Abstract

This document is a collection of Smalltalk exercises that have been developed over the years and that we
want to share with others. Note that this document is quite draft. All the sources will be collected and
identified clearly.

Smalltalk Exercises

Alexandre Bergel, University of Berne
Noury Bouragadi, Ecole des Mines de Douai
Marcus Denker, University of Berne
Catherine Dezan, Universgide Brest
Stephane Ducasse, Univeisile Savoie
Bernard Pottier, Universtde Brest
Roel Wuyts, Universé Libre de Bruxelles
And many others (please contact stef to update the list) Main Editor: S. Ducasse

March 24, 2006

Contents

| First Contact 3
1 Objects and expressions 4
2 Counter Example 7
2.1 ASimpleCounter e 7
2.2 Creatingyourownclass. 7
221 CreatingaClasscategory i 7

222 CreatingaClass. e 7

2.3 Defining protocolsandmethods L L 8
2.3.1 Creatingand TestingMethods. 8

2.3.2 Adding an instance initialization method 10

2.3.3 Anotherinstance creationmethod. L. 10

2.4 SUNIt . . . 10
25 SavingyourWork e 11

3 Set, Dictionary et Bag 12
3.1 Collections non-ordo@ S o v v i 12
3.2 St . . e 13
321 CRAtioN. e 13

3.22 ACEBS e e e 13

3.3 Dictionary. e e 13
3.3.1 Ceation et propBtes lerittesde Set., 14

3.3.2 AC®@S, ajouts et SUPPresSSIONS v v o i e e e 14

3.3.3 l€rations 15

34 Bag . . . e e 15
3.4.1 AJouts etSUPPresSSIONS e e 16

342 ENUNBIationS. v v v oot e e 16

3.5 Performances 17
3.5.1 Boucleexternedutestetformatage. 17

3.5.2 Boucleinternedutest. 18

353 Bilan e 18

4 SUnit Testing 19
A1 Set. . . 19
4.2 DICtionary. o 19
4.3 Bag . . .o 19

5 Some Useful Tools in Squeak 20
5.1 SqueakMap Package Loader. 20
5.2 Monticello. e 21
5.3 SqueakSource: the Squeak SourceFarge. 21

6 Monticello 23

6.1 Packagesin Monticello: Packagelnfo L. 23
6.2 Getting Started. e 23
6.3 Elementsof Monticella L 24
6.4 RepOoSIHONeS 25
6.5 FileFormat. e 26
6.6 The Monticello Browser. 27
6.7 The SnapshotBrowser e 27
6.8 MoreonPackagelnfo 28

Il Seaside 29
7 Web dynamique avec Seaside 30
7.1 CompementssurSeaside. e 30
7.2 Encoredescompteurs.!. e 30
7.3 Separerlinterface ducodeétier e 31
7.4 Une applicationun peu plussophiségu, 32

8 A Simple Application for Registering to a Conference 33
8.1 RegConf: An Application for Registering to a Conference. 33
8.2 Application BuildingBlocks. 34
8.2.1 The Entry PointRCMain 34

8.2.2 Getting User InformatiolRCGetUserinfo 34

8.2.3 Getting Hotel InformatiorRCGetHotellnfo 34

8.2.4 PaymentRCPayment. e 35

8.2.5 ConfimationRCConfirmation 35

8.3 EXIENSIONS e 35

[l Object-Oriented Design 37
9 A Simple Application: A LAN simulation 38
10 Fundamentals on the Semantics of Self and Super 44
10.1 self. . . . e e 44
10.2 SUPEL . . o o o e e e 45

11 Object Responsibility and Better Encapsulation 46
11.1 Reducing the coupling betweenclasses 46
11.1.1 Currentsituation. 46

11.1.2 Solution. 46

11.2 A Question of Creation Responsibility. 47
11.3 Reducing the coupling betweenclasses L. 48
11.3.1 Currentsituation. 48

11.3.2 Solution. e 48

11.4 A Question of Creation Responsibility. 48
11.5 Proposing a creational interface L 50
11.6 Forbidding the Basic Instance Creation. 50
11.6.1 Remarksand Analysis. 51

11.7 Protecting yourself fromyourchildren. 51

12 Hook and Template Methods 52
12.1 Providing Hook Methods 52

Part |

First Contact

1

Objects and expressions

This lesson is about reading and understanding Smalltalk expressions, and differentiating between different
types of messages and receivers. Note that in the expressions you will be asked to read and evaluate, you
can assume that the implementation of methods generally corresponds to what their message names imply
(.e.,2+2=4).

Exercise 0 For each of the Smalltalk expressions below, fill in the answers:

3+4

What is the receiver object?

What is the message selector?

What is/are the argument (s)?

What is the message?

What is the result returned by evaluating this expression?

Date today

e What is the receiver object?

What is the message selector?

What is/are the argument (s)?

What is the message?

What is the result returned by evaluating this expression?

anArray at: 1 put: 'hello’

e What is the receiver object?

What is the message selector?

What is/are the argument (s)?

What is the message?

What is the result returned by evaluating this expression?

