

GIAC Certified Forensic Analyst (GCFA)

FAILED ATTEMPT

Practical Assignment
Version 1.3

FAILED ATTEMPT

Forensic Analysis with F.I.R.E.

David M. Zendzian

dmz at dmzs.com

May 30, 2003

NOTE: This practical did not receive a passing grade for GCFA
certification. It is, according to GIAC testers:

“clear that you have grasped many of the key concepts from your SANS
training and experience. Unfortunately, there are several areas that lacked
enough content to pass”

Table of Contents
Abstract ... 3
Analyze Unknown Binary... 4

Binary Details ... 4
Forensic Details .. 6
Program Identification .. 11
Legal Implication.. 12
Interview Questions .. 12
Additional Information ... 13

Perform Forensic Tool Validation .. 15
Scope... 15
Tool Description ... 15
Test Apparatus .. 17
Environmental Conditions .. 18
Description of the Procedures... 18
Criteria for approval.. 29
Data and Results ... 29
Analysis... 33
Presentation... 34
Conclusion .. 35
Additional Information ... 35

Legal Issues of Incident Handling .. 36
End Notes & References... 41

Abstract
This practical will examine an unknown malware binary as well as a known
compromised system image utilizing Open Source tools The Sleuth Kit, Autopsy,
strings, hexedit and many other system analysis tools; all of which are packaged
together in a bootable CD that creates self-contained, secure & trusted Forensics
& Incident Response Environment, F.I.R.E.

Through the course of various investigation techniques the validity of FIRE as an
incident response environment will be proven by:

• Examination and identification of purpose of an unknown binary recovered
from a compromised system

• Identify what can and can not be accomplished with the data provided with
the data provided

• Examine possible legal ramifications for the people involved in the
deployment of the unknown binary.

• Identify what other information could have been verified if other image and
system information had been provided.

This practical will also go into detailed description and document the processes
followed to setup and then utilize FIRE as a Forensic & Incident Response
Environment. This is further demonstrated through the analysis of a known
compromised system image provided by one of the Digital Forensics Research
Workshops Honey Pot challenges.

Analyze Unknown Binary
For this analysis, I make the assumption that the compromised binary arrived
through a download of a compress floppy image from a remote system operator.
There is no prior chain of custody so all evidence regarding the state of the
system the binary was recovered from and information on how the binary was
identified & discovered is not available.

Given these circumstances, it will only be possible to determine outlying
characteristics of the binary image:

• Possibly where it came from
• What the binary’s purpose is
• It may be possible to identify when the system was compromised & the

binary installed.
• If we are fortunate we may also be able to discover which user id

facilitated the compromise of the system in question.

The analysis of the target binary was performed with F.I.R.E., the Forensics &
Incident Response Environment. FIRE is a self-contained bootable CD that
provides a forensically sound Incident Response examination Environment on
any system with VMWare or a bootable CDROM.

FIRE is an Open Source, Sourceforge hosted project, with active forums and
archives of current & previous images. More information and downloadable ISO’s
can be found at the project website: http://fire.dmzs.com.

Binary Details
For purposes of this analysis:

binary_v1.3.zip was acquired from the GIAC web site url:
http://www.giac.org/gcfa/binary_v1.3.zip on May 30, 2003.

There was no information provided regarding the system that target2.exe was
acquired from or who had acquired, created or posted the binary onto the GIAC
web site.

The received binary appears to be a winzip compressed zip file of a binary win32
executable labeled target2.exe. Nothing else is known about this file.

Winzip only stores the file name and the last timestamp on the file. Since winzip
does not store any other file system specifics there is not much more we can
determine from the external characteristics without getting an image of the file
system it came from.

According to the information available from winzip, the file target2.exe was last
modified on 2/20/2003 at 12:45 PM. The available CRC for the file within the ZIP
is: D185FD18.

If the image was a combination of a tar of the file, a dd of the drive block table &
sectors the file occupied along with the SAM file and system registry information,
we could have gotten the user ID as well as more detailed time information such
as when it was last Modified, Accessed or Changed (MAC) what registry
functions it updated and much more information prior to having to examine the
binary contents of the target file.

Switching over the GNU unzip, I extracted target2.exe with the –XX option. This
option extracts the original owner information from the zip file. While this will
extract the user information with the file it is extracted in a windows ID format.
Since the archive did not contain the registry or SAM information from the
compromised system I will be unable to determine the username of the user
owning target2.exe.

By examining WinXP system permissions of the target2.exe extracted with GNU
unzip –XX I was able to determine one user ID that was unknown to my local
system. This userid is: S-1-5-21-1123561945-1708537768-1801674531-513.

To verify the validity of the archive I ran both md5sum on both the zip file & the
extracted target2.exe. The winzip file binary_v1.3.zip provided is 5687 bytes and
has a MD5 sum of 057c5acf6ee979413e0cb6daeaccea7d. The target2.exe
within the zip is 5567 bytes within the archive and 26793 bytes once extracted.
The MD5 sum of target2.exe is 848903a92843895f3ba7fb77f02f9bf1.

The archive and download site did not contain any MD5 sums of either of these
file, so it was not possible to verify that these files had not been tampered with
since their acquisition.

With no other external verifications that could be made on the target system, I
proceeded to analyze the internals of target2.exe. Using the command ‘strings’,
which parses an input file and outputs readable strings that are contained within
the file much was discovered that assisted in the identification of the purpose of
the binary.

While the order the strings come in may not be the order they are executed,
many programmers sequentially develop their applications. So a first basic
assumption can sometimes be made while analyzing strings output is that the
order of the strings within the application is the order they were coded in. As
such, possibly also the order the functions are executed in.

Browsing through the output, the first few usable strings seen deal with creating
& starting services. This could be that the application creates a windows service
if it doesn’t exist, and then goes about starting it. It could have been part of an
initial installation or just a function of the application to ensure it is setup to restart
once the system reboots.

The next major item seen within the output is the creation of a RAW ICMP socket
followed by:
=================== Icmp BackDoor V0.1 ========================
========= Code by Spoof. Enjoy Yourself!
 Your PassWord:
loki
cmd.exe

This is one of the most distinguishing items discovered in the analysis of
target2.exe. If these strings are part of the application execution stream, it
appears as if the program may be an ICMP back-door to a cmd.exe shell.

Forensic Details
To get a greater analysis of the application I utilized the local hex editor within
FIRE, hexedit. While browsing target2.exe several interesting items were noted
that were not identified in the strings output that would confirm the function of the
application and possibly who was also involved in its creation and or distribution.

The initial look into target2.exe with hexedit reveal a name, ‘Rich’, in the
beginning of the file. Having this name so close to the beginning of the file might
reveal either part of the identify of the person who compiled the application,
possibly who write the application to the file system or it might be the name of the
person who created the zip file.

As I continued through the file the next large group of useful information showed
me several functions, DLLs and registry entries that should be investigated on
the hacked system to see if they were modified around the same time as when
target2.exe was installed.

