delivered (which would be most of the time)

then it‟s highly recommended that recoverable messages be used.

Types of Queues

MSMQ supports both public and private queues which can be used to send and retrieve

messages. These queues can be manipulated in the same way, with only the connection

string being different. Below is a summary of the other types of queues supported.

 * Private Queues: Used to store user defined queues which are only
available on the local machine. This is where you would normally do
your testing.

 * Public Queues: Used to store user defined queues which are available
to the enterprise. You can only create these queues with one of the
Server operating systems such as Windows NT 4.0 Server, Windows
2000 Server or .NET Server.

 * Outgoing Queues: You can monitor sent messages here on the local
machine for both public and privately queued messages.

 * System Queues: – These queues are used by the operating system and
include Journal messages, Dead-letter messages and Transactional
Dead-letter messages.

Figure 4-1. Message Queue Properties

MSMQ also supports the ability to limit the number of messages by the space that is

used to store them. You can access this quota on the general tab of a given queues

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 5

properties, under the option of „limit message storage to (KB)‟ in Computer Management;

see Figure 4-1. Alternatively you can use VS.NET, by using the properties window of a

given queue. When a queue‟s quota is reached, messages can no longer be sent to the

queue until one or more messages are removed from the queue. MSMQ routes messages

to queues based on the message priority.

Caution: When a computer‟s quota is reached, messages can no longer be sent to any queues

on the computer until one or more messages are removed from one of the queues, or more

space is made available to the computer. This however does not apply to System Queues.

Why use Message Queues?

Message Queuing allows developers to write applications that can communicate with each

other quickly and reliably by the use of sending and receiving messages. This allows your

application to send off a message for another application to process while the current

application returns back to the user. With the correct properties set, messaging also

provides you with guaranteed message delivery and a robust, fail-safe way to carry out

many of your business processes. An example of which might be an order system that

must run 24x7. Assume that the database or the connection between the client and server

fails. With a traditional client/server application, you would not be able to collect any more

sales. However, if the client application made use of messages when a connection to the

server was unavailable, then orders that couldn’t be processed would stay in a message

queue, and when the connection was restored, the messages would automatically be sent

off to the backend system for processing. This would therefore minimize the possible

effect of any system failure. The Microsoft documentation identifies the following key

points about MSMQ and messaging in general.

 * Robustness: Messages are considerably less affected by component
failures than direct calls between components, because messages are
stored in queues and remain there until processed appropriately.
Messaging is similar to transaction processing, because message
processing is guaranteed.

 * Availability: Queuing provides an availability design benefit: by
increasing the number of routes for successful message delivery, an
application can increase the chances for successful and immediate
message completion. A subtle benefit of queuing is that its store and
forward, guaranteed delivery, and dynamic routing features appear (to
customers) to increase the availability of your application.

 * Message prioritization: More urgent or important messages can be
received before less important messages, so you can guarantee adequate
response time for critical applications.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 6

 * Offline capabilities: Messages can be sent to temporary queues when
they are sent and remain that way until they are successfully delivered.
Users can continue to perform operations when access to the necessary
queue is unavailable for whatever reason. In the meantime, additional
operations can proceed as if the message had already been processed,
because the message delivery is guaranteed when the network
connection is restored.

 * Transactional messaging: You can couple several related messages
into a single transaction, ensuring that the messages are delivered in
order, delivered only once, and are successfully retrieved from their
destination queue. If any errors occur, the entire transaction is cancelled.

 * Security: The Message Queuing technology on which the
MessageQueue component is based uses Windows security to secure
access control, provide auditing, which encrypt and authenticate the
messages your component sends and receives.

Taking this into account then, if you are writing a web application and you need to run

a long process in response to a user action, you probably don‟t want to make the user wait

until the process is complete. In these situations you would prefer to return back to the

user immediately by running the process asynchronously. Although there are numerous

ways to run code in an asynchronous manner, few give the level of robustness that MQ‟s

do.

As good as MQ‟s are they are not always the correct choice for all business situations,

due to their business model needs. Some processes require synchronous processing, such

as getting an account balance. The user will wait until the process has completed as they

need to see the result. However, if the same user asks for a new statement to be sent out,

then the actual processing of the request doesn‟t have to be done immediately and so can

be queued for a batch later that day or night. This ability to process requests

asynchronously allows our applications to scale much better as we can return to the user

very quickly while the time consuming processing is being done either at a later time or in

the background.

There are times when you can use asynchronous processing, but make it look like

everything is synchronous. Let‟s say you have an application that allows you to buy tickets

for sporting events online. You may have a series of questions or steps to fulfil the order,

one of which is to check the availability which can take up to 30 seconds. You could ask

for the type of ticket they want then wait for the availability check to complete. This

would mean the user is waiting while the check is being done. Alternatively you could fire

off a message to a queue and return immediately, and then ask the next question which

might be the postal address. Meanwhile the first request is being processed in the

background asynchronously. Then by the time the user has completed the second step the

availability check has completed and the results are waiting in a database or some other

accessible place. There might of course be times when the data hasn‟t been retrieved yet,

in which case you might notify the user and ask them to try again or just wait for the result

to return. The end result is that you can achieve better response times by designing your

application to work with asynchronous processing.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 7

What are my Options?

Before we get into the details of how to use Message Queues it’s worth finding out what

the options are, and how best to chose an option for a particular application. Here I’ll

present the different options available, and later we will examine how to implement these

options.

MQ‟s can be used in a very simple way or they can be used in fairly complex ways.

Which way you use them really depends on the needs of your application, how much time

you have for coding and your knowledge of MQ‟s. Its unfortunate that two Chapters on

MQ‟s can‟t really do them justice, however by the end of the Chapter you will know

enough about MQ‟s to handle most of the situations in which you would want to use

them. I do however encourage you to check out the SDK and other resources at the end

of the Chapter. Our focus for this Chapter and the next will be on the following items

which comprise the majority of what MQ‟s have to offer.

 * Simple: This is where you basically use the MessageQueue objects
Send method, and use the default options that control how a message is
sent.