Exercise 1 What kind of object does the literal expresslbigllo, Dave’ describe?
Exercise 2 What kind of object does the literal express#itodel describe?
Exercise 3 What kind of object does the literal expressign 2 3) describe?
Exercise 4 What can one assume about a variable namathcript?

Exercise 5 What can one assume about a variable naraetdngle?

Exercise 6 Examine the following expression:

| anArray |
anArray := #(’first’ 'second’ 'third’ "fourth’).
anArray at: 2

What is the resulting value when it is evaluated (" means return)? What happens if you remove the ".
Explain

Exercise 7 Which sets of parentheses are redundant with regard to evaluation of the following expres-
sions:

(B+4)+(2*2)+(2*3))

(x isZero)
ifTrue: [....]
(x includes: y)
ifTrue: [....]

Exercise 8 Guess what are the results of the following expressions

6+4/2

1 + 3 negated

1 + (3 negated)

2 raisedTo: 3 + 2

2 negated raisedTo: 3 + 2

Exercise 9 Examine the following expression:
25@50

e What is the receiver object?

e What is the message selector?

e What is/are the argument (s)?

e What is the message?

e What is the result returned by evaluating this expression?

Exercise 10 Examine the following expression and write down the sequence of steps that the Smalltalk
system would take to execute the following expression:

Date today daysinMonth

Exercise 11 Examine the following expression and write down the sequence of steps that the Smalltalk
system would take to execute the following expression:

Transcript show: (45 + 9) printString

Exercise 12 Examine the following expression and write down the sequence of steps that the Smalltalk
system would take to execute the following expression:

5@5 extent: 6.0 truncated @ 7

Exercise 13 During lecture, we saw how to write strings to the Transcript, and how the massageing
could be sent to any non-string object to obtain a string representation. Now write a Smalltalk expression
to print the result oB4 + 89 on the Transcript. Test your code !

Exercise 14 Examine the block expression:

| anArray sum |

sum := 0.

anArray ;= #(21 23 53 66 87).

anArray do: [:item | sum := sum + item)].
sum

What is the final result of sum ? How could this piece of code be rewritten to use explicit array indexing
(with the methodht:) to access the array elemelsTest your version. Rewrite this code usinigct:into:

INote this is how you would proceed with Java or C++

2

Counter Example

Main Author(s): Bergel, Ducasse, Wuyts

2.1 A Simple Counter

We want you to implement a simple counter that follows the small example given below. Please note that
we will ask you to define a test for this example.

| counter |

counter := SimpleCounter new.
counter increment; increment.
counter decrement.

counter value = 1

2.2 Creating your own class

In this part you will create your first class. In traditional Smalltalk environments a class is associated with
a category (a folder containing the classes of your project).

The steps we will do are the same ones every time you create a class, so memorize them well. We are
going to create a clasdimpleCounter in a category callebemoCounter. Figure2.1 shows the result of
creating such a category.

2.2.1 Creating a Class category

In the System Browser, click on the left pane and sadelct The system will ask you a name. You should
write DemoCounter. This new category will be created and added to the list.

2.2.2 Creating a Class

Creating a class requires five steps. They consist basically of editing the class definition template to specify
the class you want to create.

1. Superclass Specification First, you should replace the wonthmeOfSuperclass with the word
Object. Thus, you specify the superclass of the class you are creating. Note that this is not always the
case thaObject is the superclass, since you may to inherit behavior from a class specializing already
Object.

2. Class Name Next, you should fill in the name of your class by replacing the wascheOfClass
with the wordSimpleCounter. Take care that the name of the class starts with a capital letter and that
you do not remove the # sign in front BmeOfClass.

3. Instance Variable Specification Then, you should fill in the names of the instance variables of this
class. We need one instance variable caltgde. You add it by replacing the wordestVarNamel
andinstVarName2with the wordvalue. Take care that you leave the string quotes!

() System Browser T 0

Shout-Windows a

Show-Fluggable Views* = A =
Showi-Parsing

Shout-Styling

Services-Base-Subsvete:

Services-Bage-CLI

Services-Baze-Requesto

[[-

Services-Bage
Kevmapping
DemoCounter

- " instance | ? | class

trowse | senderz | implementors | versions | inheritance | hierarchy | inst vars | <lass vars | source

Object subclazs: #HamelfSubclass _
instanceVariableNames: " =
clazsVariatleNames: "'
poolDictionaries:
category: 'DemoCounter’

Figure 2.1: Your category is created.

4. Class Variable Specification As we do not need any class variable make sure that the argument for
the class instance variables is an empty strolgssinstanceVariableNames: 7).

5. Compilation. That's it! We now have a filled-in class definition for the cl&mpleCounter. To
define it, we still have t@wompile it. Therefore, select thacceptoption from the operate menu
(right-click button of the mouse). The claSsnpleCounter is now compiled and immediately added
to the system.

As we are disciplined developers, we provide a comme8girtpleCounter class by clickingComment
button of the class definition . You can write the following comment:

SimpleCounter is a concrete class which supports incrementing
and decrementing a counter.

Instance Variables:

value <Integer>

Selectacceptto store this class comment in the class.