A few executable files are referenced later on near some SMB:
\winnt\system32\smesses.exe
\winnt\system32\reg.exe

I could not find any reference to smesses.exe through extensive internet
searches with http://www.google.com - http://www.altavista.com -
http://www.webcrawler.com - http://www.securityfocus.com -
http://packetstormsecurity.com, so this may be part of the back-door or some
other application installed to compromise other parts of the session. The
reference to reg.exe leads me to conclude that the application is querying and
possibly modifying registry entries on the compromised system.

Soon after the first SMB instance and right after the smesses.exe was the
following IP address was identified. This IP Address could be either where the
application is connecting to, or allowing connections from: 199.107.97.19

Several DLL files were also identified within the application. These files should be
compared with the original DLL from another non-compromised windows
machine and possibly investigated for additional back-doors or hidden system
calls in case they are used for more than just basic system library calls:
KERNEL32.dll
ADVAPI32.dll
WS2_32.dll
MSVCRT.dll
MSVCP60.dll

Another interesting message discovered was something that wasn’t picked up by
strings since it had hex code 00 in between each character. While I knew that
this character was the NULL character, I did not know why it was within the text
until one evening while discussing various things with William Salusky, forger of
FIRE. He mentioned that the string with NULL characters between each
character was part of how Unicode strings were stored. He suggested that I use
a Win32 version of strings that was compiled with Unicode support and it would
have picked up this string in a strings output.

00005060 00 00 0F 00 48 00 65 00 6C 00 6C 00 6F 00 20 00 H.e.l.l.o. .
00005070 66 00 72 00 6F 00 6D 00 20 00 4D 00 46 00 43 00 f.r.o.m. .M.F.C.

Now knowing this new message within the application, what was it there for?
This is most likely a message from the hacking team that built this version of loki,
the people who hacked into the system & left this back-door. However since the

application was compiled with windows strings (Unicode) support, it may have
been compiled with other windows libraries such as the Microsoft Foundation
Class (MFC) and this could be a message from that library class. However, since
this application is most likely dynamically linked it is more likely that this message
is from the group or individual that compiled this binary or wrote the backdoor.

Next I examined the binary with ‘objdump’ which allowed me to view library
information about a binary executable. Using the –p option to print the object
header information, including which library calls are made some of the
application functions are revealed.

The first thing that was noticed was a date, maybe the date the binary was
compiled: Wed Nov 27 23:53:13 2002. Following that, within the .rdata section of
the object the various functions called from the linked DLLs are listed:
 DLL Name: KERNEL32.dll
 vma: Hint/Ord Member-Name
 32f0 409 HeapAlloc
 3388 456 LocalAlloc
 3378 282 GetLastError
 336c 735 WriteFile
 335e 67 CreatePipe
 334c 68 CreateProcessA
 333e 27 CloseHandle
 332e 505 PeekNamedPipe
 3322 536 ReadFile
 330e 670 TerminateProcess
 32fc 320 GetProcessHeap
 32e8 662 Sleep

 DLL Name: ADVAPI32.dll
 vma: Hint/Ord Member-Name
 33d6 398 RegisterServiceCtrlHandlerA
 33a4 435 StartServiceCtrlDispatcherA
 33c2 430 SetServiceStatus
 349e 336 QueryServiceConfigA
 3486 45 ChangeServiceConfigA
 3476 434 StartServiceA
 3466 120 DeleteService
 3454 325 OpenSCManagerA
 3442 76 CreateServiceA
 33f4 52 CloseServiceHandle
 3432 327 OpenServiceA
 341c 341 QueryServiceStatus
 340a 53 ControlService

 DLL Name: WS2_32.dll

 vma: Hint/Ord Member-Name
 80000017 23
 80000074 116
 80000009 9
 80000003 3
 80000014 20
 34ce 61 WSASocketA
 80000039 57
 80000034 52
 34c2 37 WSAIoctl
 80000011 17
 8000006f 111
 80000073 115
 80000002 2
 8000000b 11

 DLL Name: MFC42.DLL
 vma: Hint/Ord Member-Name
 8000032f 815
 80000231 561
 The Import Address Table is identical

 DLL Name: MSVCRT.dll
 vma: Hint/Ord Member-Name
 352a 709 strstr
 3552 85 __dllonexit
 3534 720 time
 353c 670 printf
 3614 183 _controlfp
 3600 202 _except_handler3
 35ee 129 __set_app_type
 35e0 111 __p__fmode
 35d0 106 __p__commode
 34f2 664 memmove
 34fc 585 exit
 3504 600 fprintf
 350e 275 _iob
 3516 690 sprintf
 3520 668 perror
 356a 211 _exit
 35c0 157 _adjust_fdiv
 3572 72 _XcptFilter
 3560 390 _onexit
 35a0 271 _initterm

3590 88 __getmainargs
3591 3580 100 __p___initenv

3592 35ac 131 __setusermatherr

 DLL Name: MSVCP60.dll
 vma: Hint/Ord Member-Name
 3662 165 ??0_Winit@std@@QAE@XZ
 3642 265 ??1Init@ios_base@std@@QAE@XZ
 3622 158 ??0Init@ios_base@std@@QAE@XZ
 367a 269 ??1_Winit@std@@QAE@XZ

These functions show that the application was doing several processes:

• The Kernel interface was dealing with pipes and handles so the
application was talking to interfaces, processes or other applications.

• The ADVAPI showed that the application was doing something to the
systems services.

• Next is seen Socket & IOCTL calls, so the application is definitely
communicating with external applications through a socket.

• The next function group shows basic Terminal I/O communications
through the standard MSVCRT library.

This clearly shows that the application is interfaces with the system services and
communicates terminal services to multiple network connections.

One of the more interesting features of objdump is its ability to disassemble the
application and show the application code in assembly as output. If there was the
time, this is the best method of examining the application. However reading
assembly is not a task to be done with a short deadline and I put off this final
method of identifying every function of the application.

Having exhausted the methods of examination I could perform with objdump, I
proceeded to utilize another application available under FIRE. One of the last
tests I ran was to test the target2.exe file with a commercial grade virus scanner
to determine what it would find. FIRE comes with the OpenSource version of F-
Prot, http://www.f-prot.com. One simple menu item or “/usr/local/f-prot/update-
defs.sh” from a command shell and FIRE will download the latest virus definition
files.

Then I simply executed: “f-prot target2.exe”.

However, F-Prot was not able to detect anything within this file, so although the
test for malware is assisted by virus scanning, it did nothing to assist our binary
identification on this test.

F-PROT 3.11b
SIGN.DEF created 30. May 2003
SIGN2.DEF created 30. May 2003
MACRO.DEF created 26. May 2003

Search: target2.exe
Action: Report only
Files: Attempt to identify files
Switches: <none>

Results of virus scanning:

Files: 1
MBRs: 0
Boot sectors: 0
Objects scanned: 1

Time: 0:00

No viruses or suspicious files/boot sectors were found.

Program Identification
All of this evidence clearly leads me to decide that this binary as an ICMP
backdoor to cmd.exe. The default password may be “loki” or that may just be a
reference back to the original loki ICMP backdoor implementation. This version
was possibly originally coded by Spoof who may be part of a hacker group called
MFC. However, it may not have been installed by spoof but by the local user
Rich; or it may be downloadable through some hacker site..