 * Complex: Here you have more control on how a message is sent and
can even determine how you want the message formatted i.e. XML or
binary. This is achieved by creating an instance of the Message object
and then sending this object which contains the user‟s message.

 * Recoverable: By setting a property on the message object you can
ensure that the message isn‟t lost should a failure occur such as a
computer crash.

 * Transactional: This allows you to send several messages as a unit of
work or participate in a DTC (Distributed Transaction Coordinator)
transaction.

 * Acknowledgements, Time Outs, Journaling and Dead-letters: As
MQ‟s are asynchronous it would be nice if we could tell if the message
was received and also whether it was processed. These system messages
allow us to do this and much more.

 * Server Explorer: The VS.NET IDE as mentioned before has some
RAD features, one of which is the ability to drag and drop MQ‟s into
your application. This can reduce the amount of code you need to write.

 * Hand Coding: As with everything in .NET you can get down and dirty
and code everything from the ground up.

 * Queued Components: Built upon MSMQ v2,0, Queued Components
allow the asynchronous execution of COM component methods using
MSMQ and COM+. This is outside the scope of the book however.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 8

 * MSMQ Triggers: Built upon MSMQ 3.0 MSMQ Triggers are
associated with specific queues on a computer and are invoked every
time a Message Queuing message arrives at such queues. A trigger is
comprised of one or more rules. These rules are defined by actions that
will be invoked when all conditions associated with a rule are true. This
technology is also specific to COM components and doesn‟t have any
direct .NET support. Again, you can use this technology using COM
InterOp, but this won‟t be covered as this falls outside the Books scope.
Example 4 demonstrates how you can build a managed code alternative
to both Queued Components and Triggers.

Knowing how to make use of these different options will allow you to make the

correct decision when it comes time to implement them in your own applications. Next I

will provide some guidance on determining which option to use.

Choosing the correct option

We have detailed the different options available, however how do we know which options

to use in any given situation? This section will discuss each of the available options, and

when you might like to make use of them. They are of course only suggestions, and you

will ultimately need to consider your applications overall architecture when making a

decision.

Simple

As the name suggests, the simple method is just that, although you do have access to

many of the features of the more complex method, by using the DefaultPropertiesToSend

object, which can give you a good level of control. However, each message will use these

settings, so if you need to be more specific on a message by message basis, then it’s not a

good option for your application. In general it’s best not to use the simple method, unless

you only need to send simple text messages through the system. When you start dealing

with the more advanced features such as acknowledgements etc, you will need to become

familiar with the Message object anyway.

Complex

The complex method is most suited to situations where you need to have more control

over the sending of the message, including its format, acknowledgments, and journaling

etc. Although you can still achieve this using the simple method, you don’t have the same

level of control over each message sent. The only thing that separates the simple from the

complex is that you create an instance of the Message object and then apply the messages

contents and any other required properties. Given the subtle difference, and that you need

to use the Message object when receiving a message, there is no real reason to make use

of the simpler version.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 9

Recoverable

If you need the robustness and fail-safe features that MQ provides, then you must take

advantage of recoverable messages. Although there is a slight overhead with using them,

this is far outweighed by their usefulness. The only occasion where you may not wish to

use recoverable messages is when it is not critical that a message be received, or speed is

paramount and you use other methods to ensure delivery if required.

Transactional

Transactional messages are very good if you need a group of messages to be processed in

order and as a single unit of work. You may for example need to update several systems

for a given users action. Each update could be its own message, all of which are contained

within a single transaction. Assuming that the programs that do the updates support

MSDTC (Microsoft Distributed Transaction Coordinator) then should any of the message

updates fail, all of the work will be rolled back. There is however some overhead in using

transactions of any type, so if you don‟t require this functionality it‟s best not to use it.

Acknowledgements, Time Outs, Journaling and Dead-letters

Given the nature of asynchronous processing, using methods to identify the status of a

message is critical for most applications. Although you can get away without making use

of these features, you may find that it becomes difficult to monitor your system if they are

not used. Implementing these features can take a bit more effort, but the rewards are that

you have a lot of extra control over how failed messages are handled and you can use

notifications to ensure your messages have reached their intended targets.

Server Explorer

The Server Explorer as detailed later allows you to create message queue applications

quickly and easily. However, the draw back to using the GUI tool is that, it‟s not really

doing very much behind the scenes for you. Also it hard codes the details into the designer

area of your code behind, which can make debugging more difficult. However, the biggest

drawback is if you want to create a class that uses messages queues. The GUI tool will

only work with WinForm‟s and Component Classes, which unfortunately is not where you

should be putting this type of code in the first place.

Hand Coding

I have a general bias towards hand coding for things that don‟t require a lot of code to

begin with. I feel that MQ falls into this category, and although it is nice to make use of

the GUI tools when you‟re starting out (which I would recommend), when you start doing

more advanced work, you‟ll find that the GUI really doesn‟t offer us much except to

maybe highlight visually that there‟s a MessageQueue on our form. Therefore, unless

you‟re just starting to get to grips with message queues or you want to knock something

up fairly fast, I‟d be inclined to hand code it.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 10

Queued Components

Although we won‟t be covering the details of how to use and program Queued

Components, it is probably necessary to understand why you might want to use them. If

you need to work with COM components then Queued Components can be a good way to

go. If you have to code in VB6 then QC‟s become an even better choice. There is a bit of

work to get QC‟s working correctly and they will require Windows 2000 or better on all

machines involved.

MSMQ Triggers

Although we won‟t be covering the details of how to use and program MSMQ Triggers

either, it is probably necessary to understand why you might want to use them. Again, if

you need to work with COM components and want to execute them based on rules then

Triggers can be a good way to go. If you have to code in VB6 then Triggers again

become an even better choice.

Installing MSMQ

Now that we have an idea of what MSMQ is, before we can start to use it we need to

ensure we have it installed on our computer. MSMQ is not installed by default and you

will need to perform the following installation procedure if you haven’t already done so.