Some basic investigation into loki & icmp through Google reveal that Loki is a
UNIX based ICMP backdoor application that was originally presented in the
August 1996 issue of Phrack by daemon9. Some more investigation through
online archives such as http://packetstormsecurity.com reveal the code to the loki
application for the *NIX environment.

The copy of loki2 for *NIX platforms can be found at:
http://packetstormsecurity.nl/crypt/misc/loki2.tar.gz

Looking though the code to loki2 there are several items missing that were found
in the binary being investigated.

The first is that there is no banner “Icmp BackDoor V0.1”, mention of Spoof or
MFC. So most likely the code for this windows version was based on loki2, but it
clearly isn’t directly from this code.

Truly identifying non-refutable characteristics beyond the basics mentioned
above would require additional information from the original host system. While
the conclusions I have made thus far detail what is seen directly within the
binary, there are so many interdependencies and related files & applications that

were not included so a concise identification of this application is not completely
possible without gathering some of this missing information.

Legal Implication
If this image was acquired on a system within the United States, and the activity
occurred in such an environment where it was used without authorization then
there would be a possibility of prosecuting the individual or individuals that
installed and operated the application analyzed.

If such activity could be proved and it irrevocably proven that specific people
were involved, then those people could be looking at from 1 to 10 years of prison
and they could also be fined for the damages caused by their activity.

Without having a complete image of the system and no detailed documents
regarding this case, only a binary image, it is impossible to determine several key
items necessary to prosecute anyone in conjunction with the image provided.

There is no evidence regarding what system the binary was provided from. So it
is unknown if this application was found on another web site, captured from an
internet stream in download, attached to an email, sent through IRC or saved
from an Instant Message. Not knowing any of these details leads to too many
speculations as to the origin of the file making the file itself inadmissible in any
legal proceedings.

There is no information regarding the case the image was acquired under, and
no chain of custody with digital signatures of the images and logs as they were
captured. This would add many questions regarding the procedures used in the
discovery of the binary, the procedures used in the capture of the binary and the
documentation detailing whom did the work and to whom it was transferred. With
no digital verification of the binary image, there is no way to verify the integrity of
the image and confirm that it hasn’t been tampered with since it was captured.

With the information provided it would be impossible to prove anyone was guilty
of a crime. Even if this information was regarding an attempt to dismiss an
employee for violation of corporate policy regarding the use of non-authorized
applications, there is still significant question regarding the origination of the
tested image as well as the integrity of the image itself.

However, if a few questions could be answered then the analysis of this image
could be documented in more detail providing irrefutable evidence that could lead
to legal prosecution or termination of employment.

Interview Questions
With all that is unknown about the binary that was analyzed, there are several
questions that need to be asked of the person who delivered the binary as well

as from the person who identified the binary and the system administrator of
these users and the compromised system.

1) Are you the administrator of the system the binary is from?
2) Do any other users have direct access to the system?
3) Are there any users or administrators that have recently (in the last

year) left the organization that left under non-hospitable conditions?
4) What are the primary and “other” uses of the compromised system?
5) Is the system physically locked in a secure location?
6) Is the system physically locked closed? Keyboard/CDROM?
7) How was the binary discovered?
8) What time / date / location did the compromise occur?
9) Was anything done on the system prior to extracting binary?
10) Is there a complete system image of the compromised system?
11) Is there any image of the system memory?
12) What was the process utilized to acquire the binary?
13) Was the compromised system shut down or unplugged?
14) Is the compromised system still online?
15) Is there any network traffic captured that shows communication with

the captured binary?
16) Is there a firewall in front of the compromised system?
17) If so, are there any logs identifying the attack that compromised the

system or any traffic to/from the system once it was compromised
18) What are the firewall rules that allow the traffic to the server? Are there

any new rules that opened this access? If so, who has access to
change these rules?

19) Is there any IDS traffic or alert/alarm logs?
20) Do you have any additional information to provide?

Additional Information
There were many tools used in the identification of various pieces of the
target2.exe binary.

First, F.I.R.E., the Forensics & Incident Response Environment was utilized as a
base investigative environment. It provides a clean, logging environment that has
tools and basic features built in to facilitate the incident investigator. Information
on FIRE can be found at http://fire.dmzs.com.

The second most used resource in my investigation was the Internet. Specifically
a few key search & security sites:
 http://www.google.com – excellent searches of both web & newsgroups
 http://www.webcrawler.com – another good place to find information
 http://www.altavista.com – not used much more, but still good for news
 http://packetstormsecurity.com – security news, docs & file archive
 http://www.securityfocus.com – good security news research
 http://www.phrack.org – source for loki write-up & loki2 code publish

 also available at packetstorm

The final tool utilized in my in-depth analysis is the OpenSource version of F-Prot
virus scanner. This tool allow for offline virus scanning of any medium by booting
the machine from floppy or CD (FIRE). Information can be found at http://www.f-
prot.com.

Perform Forensic Tool Validation

Scope
There are new products out every year to facilitate the acquisition and analysis of
computer incidents. While there are many expensive commercial products
available, I have chosen to use an Open Source tool called F.I.R.E., Forensics &
Incident Response Environment, to do all of my data acquisition & analysis.

This entire paper has been an exercise in the use of FIRE for the examination of
captured malware. This final section will examine how FIRE has integrated image
analysis tools into it’s configuration that facilitate the logging & analysis needed
to provide strong evidence that can be utilized in a court of law.

I will be examining data from one of the Digital Forensics Research Workshop
(http://www.dfrws.org/) images to briefly outline that features of FIRE, especially
as it relates to the analysis of system images for data recovery & searching. The
Image and information on the workshop can be found at
http://www.honeynet.org/scans/scan24/.

While it is possible for FIRE to gather a significant amount of forensic evidence
from images and most data sources, this analysis will only be reviewing the
process and procedure of searching & recovering deleted files from the floppy
image and leave the application of the other investigative processes to the reader
and other documenters of FIRE.

The investigation into the details of the image will be performed through another
Open Source application, Autopsy which is built upon the forensics tools from the
Sleuth Kit, both of which are integral parts of the forensics capabilities included
with FIRE.

Tool Description
F.I.R.E. is a bootable Linux CD that turns any machine into a forensics
workstation. FIRE was created & is maintained by William Salusky (change at
dmzs.com). The first release was available in early 2002. Soon following the
initial release a Sourceforge project for FIRE was put together and released on
February 12, 2002 under the project name biatchux. You can find the project
Sourceforge page at http://www.sourceforge.net/projects/biatchux which contains
information regarding project statistics that is not found at the main project page.

FIRE is an active project producing new versions every 1-2 months. The ISO has
gone from 70M to 600M+ and has seen peek download months reach 50,000+.
There have been over 120,000 downloads of FIRE to date (85,000 just this year)!
More information about fire & the latest ISO used in this analysis can be found at
the project homepage: http://fire.dmzs.com.

There are 2 quick ways of using FIRE:
• The ISO can be burnt it to a CD & boot from it on your workstation or

laptop.
• The ISO can be booted from within VMWare, just mark the ISO as a CD-

Image and boot away.

Since it boots an entire system without touching the local system, FIRE needs to
run on a system with plenty of RAM to have enough room for the RAM Disk it
creates and still leave some for the execution of X and the tools used for
analysis. With such memory requirements, I would suggest using a system with
128M or more RAM. My personal forensic workstation has 512M, giving me
some extra space to work with a few small images directly in my RAM Disk
allowing for very fast analysis of these small images.

While I haven’t utilized it, there is an option within FIRE where it will check the
local floppy for user customized configuration information. This could be used to
pre-configure the session for the data being investigated or to have common
settings / menus / etc in place for the current operator.

One of the advantages of FIRE running within a RAM Disk is that it does not
touch the system or images being analyzed allowing it to be a forensically clean
& sound testing environment. It also logs as much information as is possible to
the /data/ directory allowing for a single place to be archived when work is
completed.

To facilitate the documentation of the startup process of my analysis on the GIAC
& DFRW images, I booted FIRE into a VMWare virtual machine
(http://www.vmware.com)1. This allowed me to capture screenshots of the FIRE
boot-up & setup process.

Once I had the initial configuration documented I booted my standard forensics
workstation with my FIRE CD, and then sent the console back to my windows
VNC listener where I performed my analysis & captured the screenshots to
include in this document.

1 The current stable version of VMWare does not support the Video Frame Buffer
FIRE uses for the local X display. If you are using fire & Want to work with the X-
Console then you will need to send the display to a remote VNC listener. It is
worth noting that the frame buffer within latest beta version of VMWare (4.0)
supports the frame buffer F.I.R.E. utilizes, allowing for the local X display to work
directly with VMWare. While I could have installed the Beta 4.0 VMWare and
made my analysis easier, I continued utilizing a remote VNC console to
demonstrate how a forensic analysis could be performed remotely allowing an
Incident Response team to respond to global incidents more rapidly.

While I utilized my windows vnc listener to make the documentation of my
processes easier, if I had chosen to use BSD or Linux as my forensic console
workstation then I could have opened up the ability for more global remote
analysis by utilizing the included utilities htc & hts. HTC & HTS create an HTTP
tunnel for any protocol. Since HTTP is allowed through most firewall
configurations, this would allow for a remote analyst to investigate a case from
anywhere on the internet.

While the wrapping of VNC through htc/hts isn’t very difficult, I leave it to the
reader to experiment with the fun & excitement of tunneling your FIRE session
out through a corporate proxy server to an awaiting forensic workstation across
the internet.

The actual dirty-work performed in my forensic analysis was primarily performed
with the Open Source tools Autopsy & The Sleuth Kit by Brian Carrier (brian at
sleuthkit.org).

Autopsy, as defined at its website http://www.sleuthkit.org/autopsy/desc.php, “is
a graphical interface to the command line digital forensic analysis tools in The
Sleuth Kit. Together, The Sleuth Kit and Autopsy provide many of the same
features as commercial digital forensics tools for the analysis of Windows and
UNIX file systems (NTFS, FAT, FFS, EXT2FS, and EXT3FS). Autopsy contains
the following features that allow for detailed information gathering of evidence on
the analysis of your images:

• Case Management
• File Analysis
• File Content Analysis
• Hash Databases
• File Type
• Timeline of File Activity
• Keyword Search
• Meta Data Analysis”i

• Image Details
• Image Integrity
• Notes
• Reports
• Logging
• Open Design
• Client Server Model

The FIRE ISO version I used for my analysis is v0.4a. Most tools, especially
Autopsy have been upgraded to their latest version as of the date of the 0.4a
release. However, like all active projects today the version changes regularly.
Currently autopsy is up to version 1.7.1, while it is 1.7.0 on FIRE 0.4a. With all
the regular updates to FIRE, I expect to see a new release in the next month that
will include that and other product updates.

Test Apparatus
My test involved 1 forensics workstation and 1 notebook for my workstation
display. The workstation is an Intel Celeron 1.7 GHz with 512M RAM and 2 IDE

Drives (10 & 20 Gig). The workstation will be running the FIRE instance and
doing all of the ‘work’ of this job.

My display notebook is a Compaq Evo N400c with 192M ram running Windows
XP and my vnc listener. The machines are connected through a 100/10
switching hub and each machine has 100M interface cards allowing maximum
bandwidth throughput.

Environmental Conditions
All of the testing was performed on the FIRE workstation. This contained all of
the data and results preventing any loss or contamination from outside
influences.

The FIRE console was setup to display through VNC onto my display
workstation. This connection sent VNC over a 100M Ethernet connection. There
was a slight amount of traffic on the test switch, but it wasn’t enough to disrupt
any of the VNC session and did not cause any issues on the results achieved or
recorded since all results and tests were made within the FIRE environment.

The images to be tested were acquired via the net. The DFRW image included
an MD5 to confirm the validity of the downloaded image. This was not available
for the GIAC image so the validity of that image could not be confirmed.

Description of the Procedures
To prepare to receive the VNC FIRE session, I first started a VNC Viewer on my
display workstation in “Listen Mode”. Under windows, there should be an option
for it under the RealVNC/VNC Viewer folder:

Once the Viewer was ready, I started VMWare Workstation with my latest image
of FIRE set to be an IDE CDROM Image. Then, following the details you will see
below, I booted FIRE and sent it’s X console to the waiting VNC listener.

Once this initial configuration was documented, I turned off VMWare & booted
my workstation with my FIRE CDROM sending the VNC console to my display
workstation using the same process as described below and then began my
analysis of the target images.

To function within VMWare, I configured a virtual machine with > 128M of RAM
which is the minimum FIRE needs to be able to create the RAM Disks it needs
and still have enough memory to perform all necessary operations.

Within the VMWare configuration I only configured 1 IDE disk that was set to be
a CDROM with the “Use ISO image” option checked and my FIRE ISO Image
selected.

My VMWare configuration screen is below:

Upon powering up, I chose to go with a standard FIRE session.

If this was a true incident response that required detailed logging, then I could
have chosen to start with the console log to serial port & captured all output to
another console that could be logged and used in the analysis report.

The serial console could also be used to facilitate remote analysis by connecting
an auto-answer modem to the serial port and having the investigator dial into the
awaiting serial console.

Once FIRE is running, the first thing to be done is to get it on the network. Since I
am only testing a single binary I use the quickest method available, DHCP. Most
of the initial workstation configuration options can be found under the “Start-
Here” menu.

As you can see DHCP isn’t the only option. Going with a static IP or even
spoofed MAC is possible if you are attempting to analyze a system or set of
systems where you think that the attacker may be monitoring network traffic and
you want to have your traffic appear as either something already there.

Normally if the FIRE VNC scripts were functioning properly, the next 2 steps
would be to:

1) StartVNC
2) SendVNC

However one of these 2 is broken, so I utilize the following script to start the
XFont Server/VNC Server & then send the VNC Server to the awaiting listener.