MSMQ is part of the Microsoft Windows NT 4.0 Option Pack, Microsoft Windows

2000, Microsoft Windows XP and .NET Server. Note again that if you are not running a

server version of these operating systems then you will only have the ability to create

private (local) queues.

Figure 4-2. Windows Component Wizard

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 11

To install on Windows 2000 or Windows XP you need to go to Control PanelAdd

or Remove ProgramsAdd/Remove Windows Components where you‟ll see Figure 4-2.

To install you simply need to select Message Queuing, click Next, then Finish. Once you

have installed MSMQ you will have access to it through the Server Explorer in Visual

Studio.NET.

Figure 4-3. Server Explorer with MSMQ Installed

You‟ll notice that in Figure 4-3, my public queues appear to be disabled, this is

because my local machine is running Windows XP Professional which isn‟t a server

product and so public queues are not available for my local machine. As most of you will

also be using desktop operating systems as your local machine you will also see this.

MessageQueue Object

Here we start to get our hands dirty and start looking at some code! We will present each

of the different options explained previously using both the IDE and hand coding where

appropriate. By the end of this section you should have a clear idea of how to implement a

message queue for you particular situation.

Working with a MQ is somewhat similar to working with a file in that you need to

take the following steps:

 * Figure out which queue to use for our messages (identifier/name)?

 * Connect to the required queue (open).

 * Send/Receive messages (write/read)

 * Disconnect from the queue (close)

The MessageQueue object controls access to all MQ‟s throughout a network. Using

different connection strings as discussed next we can attach to any queue that is visible to

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 12

our computer. We will be discussing in-depth how to send and receive messages of

different types and also some very useful administration features that MQ‟s offer.

Queue to connect

Before you can start using a MQ you must first connect to it. In order to be able to

connect to it you must be able to uniquely identify that queue from anywhere in the

enterprise. Once you have identified the queue you must ensure that it is also consistently

referenced. .NET provides us with three different ways of doing this:

 * Path: By using the queues path <server name>\<queue type>\<queue
name>. An example of which would be
inspiron8200\private$\NonTransactional. Note that if you are using your
local machine you can use a “.” as the server name as this will default to
the local computer. I‟ve elected to do this for the samples to make
installation easier.

 * Format Name: This identifies the queue by using the connection details
combined with the queues path, or you could use the GUID that is
generated after the queue was created. The format is
DIRECT=OS:<server name>\<queue type>\<queue name>. An example
of which would be
DIRECT=OS:inspiron8200\private$\NonTransactional.

 * Label: This allows you to specify a descriptive text which you can then
use to identify the queue, however as this text may not be unique it will
cause an error if there are duplicates. The prime reason for referencing
in this way is if you think you are about to move the queue from its
current server. However, given the possibilities of failure and the more
robust options available to solve this issue (discussed in Chapter 9), it‟s
not a course of action I‟d recommended.

Tip: If you intend to send messages to a disconnected queue, you must refer to the queue by

format name rather than path, as you will need access to your domain controller to have the

path resolved, which will be unavailable offline. Also both Label and Path options are resolved at

runtime to a Format Name so there is a little overhead in using these options as well.

Once we know the specified queue name we can use it to create an instance of the

MessageQueue class object that represents any queue. You will find this class in the

System.Messaging namespace which needs to be added both as a reference, and as an alias

at the top of your class, using the Imports keyword. If you make use of the RAD features

in VS.NET (see Example 1b) then you won‟t need to worry as the IDE will add these

references for you.

Generally you would make use of constants defined at the top of the class or read

them from a configuration file when referencing your queue paths. I‟ve decided to go a

slightly different route, which allows us to do either. I‟ve created a Constants namespace

which has a class MQ with public constants that define the constants that I‟ll be using

throughout the Chapter. This technique makes the code much easier to understand and

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 13

also guarantees that I use my constants consistently as I only define them once. So to refer

to the LocalNonTransQueue, we simply put in our code

Constants.MQ.LocalNonTransQueue. Now when you read the code it‟s very obvious

what type of queue you‟re using. When you start using this in your own code, you can

make the constants more meaningful based on how you intend to use them. You can also

extend this approach to make them more intelligent by converting the constants into

shared functions and referencing databases or configuration files to get the path details if

necessary; this approach doesn‟t affect the consumer of the constant:

Namespace Constants

 Class MQ

 Public Const LocalNonTransQueue As String = _

 ".\private$\NonTransactional"

 Public Const LocalTransQueue As String = ".\private$\Transactional"

 Public Const LocalAckQueue As String = ".\private$\Ack"

 Public Const PublicNonTransQueue As String = _

 "webserver\NonTransactional"

 End Class

End Namespace

When you go to run the samples yourself, you need only change the

PublicNonTransQueue value as this is the only one which is currently hardcoded to an

external server. This constant is only used in Example8b when we discuss Journaling. So

to open a connection to a given queue, we code the following:

Imports System.Messaging

Sub Main()

 Dim objMessageQueue As New MessageQueue(Constants.MQ.LocalNonTransQueue)

End Sub

MessageQueue.Send

Now that we know how to connect to a MQ, we are now able to send a message using the

Send method. However, before we can do this, we have to ensure that the destination

queue exists, otherwise an exception will be thrown when we try to send something to it.

We will cover later how to do this programmatically, but for now lets do it manually so

we know how it’s done.

Firstly using the Server Explorer window click on Private Queues, then right click and

choose create queue as in Figure 4-4. Type in the name of the queue you want, which in

this case is NonTransactional then click OK. You have now created a queue which can

now be used to send and receive messages.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 14

Figure 4-4. Creating a Message Queue

Now that we have our queue ready to use, let‟s examine the Send method, which as

we can see has several overloaded parameters.

Table 4-1. Overloaded Send Method

Method Description

Send(object) Sends an object to a non-transactional queue referenced by this

MessageQueue.

Send(object, label) Sends an object to the non-transactional queue referenced by this

MessageQueue and specifies a label for the message.

Send(object, transaction) Sends an object to the transactional queue referenced by this

MessageQueue.