#!/bin/sh
Start XFS, vnc server & then send to remote display ($1)

/usr/X11R6/bin/xfs -droppriv -daemon
/usr/bin/vncserver :0 -geometry 1024x768 -depth 16 -name Fire -rfbwait 50000 \

-rfbauth /home/.vnc/passwd -desktop Fire -localhost
/usr/bin/vncconnect -display prometheus:0 $1

(note: pre v.0.4 the name was prometheus, 0.4 &> it is sol)

To get a shell prompt to input and execute this script either use ATL + left or right
arrow keys or ALT+F[123456]. The root password is ‘firefire’.

A plethora of unix tools that are not accessible through the Dialog or X menus
can be found through the FIRE console shell. A partial listing of some tools is
below. A more complete list can be found at http://fire.dmzs.com/?section=tools.

 Name Description License

Autopsy
v1.7.1

The Autopsy Forensic Browser is an HTML-based
graphical interface to The Sleuth Kit and standard UNIX
utilities. Autopsy automates many of the tasks required
during a digital forensic analysis using the TASK
collection of powerful command line tools as a foundation.
Since this graphical interface is separate from the file
system tools, an investigator can still use a command line
interface if Autopsy cannot accomplish the desired
outcome.

GNU General
Public
License
(GPL)

bsed binary stream editor GNU General
Public
License
(GPL)

 chkrootkit
v0.40

Chkrootkit is a tool to locally check for signs of a rootkit chkrootkit
license

CmosPwd
v4.2

Cmos password recovery tools Works with the following
BIOSes - ACER/IBM BIOS - AMI BIOS - AMI WinBIOS
2.5 - Award 4.5x/4.6x - Compaq (1992) - Compaq (New
version) - IBM (PS/2, Activa, Thinkpad) - Packard Bell -

GNU General
Public
License
(GPL)

Phoenix 1.00.09.AC0 (1994), a486 1.03, 1.04, 1.10 A03,
4.05 rev 1.02.943, 4.06 rev 1.13.1107 - Phoenix 4 release 6
(User) - Gateway Solo - Phoenix 4.0 release 6 - Toshiba -
Zenith AMI

 cryptcat encryption enabled netcat (GPL)

dcfldd - (or
edd,
enhanced
dd)

the original dd tool enhanced with MD5 hashing built it.
development work completed by DoD Computer Forensics
lab.

GNU General
Public
License
(GPL)

The final step in preparing my forensic workstation was to execute my VNC script
& start working on the image to be analyzed.

Once the script is executed it:
 1) Starts an X Font server as a reduced priv daemon
 2) Starts a 1024x768 16 color VNC Server named Fire & desktop Fire
 3) Sends the display to the host specified on the command line

This sends the FIRE console VNC session to the listening viewer:

Now the binaries & images can be analyzed in a safe, secure environment.

A proper analysis needs to have the user’s activity logged. This feature is
provided through ‘logging’ FIRE console sessions with the UNIX ‘script’
commands.

To do the analysis with the proper auditing of the analysis, restart all the
consoles with the sessions logged by right clicking on the desktop to get the
menu then going to “Shells/Consoles->logging->respawn” all logging terms:

Be careful with this option. If you select it again you will lose your current terminal
windows and whatever they were doing so that 4 new ones can be started up.
The session data for those sessions is still in /data/consolelogs/, but whatever
activity they were performing will be lost.

The terminals are all logged to /data/consolelogs/$user/$date-$tty.log. The timing
output of script is also logged the same filename with a .timing extension on the
end.

The logging of these terminals is one of the very few contributions I have made to
the development of FIRE. The logging is accomplished through a simple wrapper
script around the terminal application ‘script.’ This wrapper script is called
‘conshii.’

This is a simple script that performs the following functions to record a user’s
session. The script performs the following functions:

• Trap all possible breaks a user may put on the script (CTRL-C, …)
• Load the default /etc/profile settings
• Set variable LOGDIR to /data/consolelogs/
• Test if the 1st argument is –c, if it is then he calling application is login or

sshd (I use the same script to log interactive sessions on systems that
users access in my networks).

• Depending on if $1 was –c, set a variable to the shell to execute (bash, …)
• If the USER variable isn’t set, set with ‘whoami’ information

• Gather the current window’s tty information & store in variable TTY. If the
session has no TTY then use a default of nottylog as the directory to log to
for the session

• Get timestamp & save in DATE variable
• Execute script logging to /data/consolelogs/USER/[TTYNOLOG]DATE-

TTY script file and outputting 2> or stderr which is the script timing file to
the same syntax file ended with .timing.

The application ‘script’ was not meant to be a security tool, and the user who’s
terminals are being logged can still modify the data that is archived in script’s
output, but it is a good starting point to document the process an investigator
used in performing an analysis.

Also, some applications may have problems functioning 100% correctly if script &
the application have problems interacting together due to various terminal
characteristics. One such problem is an occasional screen glitch with vim on
some formats of files.

FIRE also comes with the perl script ‘replay’ that goes with the script application.
The replay script takes script & timing output files and replays them, keystroke by
keystroke, back on the reporting console.

For example, to replay the script of my session on ttyp0 I would enter:
 replay May30-182215-tty_ttyp0.log.timing May30-182215-tty_ttyp0.log

This would then replay, with all keystrokes, the session I ran with my ttyp0
terminal session.

If this had been an actual incident, then the incident responder could have used
FIRE with dd to create the image2 used in the analysis. This image could then
have been stored on a local USB or Firewire drive or to a network SMB/Samba
or NFS drive for archiving and future analysis purposes.

The DFRW image was downloaded from their website and they provided an MD5
sum of the image so that we were able to verify the integrity of the image from
the time it was created.

[root@FIRE] ~/GIAC/honeynet> md5sum image.zip
b676147f63923e1f428131d59b1d6a72 image.zip

2 Be sure to only do analysis on images of drives & data and when creating the
image don’t forget to turn on the MD5 flag so you can verify the integrity of your
image at a future point.

If the image needs to be mounted to examine the contents, be sure to mount
read only, no setuid no exec no dev and no atime so that the image integrity isn’t
compromised.

 mount –o ro,loop,nosuid,noexec,nodev,noatime <dev> <mountpoint>

The rest of the analysis primarily uses TASK & Autopsy which result in browser
output that will also be saved to the /data/ directory so it also can be archived
and used as evidence and technical reminders for when presented in court.

Once all of the command line analysis is completed, unmount the image and
prepare to analyze with Autopsy. FIRE is primarily suited to the analysis of the
local system it is running on top of. In fact if you select autopsy from the X Menu
(Right click on desktop->Forensics->autopsy) the system will automatically scan
the local machine and create the appropriate /data/fsmorgue file needed for
autopsy to function.

This is not what I needed, so I manually created /data/fsmorgue and started
autopsy so I could analyze the image.

My /data/fsmorgue image file contains only 1 line for the image I am reviewing:

/home/root/GIAC/honeynet/image vfat / PST

I then start autopsy from the command line

Once Autopsy is running, it provides a link to point a browser at to begin the
image analysis. Now I start up a browser & go to the link that is displayed in my
autopsy startup.