Send(object, label, transaction) Sends an object to the transactional queue referenced by this

MessageQueue and specifies a label for the message.

Send(object, transactionType) Sends an object to the queue referenced by this MessageQueue.

Send(object, label, transactionType) Sends an object to the queue referenced by this MessageQueue

and specifies a label for the message.

Simple Method

As can be seen the Send method allows us to send messages in many ways, the simplest of

which is to supply an object which could be any serializable object such as a string. This

forms the basis for a simple send, however we can also send a specific Message object,

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 15

which forms the basis of the complex send. The following examples will examine each of

these methods in detail.

Having identified how to connect to a queue we can now apply the Send method. The

easiest of the methods is identified in Example1, which shows how to use it from both the

IDE and hand coding perspectives.

To try and make using the examples from the download easier I have wrapped them all

into the one project and attached a simple main Form from where you can test the samples

(see Figure 4-5). I won‟t be going into detail on how to create this form as I would expect

you all know how to create a simple WinForm, so I won‟t insult your intelligence by

explaining how to do it.

Figure 4-5. Samples Main Form

Example 1a – Sending a Text Message (Hand coding)

The full code listing is presented, and as you can see it doesn’t take much to send a

message in .NET. We are using a class here to make the code listings easier to follow. One

thing to note is the use of the shared member. I’ve done this to make executing the class’

code easier by not having to instantiate the object first, although you don’t have to do this:

Imports System.Messaging

Imports System.Diagnostics

Public Class Example1a

 Shared Sub Main()

 Dim objMessageQueue As MessageQueue

 Try

 objMessageQueue = New MessageQueue(Constants.MQ.LocalNonTransQueue)

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 16

 objMessageQueue.Send("Example1a - Hand Coding for real programmers", _

 "Example1a")

 MessageBox.Show("Message Sent")

 Catch ex As Exception

 MessageBox.Show(ex.Message)

 Finally

 objMessageQueue.Close()

 End Try

 End Sub

End Class

The only difference here is that we have added the line that executes the Send and also

put a bit of error trapping in which is always a good idea. We use the Send method that

takes the object (message) and the message label as arguments. As you can see there‟s

pretty much nothing to sending a simple message in .NET.

Note: In order to keep the examples as specific to the tasks at hand I‟ll be omitting the

error handling and other non-critical duplicate code from the printed listings, as it will

make understanding the new code easier. All the code and some error handling will be

contained in the downloadable version for each sample however.

If you run this sample you should see that a message has appeared under Message

QueuesNonTransactionalQueue messages in the Server Explorer in VS.NET. Now it

might be less than obvious how you see the contents of the message. You can see what

the content of the message is by selecting the message and then clicking

PropertiesBodyStream… and it should look like Figure 4-6. You‟ll notice that the

output isn‟t straight text as you might have thought, but rather an XML document. Later

you‟ll learn how to change this behavior.

Tip: When you send a message the VS.NET IDE doesn‟t automatically update the message list.

You need to right click on the queue and select Refresh. This will repopulate the list of messages

on that queue.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 17

Figure 4-6. Contents of a sent message

Example 1b – Sending a Text Message (IDE)

Now in Example1a we had to write a bit of code, however in this example we will be

using a WinForm application and make use of the IDE. Using the IDE gives us two

options when dragging and dropping onto the form. We can either drag the queue we have

already created from the Server Explorer straight onto our form or we can drag a

MessageQueue component from the components section of our toolbox onto our form.

If we use the Server Explorer then we don‟t have to set all the properties for the Path

etc, as they will be automatically set for us. Therefore, in this example we will simply drag

the NonTransactional MQ we created earlier straight onto the form. As the default name

isn‟t very good we will also rename it to IDESimple, which isn‟t a name I‟d recommend in

a production environment, however I‟ll make my names a bit better as we go along.

Figure 4-7. Simple Message

Now we have our component on our form nicely named and ready to code against. To

send the message we will need to put a button on the form which I‟ve named

btnSendMessage, doubling clicking on the button we can add this line of code.

 Me.IDESimple.Send("Example 1b - IDE Coding's faster!", "Example1b")

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 18

Now when we run the code we will see that another message has appeared with the

contents we just sent. All this and it only took us one line of code!

Complex Method

Earlier we looked at the easiest way to create a MQ and send a message. Although this

may be suitable in some cases, most of the time you need to have more control over how a

message is sent. The alternative is to create an instance of the System.Messaging.Message

class, and send that instead of a simple string. This class represents a single message which

has many properties which you can alter, Table 4-2 shows some of the properties which

you can change.

Table 4-2. Extract of the Message object Properties (source: .NET Framework Class

Library documentation)

Property Description

AcknowledgeType Gets or sets the type of acknowledgment message to be returned to the

sending application.

AdministrationQueue Gets or sets the queue that receives the acknowledgement messages that

Message Queuing generates.

Body Gets or sets the content of the message.

BodyStream Gets or sets the information in the body of the message.

BodyType Gets or sets the type of data that the message body contains.

EncryptionAlgorithm Gets or sets the encryption algorithm used to encrypt the body of a

private message.

Formatter Gets or sets the formatter used to serialize an object into or deserialize

an object from the message body.

Label Gets or sets an application-defined Unicode string that describes the

message.

Priority Gets or sets the message priority, which determines where in the queue

the message is placed.

Recoverable Gets or sets a value indicating whether the message is guaranteed to be

delivered in the event of a computer failure or network problem.

ResponseQueue Gets or sets the queue that receives application-generated response

messages.

TimeToBeReceived Gets or sets the maximum amount of time for the message to be

received from the destination queue.

TimeToReachQueue Gets or sets the maximum amount of time for the message to reach the

queue.

UseAuthentication Gets or sets a value indicating whether the message was (or must be)

authenticated before being sent.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 19

UseDeadLetterQueue Gets or sets a value indicating whether a copy of the message that could

not be delivered should be sent to a dead-letter queue.

UseEncryption Gets or sets a value indicating whether to make the message private.