Selecting “New Case” and fill in the new case information:

• Case Name: GIAC-Forensics
• Description: Forensics Certification
• Investigator: dmz (David M. Zendzian)

Once New Case is selected, the data from this session is stored in the autopsy
evidence locker which is /data/<CASE-NAME> (GIAC-Forensics in this CASE).
The Case Gallery should now be opened with only 1 case in the gallery and that
being the new case that was created.

Having selected that case I click on OK which brings me to the Host Gallery.
Since I am starting from scratch there should be no hosts defined. I select ‘Add
Host’ and fill in the template as shown below.

• Host Name: dfrw
• Description: GIAC Practical using dfrw24
• Timezone: PST

Now that the Case & Host are defined only the Images need to be added and
then the analysis of the image can begin. Just select “Add Image” and fill in the
information for each image to be reviewed.

After getting this far into the configuration, I discover that either the current
version of FIRE or the version of autopsy I am using does not use the fsmorgue
file I had created. However, to keep with standard practices I still made sure that
the /data/fsmorgue was as I thought it should be thus continuing the established
procedure I have for utilizing FIRE.

The Create Image screen for my simple test:

• Image Location: /home/root/GIAC/honeynet/image
• Input Method: I chose Symlink to conserve my RAM Disk space
• File System Type: fat16

I ran into an error in this release of Autopsy, which may be fixed in 1.7.1, but
when I attempted to MD5 test the input image I kept getting errors. So for the
purposes of this test I selected the Ignore option for MD5 & continued on as I
verified the MD5 of the image manually in a previous step.

Once you select Add Image Autopsy will return you back to the Image list where
you can either add a new image or work with the already defined images. For my
tests I selected the / image just created & click OK to bring up the main analysis
window.

The analysis choices available are:

• File Analysis where you can browse the various files available on the
image, including deleted files that you are able to recover.

• Keyword search where you can search the image for various keywords
• File Type that runs the application sorter which counts the various file

types on the image and gives a total of each type
• Image Details which contains summary data about the image being

analyzed
• Meta Data is a search feature that allows you to enter a meta data number

& autopsy will gather and display the details for the selected item
• Data Unit is the final option, and it allows for the entry of a sector number

that will be retrieved and displayed in the browser window.

Autopsy & TASK are 2 OpenSource tools that by themselves can stand alone
and do a majority of the work in a forensics investigation. Put together
seamlessly with the other tools available on FIRE and the investigator has a
stable, secure, auditable environment to produce non-disputable results that can
be repeatedly created by any qualified forensics analyst.

Once all of the analysis is completed, my final procedure is to tar the /data/ &
/home/root/ directorys to store offline, create MD5 of the tar & and ls –lR of the
same directories & then store all information offline and with the incident
response folder.

Criteria for approval
For the analysis to prove a success, the workstation must be able to identify any
deleted data from the test image, provide for a method to recover the deleted file,
search the image for various keywords and view the timeline of the file system to
determine any additional clues as to what happened on the system.

The method that has already been gone through to setup the analysis is part of
the Autopsy procedure, and allows for any user to proceed with a forensic
analysis of image media with little confusion since the routine is fixed and very
intuitive with its step-by-step wizard that sets up each case and image to be
reviewed.

All of the data gathered from autopsy is stored in it’s locker in /data/ allowing for
all the information to be easily marked (MD5) & saved for verification and review
of what was identified.

Since all of this procedure is being run on an image and on top of the FIRE
environment, there is nothing on either the running FIRE workstation or within the
process of analysis that can alter the data being analyzed. The easiest way to
verify this is to logon and do a ‘mount’ command. The only mounted systems
should be the local RAM Disk, which is erased when the system reboots, and the
CDROM itself.

If you are analyzing any of the local drives to the FIRE workstation, then the local
drives may be mounted, or autopsy may just analyze the image directly. However
that is not recommended and if those drives need to be analyzed then take a
image and go through that image offline.

Data and Results
At the end of the procedures above everything was setup to run the autopsy tests
on the test image. The first test is the File Analysis. Once this report is run it is
easy to flag the RED file as one that was deleted and worth examining in greater
detail.

If the report is run on the deleted file then a good amount of information can be
gathered about the file, including MAC times, MD5, Size, Name, Type and sector
information.

Now that a deleted file is identified it needs to be recovered so that the contents
can be examined as part of the case. To recover the file, select it from the File
Analysis window and choose ‘export’ from the bottom window.

Save the exported file into the /data/ system. Then utilizing openoffice, wordview,
strings, hexedit and other tools examine the contents of the exported file.

The keyword search provided by autopsy searches the entire image, including
the slack space that is only going to be used by deleted files and hackers
attempting to hide files.

Selecting the Keyword Search from the menu brings up a very simple menu. Just
enter the keyword to search for and select Search. There are 2 quick automatic
searches available to search by for Dates & IP Addresses as well as 2 quick
options to generate a strings file or an unallocated dataspace file and save to the
local file system.

The case that is being tested against was searching for collaborating evidence
about a drug dealer selling on school grounds. A quick keyword search for
“school” finds one potential occurance.

Selecting the Ascii or Hex contents of the found occurrence will display the
details of that occurance on the right side. From there the information can be
reported or exported out to the local file system.

And then the data that was needed to verify that the offender did have data on
the image the matched our keyword search as well as provided evidence that
proves the story being investigated.

The final step in the validation of FIRE & Autopsy is the analysis of the image
showing the file activity timeline. This information can be used to verify the
creation, deletion and modification of certain evidence files.

To get to the File Activity Time Lines, the current window needs to be closed, so
click on the “Close” or “X” button in the upper right.

Once the screen is back to the image selection menu, click on the File Activity
Time Lines button. This will bring up a new screen with the following options:

• Create Data File
• Create Timeline
• View Timeline
• View Notes

Each option does pretty much what it states. First the Data File needs to be
created, so that option is selected and the image we are testing is selected. The
output name is entered by default as body, this is OK so OK is selected. This
brings up the Create Timeline menu.

The nice thing about how Autopsy has put these screens together is how each
image datafile can be created with separate unique data timelines for each
search and each search is saved with it’s MD5 for review & verification. at any
future point.

Once the date range is selected & OK is clicked on, autopsy will generate the file
timeline and display in a frame within the browser window. This result, along with

all other results can be found in the /data/ directory if viewing them through
autopsy browser isn’t an easily accessible or other search options are needed to
fully review the output files.

Below are the results of the timeline for this simple search through the image for
this test:

Now that all of the information has been gathered, an archive of the autopsy
report, along with all console logs and any other settings and files created for the
analysis is archived, MD5 checked & stored with the case log and also in an
external secure environment.

Analysis
The nice feature available through autopsy is the ability to save each
investigation in its own case folder. This allows for either the investigator or some
other party doing a review to both have access to the results of the investigation
without having to step through the entire investigation process.

The reviewer has the option of reviewing the entire case through the text files
created, or just start up autopsy again and use a browser to present this
information to either law enforcement, management or any other entity needing
to verify the results of the investigation.

If the results are viewed through the browser, then the reviewer can easily step
through the various report and search menus available through autopsy to
display the specifically recovered or identified files found in the investigation.

If the results are saved from the /data/CASE/ directory, where CASE is the name
of the case being investigated (GIAC-Forensics in this example), then they can
be imported into presentations or reports being submitted regarding this
investigation.

Presentation
While FIRE & Autopsy present the results of an Image analysis in a clean
browser window, this format may not be suitable for presentation in court or
executive staff room.

In the course of a normal investigation involving many images, searches and
reports, the data leading to the evidence needed in court may only be a fraction
of all the data recovered.

The data saved from the various Autopsy reports are a combination of flat files &
a few html files. While they are not exactly the most intuitive, if used in
combination with the case session log & investigator notes a detailed report
could be generated documenting the:

• Incident Timeline
• Activity Report (Surrounding incident)
• Recovered files specific to incident
• Details of files recovered
• Investigator notes regarding special items found in investigation
• MD5 check of all report and image data to verify that the items identified in

this report match with the data created with the incident investigation.

If this report was being presented in a court of law or executive staff room, then
most of the people receiving the report may not understand some of the details
found in the timeline/activity report & details of the files & other recovered or
identified items.

Anyone who would have to present this information to such groups should also
be prepared to instruct the recipients on what some of the technical terms and
techniques are. A few of the items that should be documented include:

• MAC Time
• Access Control (777/rwx/…)

• I-Node
• UID / GID
• Meta Data
• Sectors
• Allocation List
• MD5
• Slack Space or Unallocated Data

Conclusion
FIRE not only includes the current leading tools in Open Source Forensics, but it
packages them together in such a way that provides for an instant environment
to perform incident response as well as present that information to local or
remote users.

Every test that needing to be done to search for, identify & verify data needed for
a forensic investigation was readily available within the package FIRE provides.

The only missing items are features that the application developers already know
about and are actively creating. Those features include cleaner presentation
interfaces and more automation of the various standard routines that
investigators commonly use while following an investigation.

Overall none of the missing or non-complete features causes any forensic
investigator to not utilize these tools to perform their jobs, and with each new
release more and more standard functions are automated allowing for rapid
investigation utilizing a set of standardized techniques.

Additional Information
FIRE, Autopsy & TASK are actively developed Open Source projects. If there are
features that they do not perform then anyone can contact the developers to see
if such features are in the plan. One of the great features of Open Source is that
if someone desires to really see some function in an application they can easily
add it and contribute it to the rest of the community thereby becoming one of the
contributors to the Open Source project community!

Most of the include applications within FIRE, including FIRE itself, have
Sourceforge projects that contain active forums discussing various methods of
applying the tools as well as troubleshooting of already addressed issues.

If you have problems, comments, complements or any other feedback, the
developers of FIRE & Autopsy/The Sleuth Kit (TASK) always are open for
assistance.

 FIRE: William Salusky: change at dmzs.com
 Autopsy/Sleuthkit: carrier at sleuthkit.org

Legal Issues of Incident Handling
Information security legislation has been around since the telephone was created
and information was able to be transmitted over vast distances. Many of the bills
and acts created by the US and State governments within the United States of
America are intended to protect individuals, businesses, critical systems,
information and infrastructure.

Depending on where an offense occurred as well as where the perpetrator was
located different laws would apply to each scenario and individual involved.
Some of the more applicable laws include the following:

• FCC 1996 Telecommunications act which was the first major revision to
communications legislation since around 1934.
http://www.fcc.gov/telecom.html

• The Computer Fraud and Abuse Act of 1986 which was updated in 1994,
1996 and 2001, http://www.usdoj.gov/criminal/cybercrime/1030_new.html,
identifies non-authorized access and use of computer systems and what
the basic ramifications such criminal activity would be.

• Electronic Communications Privacy Act of 1986,
http://legal.web.aol.com/resources/legislation/ecpa.html, sets out the
provisions for access, use, disclosure, interception and privacy protections
of electronic communications.

• The Digital Millennium Copyright Act of 1998,
http://www.loc.gov/copyright/legislation/dmca.pdf, was enacted to protect
copyright owners from illegal activity surrounding the use and or
distribution of their copyrighted material.

• Homeland Security Act of 2001,
http://www.nist.gov/director/ocla/HR_5005_Enrolled.pdf, has many far
reaching items that effect much electronic information. This act overlaps
the wiretap and other previous acts created by the US Congress.

• The E-Sign act of 2000,
http://www.amc.army.mil/amc/ci/matrix/documents/public_law/electronicsi
gnatures.pdf, which allows for the use of electronic signatures as a valid
method of accepting the non-repudiation of the signer as well as requiring
businesses to reasonably demonstrate that they can accept submitted
material electronically. This is especially useful to those who wish to prove
their evidence is securely stored.

• The Computer Security Enhancement act of 1997,
http://thomas.loc.gov/cgi-bin/query/z?c105:h.r.1903.eh:, which worked
toward updating the standards of security used especially toward
encryption.

• The Computer Security Act of 1987, http://csrc.nist.gov/secplcy/csa_87.txt
• The Children’s Online Privacy Act of 1998 (COPPA),

http://www.cdt.org/legislation/105th/privacy/coppa.html, protects children’s
privacy online

• Gramm-Leach-Bliley Act, http://www.senate.gov/~banking/conf/, which
started the modern protection of email opt-out options along with the
protection of personal non-public information.

• Health Insurance Portability & Accountability Act of 1996 (HIPPA),
http://thomas.loc.gov/cgi-
bin/bdquery/z?d104:HR03103:|TOM:/bss/d104query.html, which provided
similar protections that GLB did for the financial sector to the health
industry.

Technology laws are constantly changing, and with them the landscape has
become filled with various entities attempting to analyze the legislation and
interpret what it means to their subscriber base; be it a business or active citizen.

To keep track of some of the latest bills and other legal activity surrounding the
Internet would be a full time endeavor. To assist with searching current and
historic legislation regarding Technology the Center for Democracy & Technology
created an informative website. Their website, http://www.cdt.org/, contains legal
activity happening from the 105th Congress in 1997 to current activity occurring
today.

Another excellent resource reviewing the ever changing landscape of legislative
technological issues is the Michigan Telecommunications & Technical Law
Review. The MTTLR “was one of the first law journals to use interactive media to
promote informed discourse about the interrelated legal, social, business, and
public policy issues raised by emerging technologies.”iii

One final watchdog center is the Electronic Privacy Information Center,
http://www.epic.org. EPIC was created in 1994 and is based out of Washington,
DC. EPIC focuses public attention on emerging civil liberties issues and to
protect privacy, the First Amendment and Constitutional valuesiv.

Not only do people need to keep track of all of these changes, but then there are
specific changes occurring within each state. Some states have excellent listings
of the Information Security litigation occurring within their state, others will require
contacting the state directly. A few of the states that offer interesting litigation
and references include:

• California offers the California legislative page, http://www.leginfo.ca.gov/.
One interesting item from California is from the Business & Professional
code section 17538.4 and 17538.45 which protect against unauthorized
faxes and SPAM. Many computers in California now include header
information on their mail servers notifying potential spammers that their
computer is located in California & as such is protected against
unauthorized SPAM through the above mentioned legal codes.