UseJournalQueue Gets or sets a value indicating whether a copy of the message should be

kept in a machine journal on the originating computer.

UseTracing Gets or sets a value indicating whether to trace a message as it moves

toward its destination queue.

As we saw earlier when a message is sent it is by default encoded into XML which

may not be what we require. The MessageQueue object supports three types of formatters

via the Formatter property:

 * XMLMessageFormatter: (default) Serializes the object into an XML
representation suitable for most purposes. Has the advantage of being
human readable, which can aid in debugging. It is also good for
transmitting over HTTP.

 * BinaryMessageFormatter: Serializes data into a binary non-human
readable format. This will generally result in a smaller packet and is also
generally faster than the XML formatter, but it can be harder to debug.

 * ActiveXMessageFormatter: This is used when you are passing
primitive or COM objects to a non-.NET system, such as to a Microsoft
Visual Basic 6 application, and shouldn‟t be used unless this
functionality is required.

Note: Regardless of which formatter you decide to use, you must use the same

formatter when you receive the message, otherwise you won‟t be able to parse it.

Tip: If you want to pass data in a message which isn‟t „formatted‟, then you can use a technique

whereby you stream your message directly into the BodyStream property. This bypasses the

need for a formatter as the other formatters only translate the Body data into the BodyStream

anyway. However, note that you‟ll have to read the stream back out at the other end if you use

this technique as MSMQ won‟t know how to deserialize the BodyStream. An example of how

this is used is presented in the next Chapter.

Example 2 – Sending an Object

In this example we will be creating a simple Orders object (which would normally have

many more properties and methods) to demonstrate that we can send not only simple text

messages but full objects. When we send the object, we have three options on the format

we use. This example will show how to use both the XMLMessageFormatter and the

BinaryMessageFormatter, which are the two options you’re most likely to use. In order to

serialize an object using the BinaryMessageFormatter or the XMLMessageFormatter you

must either implement the ISerializable interface or simply set the Serializable attribute of

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 20

the class. This example uses the Serializable attribute as it’s the easiest. For more

information on serializing objects consult the online documentation.

Caution: MSMQ supports messages of up to 4Mb per message, so it is important to understand

how large your objects might be when they are serialized, using binary serialization may help if

the XML version is too large.

Firstly we will create a new project for our Orders object, so that we can leverage the

code in further examples. Create a new project called Orders, after inserting the following

code, we have a relatively complex business object to send around. Note you‟ll need to

add a reference to this project in the main project otherwise you won‟t be able to use it.

<Serializable()> Public Class Order

 ' This is a simple object to demonstrate what can be sent

 Private m_strCustomerID As String

 Private m_intOrderID As Integer

 Private m_objOrderDetails As New OrderDetails()

 Property CustomerID() As String

 Get

 Return m_strCustomerID

 End Get

 Set(ByVal Value As String)

 m_strCustomerID = Value

 End Set

 End Property

 Property OrderID() As Integer

 Get

 Return m_intOrderID

 End Get

 Set(ByVal Value As Integer)

 m_intOrderID = Value

 End Set

 End Property

 Property OrderDetails() As OrderDetails

 Get

 Return m_objOrderDetails

 End Get

 Set(ByVal Value As OrderDetails)

 m_objOrderDetails = Value

 End Set

 End Property

 Sub Save()

 ' This method will save the record

 End Sub

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 21

End Class

<Serializable()> Public Class OrderDetails

 Inherits System.Collections.CollectionBase

 ' This class implements a strongly typed custom collection

 Public Function Add(ByVal lineItem As LineItem) As Integer

 Return MyBase.List.Add(lineItem)

 End Function

 Public Function Add() As LineItem

 ' No item supplied so will create a new one

 Return Me.Item(Me.Add(New LineItem()))

 End Function

 Public Sub Remove(ByVal index As Integer)

 ' Check to see if there is a widget at the supplied index.

 If index > Count - 1 Or index < 0 Then

 Throw New Exception("Index not valid!")

 Else

 ' Invokes the RemoveAt method of the List object.

 List.RemoveAt(index)

 End If

 End Sub

 Default Public ReadOnly Property Item(ByVal index As Integer) As LineItem

 Get

 Return CType(List.Item(index), LineItem)

 End Get

 End Property

End Class

<Serializable()> Public Class LineItem

 Private m_intProductID As Integer

 Private m_dblUnitPrice As Double

 Private m_intQuantity As Integer

 Private m_dblDiscount As Double

 Property ProductID() As Integer

 Get

 Return m_intProductID

 End Get

 Set(ByVal Value As Integer)

 m_intProductID = Value

 End Set

 End Property

 Property UnitPrice() As Double

 Get

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 22

 Return m_dblUnitPrice

 End Get

 Set(ByVal Value As Double)

 m_dblUnitPrice = Value

 End Set

 End Property

 Property Quantity() As Integer

 Get

 Return m_intQuantity

 End Get

 Set(ByVal Value As Integer)

 m_intQuantity = Value

 End Set

 End Property

 Property Discount() As Double

 Get

 Return m_dblDiscount

 End Get

 Set(ByVal Value As Double)

 m_dblDiscount = Value

 End Set

 End Property

End Class

To keep the example as real as possible, I‟ve created an OrderDetails class which uses

a custom early bound collection to store multiple LineItem classes. If you are not currently

using this technique for your own class collections, I strongly suggest that you start doing

so, as it will make your code more robust. You can learn more about this by searching for

Walkthrough: Creating Your Own Collection Class in the online help or read Dan

Applemans book “Moving to VB.NET: Strategies, Concepts, and Code” from Apress

Press, which also covers this topic in depth.

Update: If you‟re now using .NET 2.0 then you should be using one of the generic collection

classes which are both faster and type safe.