• Virginia is another state that is actively fighting for Information & Security
legislation to protect the residences and businesses located with VA.

Information on legislation in VA can be found at:
http://www.wutchathink.com/goverment/legislation.htm.

Given the scenario of a System Operator for an ISP being called by a law
enforcement officer attempting to track down a suspect, depending on the
relationship of the Company & System Administrator answering the call with the
law enforcement individual and department calling there are several possible
outcomes to each of the possible question they might request.

If the officer is requesting information during an initial contact, and the individual
and company being contacted has an established relationship with the officer
there is a possibility that the requested information may be provided to the
officer.

If the information the officer is asking for is part of the ISPs direct business and
not a co-located customer, then they have the ability to choose whether they
wish to disclose. While the wiretap act may prevent many instances of
monitoring, within a private business there is much flexibility over what they have
the right to monitor.

However with all of the overlapping possibilities of clients, such as possible
health care or banking institutions or even other 3rd party providers utilizing the
network facilities at the ISP, the Admin may not be able to provide any answers
to the law enforcement officer. They may need to bring in the 3rd party, involve
their legal team and have warrants delivered prior to disclosing any information.

If the officer is required to get a warrant to access the information they are
requesting, then the administrator may need to preserve the state of the effected
system as well as log in a secure method all activity on that system.

If possible, the administrator should take a binary image of the effected system,
including memory, drive and any specific application data and store in a secure
location. The MD5sum of the digital media can be provided to the law
enforcement official so they can have proof that the media was not tampered with
from the time of the initial request to when they were able to acquire their copy.

If the system remains active after the image is created, then as much activity as
is possible should be logged to a secure media. Either log the system log to a
line printer or to a remote syslog server that archives it’s logs to read-only media
on a regular basis.

While all of these items are being done, the System Administrator should be
keeping a notebook of all activity that was performed, all conversations and any
other notes that may be taken. Each item should have a time-stamp of when it
occurred; especially paying attention to what time-zone the activity occurred in.

Finally the Administrator should keep within the notes, on specific pages
designated for them, a chain-of-custody to track what happened with each item
being tracked as it passes from admin to admin to investigator and beyond.

If it is possible, all of these notes should be kept in a digital medium so that each
activity can be MD5sum’d or likewise digitally signed to verify that the notes and
information within them have not been altered.

If the officer insists on receiving any of the notes, logs or data from the system
administrator then the variety of legal statutes could either allow them to get the
information quickly or slowly through a long legal process.

With the enactment of the Homeland Security Act, certain departments within the
US Government now have the ability to perform wire taps, impound computer
equipment, monitor network activity and engage direct confrontations with
possible suspects. In fact under this act the government does not even have to
disclose that they are investigating anyone in particular!

So depending on what the activity was, who was involved and what the
ramifications of that activity were the system administrator may be forced to give
up any and all information; but in many situations outside of national security any
law enforcement officer needs to prove just cause in disrupting the business and
acquiring the equipment the are investigating.

The just cause that an officer needs to acquire is not much more complicated
that they currently have to go through for a wire tap on a suspect. They just need
to prove to a Judge that there is criminal activity or intent occurring on the system
in question and they can usually receive the authorization they are looking for.

If the Administrator or Company they are working with is involved in criminal
activity, there is little they can do to prevent law enforcement from acquiring any
equipment, logs, reports or views of network traffic. Just like any other officer not
needing a warrant to follow a criminal inside his house if he was following the
criminal in an active pursuit.

In a typical business environment the System Administrator, if allowed by his
company policy and has authorization from company management, can also
proceed in monitoring the system and user in question. Since the user and
system are utilizing the network and space of the company, they have the right to
monitor their own equipment, users and network. As such the administrator can
setup network and system monitors to track what the user is doing as well as
what they are attempting to do.

Care should be taken to not alarm the suspect, or impede on their civil rights
during the investigation, and extra care should be made to not effect the reliability

of the system and services being monitored through the setup and use of the
monitoring tools.

If in the course of this additional monitoring the company notices that the suspect
is about to actually engage in criminal activities, then they would be required to
report that activity to the authorities. They may, depending on the situation, have
to only continue monitoring and gathering evidence.

However, if the suspect is actively engaging in activity that could cause harm to
someone then they may have to act by removing access of the suspect and
turning over the equipment and records to the law enforcement team that should
be on-site by this time.

The laws today are extremely complex. They change from state to state, and
from country to country. Attempting to fit and analyze what one scenario is not
very simple and having to deal with law enforcement from multiple organizations
and possibly multiple countries only adds to the confusion. No administrator
should be left alone to deal with the issues that have been addressed. They have
access to their company’s legal team, their executive staff to facilitate interfacing
into these various entities.

If the system administrator works for any sizeable organization, then they should
work to establish a relationship with their local city and federal computer crimes
task force officials, and be sure to establish a policy and procedure for dealing
with a variety of possible situations that may occur. After all it is easier to follow a
checklist than to have to react in the heat of the moment.

End Notes & References

i Brian Carrier. “Sleuthkit & Autopsy”, 2003, URL: http://www.sleuthkit.org/autopsy/desc.php

ii David M. Zendzian, FIRE, /bin/consh script that can be found in all releases of FIRE:

#!/bin/sh -e
trap "/bin/echo Goodby $USER;exit 0" 1 2 3 4 5 6 7 10 15
. /etc/profile
LOGDIR=/data/consolelogs/
export LOGDIR

Set the shell
if consh run with argument, that is the shell to run, else default to /bin/bash
if ["$1" = "-c"]; then
 SHELL="/bin/bash $1 '$2 $3 $4 $5 $6 $7 $8 $9'"
 TOEXEC="/bin/bash $1 '$2 $3 $4 $5 $6 $7 $8 $9'"
else
 SHELL="/bin/bash"
 TOEXEC=/bin/bash
fi
export SHELL TOEXEC

if $USER not set, default to unknown
if ["$USER" = ""]; then
 USER=`whoami`
 export USER
fi

get tty, if unknown use smaller notty name
TTY=tty_`tty | xargs -i basename {}`
if ["$TTY" = "tty_not a tty"]; then
 TTY=tty_none
 NOTTYLOG=nottylog/
 export TTY NOTTYLOG
fi

set date
DATE=`date +%h%d-%H%M%S`
export DATE
mkdir -p $LOGDIR/$USER/$NOTTYLOG

/usr/bin/script -a -q -f -t $LOGDIR$USER/$NOTTYLOG$DATE-$TTY.log $TOEXEC \
 2>$LOGDIR$USER/$NOTTYLOG$DATE-$TTY.log.timing

iii “The Michigan Telecommunications & Technology Law Review”, 1994-2003, URL:

http://www.mttlr.org/

iv Electronic Privacy Information Center, “About Epic”, 2003, URL: http://www.epic.org/epic/about.html