So now we have an object which we can send around, we now need to know how to

actually send the object. The following listing creates an instance of our Orders object, and

then populates it with some dummy order data. It then creates a Message object, sets the

Body property to be the instance of the Order, sets a few other associated properties, then

sends it to the NonTransactional queue. Note that we change how the message is

formatted twice to highlight how the message will look using the two different options:

Imports System.Messaging

Public Class Example2

 Shared Sub Main()

 Dim objMessageQueue As MessageQueue

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 23

 Try

 objMessageQueue = New MessageQueue(Constants.MQ.LocalNonTransQueue)

 ' Create an instance of the simple Order Class and populate

 Dim objOrder As New Order()

 objOrder.CustomerID = "ALFKI"

 With objOrder.OrderDetails.Add()

 .ProductID = 1

 .Quantity = 99

 .UnitPrice = 17.5

 .Discount = 0

 End With

 With objOrder.OrderDetails.Add()

 .ProductID = 2

 .Quantity = 20

 .UnitPrice = 18

 .Discount = 0

 End With

 ' Prepare the message for sending

 Dim objMessage As New Message()

 With objMessage

 .Body = objOrder

 .Priority = MessagePriority.Highest

 End With

 ' Send Message as Binary

 objMessage.Formatter = New BinaryMessageFormatter()

 ' Prefix the Label with its datatype so we can see it clearly

 objMessage.Label = "Binary - Order:" & objOrder.CustomerID

 objMessageQueue.Send(objMessage)

 ' Now Send Message as XML

 objMessage.Formatter = New XmlMessageFormatter()

 objMessage.Label = "XML - Order:" & objOrder.CustomerID

 objMessageQueue.Send(objMessage)

 MessageBox.Show("Message Sent")

 Catch ex As Exception

 MessageBox.Show(ex.Message)

 Finally

 objMessageQueue.Close()

 End Try

 End Sub

End Class

If we now run this sample you will notice that we have two new messages in our

NonTransactional MQ. If you take a look at the output of the message as we did before

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 24

you‟ll notice that the object has been converted to XML with each property getting its

own element see Figure 3-8a. Figure 3-8b however shows the same object when it was

formatted as binary, which is for the most part unreadable.

Figure 3-8a. Contents of Message sent as XML

Figure 3-8b. Contents of Message sent as Binary

Example 3 – Recoverable Messages

By default messages that are sent are only stored in memory of the computer that holds

the message. This allows for rapid delivery of the messages, but should one of the

computers crash between the time the message is sent and the time it is processed due to a

hardware, software or other external event then the message will be lost forever! In

production environments, I’d doubt you’d be able to get away with loosing a sales order.

So to combat this issue, you can mark a message as recoverable, which will write the

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 25

message to disk as well as keep it in memory. Should a failure happen the system will

automatically recover the lost message from disk. This is done by simply setting the

Recoverable property of the Message object to True, or if you are not using a message

object then you can set the DefaultPropertiesToSend.Recoverable property of the

MessageQueue object, which will apply to any messages not sent using a Message object:

' Message object

objMessage.Recoverable = True

' MessageQueue object

objMessageQueue.DefaultPropertiesToSend.Recoverable = True

Tip: Although the preferred method of sending messages is by using the Message object, you

can still set a number of the same properties used by the Message object via the

DefaultPropertiesToSend property of the MessageQueue object. Each message sent will then

use these properties.

I‟ve not gone with a full example here as there was only one line of code difference

between Example2 and Example3. However, I have included a full version in the

download under Example3. Try running Example2 and then Example3 then restart your

computer to see how many messages you have left in the queue (hint: you should have

only one).

MessageQueue.Receive

We have seen how easy it is to send a message, however it’s not much good to send one if

you don’t know how to receive it. To do this requires a few important steps.

 * You will need to obtain a reference to the queue that the message was
sent to.

 * Select the correct formatter, that being the same as the one which was
used to send the original message.

 * If you‟re using the XMLMessageFormatter (default), you‟ll need to
setup the Message object with a list of possible data types that might be
contained in the message. Usually this is a simple data type when
sending a string or number, or the class type if you sent a full object.

Below are samples of the way you would retrieve a message from the queue, we will

discuss how to do so when a transaction is involved later, but for the most part this is all

you need to do. Notice how you can very easily turn an object that was sent (possibly

from one side of the world to the other) using either XML or binary back into a working

.NET object in only a few lines of code, assuming you have the code for the class locally.

Tip: You may notice the use of the DirectCast keyword, which many will be unfamiliar with.

Essentially it‟s a faster version of CType when dealing with reference objects of the same type.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 26

DirectCast requires the run-time type of an object variable to be the same as the specified type.

If the specified type and the run-time type of the expression are the same, however, the run-

time performance of DirectCast is better than that of CType. You would however get the same

result by using CType, it would just be less efficient.

' Using the XMLMessageFormatter

' Retreiving a simple data type from a message queue

objMessageQueue = New MessageQueue(Constants.MQ.LocalNonTransQueue)

objMessageQueue.Formatter = New XmlMessageFormatter(New Type() _

 {GetType(String)})

Dim objMessage As Message = objMessageQueue.Receive()

Dim strMessage As String = DirectCast(objMessage.Body, String)

' Retreiving an object from a message queue

objMessageQueue = New MessageQueue(Constants.MQ.LocalNonTransQueue)

objMessageQueue.Formatter = New XmlMessageFormatter(New Type() {GetType(Order)})

Dim objMessage As Message = objMessageQueue.Receive()

Dim objOrder As Order = DirectCast(objMessage.Body, Order)

' Using the BinaryMessageFormatter

' Retreiving a simple data type from a message queue

objMessageQueue = New MessageQueue(Constants.MQ.LocalNonTransQueue)

objMessageQueue.Formatter = New BinaryMessageFormatter()

Dim objMessage As Message = objMessageQueue.Receive()

Dim strMessage As String = DirectCast(objMessage.Body, String)

' Retreiving an object from a message queue

objMessageQueue = New MessageQueue(Constants.MQ.LocalNonTransQueue)

objMessageQueue.Formatter = New BinaryMessageFormatter()

Dim objMessage As Message = objMessageQueue.Receive()

Dim objOrder As Order = DirectCast(objMessage.Body, Order)

Caution: When using the BinaryMessageFormatter you must use the same assembly that was

used to create the message; this however is not the case for the XMLMessageFormatter. You

cannot copy and paste the class code into the receiving application. To make it work correctly

create the class(s) into a separate dll and have both projects reference the same dll. It is for this

reason that we created the separate project for the Orders class.

Where the type is defined I have used braces ({ }), which if you are not familiar with

what they mean in .NET you might be rather confused as to why they are there. In .Net if

you want to identify an array of objects (remember everything‟s an object) you can place

them in braces separated by commas. In our case we only needed to define one element in

the array.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 27

Example 4 – Message Monitor

As we have seen it’s not very hard to receive a message, however most of the time we

won’t know that a message has arrived. This means we have to poll or listen for messages

arriving on the queue we are interested in. Microsoft provided in MSMQ 3.0 (was a

standalone product in MSMQ 2.0) a technology that allowed you to assign triggers to

queues, which based on rules you can define allowed you to run code when a message was

received. This technology was pre-.NET and as such .NET has no direct support,

although using COM wrappers you can still use this if you wish. This approach is a little

limited, but can be enough for most purposes. If you were using VB6, it was definitely

your best option as it can process multiple messages in different threads, a task that was

near impossible (Ok it was possible, with a number of hacks, but in reality it was more

trouble than it was worth) using VB6 alone. If you want to learn more about MSMQ

Triggers see the resources at the end of the Chapter.

Due to the new found power that .NET has given all programmers, I‟m going to

demonstrate how you can achieve a similar thing to MSMQ Triggers but because you

have the source, you‟ll also be able to modify it to your own specific needs. There are a

few approaches to solving this problem. I‟ve seen many an article explain this technique

using threading, whereby you spawn a new thread to monitor a queue. This technique

while very effective can be complex and prone to many difficulties if you are not very

familiar with threading issues. Now you may be asking yourself, well if you‟re not going

to use threading, then what are you going to use? The answer is, we are going to use

threading of sorts, however, we won‟t create the new thread ourselves. We will allow the

.NET framework to handle the actual creation of the thread and also let it manage our

thread pool. This makes for a much simpler solution and one that should require less

debugging!

What allows us to do this is a technology called delegates. You may be familiar with

delegates as they relate to events. Well they can also be used to create asynchronous calls

to any class method.

We will be creating a Form which can be called from another application which will

supply the path of the MQ to monitor. This allows us to monitor multiple queues using the

same piece of code. Figure 4-9 shows how our monitor will look; I‟ve included the full

listing (less IDE generated code) as it warrants some discussion.

Figure 4-9. Queue Monitor Screen

Imports System.Messaging

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 28

Public Class frmQueueMonitor

 Inherits System.Windows.Forms.Form

 Public Delegate Function MonitorStart(ByVal queuePath As String) As Boolean

 Dim m_delMonitor As MonitorStart

 Public WithEvents m_objMonitor As New MonitorQueue()

 Private m_strMonitoredQueue As String

 Private Sub btnMonitor_Click(ByVal sender As System.Object, ByVal e As _

 System.EventArgs) Handles btnMonitor.Click

 m_delMonitor = AddressOf m_objMonitor.Start

 m_delMonitor.BeginInvoke _

 (m_strMonitoredQueue, AddressOf MonitorComplete, Nothing)

 Me.lblStatus.Text = "Status: Monitoring - " & m_strMonitoredQueue

 End Sub

 Private Sub MonitorComplete(ByVal ar As IAsyncResult)

 Dim blnError As Boolean = Not m_delMonitor.EndInvoke(ar)

 ' This is a very basic error reporting message, its not suggested you

 ' follow this!

 If Not blnError Then

 MessageBox.Show("MQ monitor has finished with no errors")

 Else

 MessageBox.Show("MQ monitor has finished with errors!")

 End If

 Me.lblStatus.Text = "Status: Not Monitoring"

 Me.Text = "Queue Monitor"

 End Sub

 Private Sub btnStop_Click(ByVal sender As System.Object, ByVal e As _

 System.EventArgs) Handles btnStop.Click

 m_objMonitor.Monitor = False

 End Sub

 Private Sub m_objMonitor_OnMessageArrive(ByVal messageCount As Integer) _

 Handles m_objMonitor.OnMessageArrive

 Me.lblStatus.Text = "Message Count: " & messageCount

 MessageBox.Show("You have mail.")

 End Sub

 Private Sub btnClose_Click(ByVal sender As System.Object, ByVal e As _

 System.EventArgs) Handles btnClose.Click

 Me.Close()

 End Sub

 Public Sub MonitorQueue(ByVal queuePath As String)

 m_strMonitoredQueue = queuePath

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 29

 Me.Text = "Queue Monitor: " & m_strMonitoredQueue

 Me.Show()

 End Sub

End Class

' This is the Class that will be run Async

Public Class MonitorQueue

 Public Event OnMessageArrive(ByVal messageCount As Integer)

 Private m_blnStop As Boolean = True

 Function Start(ByVal queuePath As String) As Boolean

 Dim intMessageCount As Integer

 ' Ensure that we set Monitor

 Me.Monitor = True

 Try

 Dim objMQ As New MessageQueue(queuePath)

 Do While Me.Monitor

 ' Check if we have a different message count ie New Message

 If intMessageCount < objMQ.GetAllMessages.Length Then

 ' We have new messages

 intMessageCount = objMQ.GetAllMessages.Length

 RaiseEvent OnMessageArrive(intMessageCount)

 End If

 ' Reduce the stress on the computer and sleep for a bit

 System.Threading.Thread.Sleep(10)

 Loop

 Return True

 Catch ex As Exception

 ' An error happened so we will simply return false back to the

 ' application

 Return False

 End Try

 End Function

 Property Monitor() As Boolean

 Get

 Return m_blnStop

 End Get

 Set(ByVal Value As Boolean)

 m_blnStop = Value

 End Set

 End Property

End Class

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 30

If you are new to delegates then how this code works might be somewhat confusing,

so I‟ll try to explain the steps necessary to create an asynchronously call using delegates,

then apply the rules to our code. You will find most of the code mentioned below is in the

frmQueueMonitor class.

 . Create the class that will be called asynchronously. This class contains a
method what we want to call via our delegate.

 In our sample this is the MonitorQueue class

 ' Function to be called asynchronously by delegate

 Function Start(ByVal queuePath As String) As Boolean

 …

 End Function

 . Define a delegate which matches the signature of the method in the
class. Place this at the top of the calling class. Note this doesn‟t need to
have the same name as the actual function, just the signature must be the
same but again parameter names need not be the same.

 Delegate Function MonitorStart(ByVal queuePath As String) As Boolean

 . Create an instance of the class which you want to call at the top of the
calling class. Note in our example, it includes the WithEvents keyword
because our object (MonitorQueue) has events which we will use later.

 Public WithEvents m_objMonitor As New MonitorQueue()

 . Create an object of the Delegate type you created.

 Dim m_delMonitor As MonitorStart

 . Set the new delegate object to equal the address of the actual method
you wish to call using the AddressOf operator.

 m_delMonitor = AddressOf m_objMonitor.Start

 . Using the BeginInvoke method of the Delegate object pass any
parameters (which will be dynamically generated by the .NET runtime
to match the signature of the delegate‟s parameters – which is very
cool), then using the AddressOf operator again pass in the address of
the callback function you want to have called after the thread
terminates. In our case the parameter is the queue to be monitored
stored in the variable m_strMonitoredQueue, and we want to call the
subroutine MonitorComplete when the process is finished. This code is
called to start the task of monitoring in the btnMonitor_Click routine:

 m_delMonitor.BeginInvoke _

 (m_strMonitoredQueue, AddressOf MonitorComplete, Nothing)

 . That‟s it; the method will now be called in a separate thread that the
Framework will take care of.

 . Now you only need to decide what you want to do after the routine
terminates. This is when the MonitorComplete routine will be called.

The other useful bits that might need explaining are how I‟ve decided to monitor the

queue. In this example, rather than actually retrieve the message, I‟ve gone for a slightly

different tact. The purpose of this monitor is to alert us to any new messages that arrive

without affecting them. To do this we determine the current number of messages in the

queue by calling the shared (static) function objMQ.GetAllMessages.Length, and then

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 31

during each iteration of the loop check if this number has changed. If it has then we must

have received a message, so we use the RaiseEvent keyword to alert the calling program

of this fact (this is why we declared the instance with the WithEvents keyword earlier). To

ensure that we don‟t bog the CPU down with our tight loop, we force the current thread

to sleep (suspend operations) for 10 milliseconds. This seems to be long enough on my

computer to keep the CPU usage at or close to zero. Depending on your computers

configuration you may need to increase this value so you don‟t affect other programs.

To run our monitor we need to create a new instance of the class then pass it the path

of the queue that we wish to monitor:

 Dim objQueueMonitor As New frmQueueMonitor()

 objQueueMonitor.MonitorQueue(Constants.MQ.LocalNonTransQueue)

The MonitorQueue method simply stores the path and then shows the form ready to

use. The Form won‟t automatically start monitoring the queue; you need to first start the

queue by pressing the appropriate button. When we run this example, and start monitoring

the NonTransactional queue you‟ll notice that the program will tell you that you have

mail, assuming you have run any of the other examples. To really test the code, run some

of the earlier examples and you‟ll see the monitor will recognize their arrival immediately.

Another thing to note about the code is that because we are running in a different

thread, we need a way to tell it to stop running should we wish to stop our monitoring.

This is where the property Monitor of the MonitorQueue class comes in. As we have a

reference to this object, we can easily set this property to False, which is checked during

each iteration of the monitors loop. When it becomes False the monitor will drop out of

the loop and finish the process, thereby finishing the thread. This is the beauty of using

delegates as the framework does all the clean up code for us when dealing with threads.

Static Methods

Although you can create, delete and examine MQ’s through creating an instance of the

MessageQueue object, there are a number of static methods too (meaning you can call

them without creating an actual instance of the class). The following will show you how to

make use of these more maintenance style tasks.

I‟m going to forgo a full example of each of the methods as they are only one line of

code each. Instead I‟ll show you the line in question and explain any useful bits that may

be necessary.

Note: Creating and deleting queues requires certain security permissions, and by

default can only be done by the creator/owner of the queue or by an administrator. If

you do not have sufficient permissions an exception will be raised with an “Access

Denied” message.

Checking the existence of a MQ can be useful, however it does take time so is best

done only when needed, such as at the beginning of an application. If you don‟t know if a

queue exists however, you should check it otherwise an exception will be raised. Simply

check this boolean condition to see if the queue already exists:

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 32

MessageQueue.Exists(<message queue path>)

After you‟ve checked the existence of a MQ you may wish to create the queue if it

doesn‟t already exist. To create a new queue you simply run the following static method:

MessageQueue.Create(<message queue path>,<is transactional?>)

There may also be occasions when you want to delete a queue. However, you should

use extreme caution here as it will also remove any messages that are currently in the

queue. Therefore it is best that you also check if there are any messages before you try

deleting the queue; this was shown in the previous example.

MessageQueue.Delete(<message queue path>)

Summary

We learned that using asynchronous processing can lead to better real or perceived

response times, better availability, increased robustness and an overall increase in

scalability for our applications. We have also learned that using MQ’s we can very easily

take advantage of robust guaranteed delivery of messages. These messages can be queued

up should a failure occur within part of the system and then processed when the failure has

been rectified.

The next Chapter will continue the discussion on MQ‟s and introduce the concepts of

transactions and acknowledgements, timeouts and journaling. These more advanced

features are necessary to take full advantage of what MSMQ offers.

Resources:

MSMQ Home: http://msdn2.microsoft.com/en-us/library/ms711472.aspx

MSMQ Triggers: http://msdn2.microsoft.com/en-us/library/ms703197.aspx