2.3 Defining protocols and methods

In this part you will use the System Browser to learn how to add protocols and methods.

2.3.1 Creating and Testing Methods

The class we have defined has one instance vanale. You should remember that in Smalltalk, every-
thing is an object, that instance variables are private to the object and that the only way to interact with an
object is by sending messages to it.

Therefore, there is no other mechanism to access the instance variables from outside an object than
sending a message to the object. What you can do is to define messages that return the value of the instance
variable of a class. Such methods are calledessorsand it is a common practice to always define and
use them. We start to create an accessor method for our instance vealable

Remember that every method belongs to a protocol. These protocols are just a group of methods
without any language semantics, but convey important navigation information for the reader of your class.
Although protocols can have any name, Smalltalk programmers follow certain conventions for naming
these protocols. If you define a method and are not sure what protocol it should be in, first go through
existing code and try to find a fitting name.

Animportantremark: Accessorgan be defined in protocad&cessing or private. Use theaccessing

protocol when a client object (like an interface) really needs to access your datarilige to clearly state

that no client should use the accessor. This is purely a convention. There is no way in Smalltalk to enforce
access rights likprivatein C++ or Java. To emphasize that objects are not just data structure but provide
services that are more elaborated than just accessing data, put your accesswigaite grotocol. As a

good practice, if you are not sure then define your accessorgiiivate protocol and once some clients
really need access, create a protaaotessing and move your methods there. Note that this discussion
does not seem to be very important in the context of this specific simple example. However, this question
is central to the notion of object and encapsulation of the data. An important side effect of this discussion
is that you should always ask yourself when you, as a client of an object, are using an accessor if the object
is really well defined and if it does not need extra functionality.

Exercise 15 Decide in which protocol you are going to put the accessovétue. We now create the
accessor method for the instance varialdkie. Start by selecting the claBemoCounter in a browser,

and make sure thinstance button is selected . Create a new protocol clicking the right-button of the
mouse on the pane of methods categories, and chobkng and give a name. Select the newly created
protocol. Then in the bottom pane, the edit field displays a method template laying out the default structure
of a method. Replace the template with the following method definition:

value
"return the current value of the value instance variable”

“value

This defines a method calledlue, taking no arguments, having a method comment and returning the
instance variablealue. Then choosacceptin the operate menu (right button of the mouse) to compile the
method. You can now test your new method by typing and evaluating the next expression in a Workspace,
in the Transcript, or any text edit@ mpleCounter new value.

This expression first creates a new instanc8iofpleCounter, and then sends the messagéue to it
and retrieves the current valuewaflue. This should returmil (the default value for noninitialised instance
variables; afterwards we will create instances whalee has a reasonable default initialisation value).

Exercise 16 Another method that is normally used besidesdbeessomethod is a so-callethutator
method. Such a method is usedcttangethe value of an instance variable from a client. For example, the
next expression first creates a nBunpleCounter instance and then sets the valuevafue to 7:

SimpleCounter new value: 7

This mutator method does not currently exist, so as an exercise write the metined such that,
when invoked on an instance 8impleCouter, thevalue instance variable is set to the argument given to
the message. Test your method by typing and evaluating the expression above.

Exercise 17 Implement the following methods in the proto@agerations.

increment

self value: self value + 1
decrement

self value: self value - 1

Exercise 18 Implement the following methods in the protogwinting

printOn: aStream
super printOn: aStream.
aStream nextPutAll: * with value: ’,
self value printString.
aStream cr.

Now test the methodscrement anddecrement but pay attention that the counter value is not initial-
ized. Try:

SimpleCounter new value: 0; increment ; value.

Note that the methogrintOn: is used when you print an object or click ealf in an inspector.

2.3.2 Adding an instance initialization method

Now we have to write an initialization method that sets a default value towahee instance variable.
However, as we mentioned tltialize message is sent to the newly created instance. This means that
theinitialize method should be defined at the instance side as any method that is sent to an instance of
SimpleCounter like increment anddecrement. Theinitialize method is responsible to set up the instance
variable default values.

Therefore at the instance side, you should create a proitdtalize-release, and create the following
method (the body of this method is left blank. Fill it in!).

initialize
"set the initial value of the value to 0"

Now create a new instance of claéSsnpleCounter. Is it initialized by default? The following code
should now work without problem:

SimpleCounter new increment

2.3.3 Another instance creation method

If you want to be sure that you have really understood the distinction between instance and class methods,
you should now define a different instance creation method namitefalue:. This method receives an
integer as argument and returns an instanc8iwfpleCounter with the specified value. The following
expression should return 20.

(SimpleCounter withValue: 19) increment ; value

A Difficult Point Let us just think a bit! To create a new instance we said that we should send messages
(like new andbasicNew) to a class. For example to create an instanc8ioipleCounter we sentnew

to SimpleCounter. As the classes are also objects in Smalltalk, they are instances of other classes that
define the structure and the behavior of classes. One of the classes that represents classes as objects is
Behavior. Browse the clasBehavior. In particular,Behavior defines the methodsew andbasicNew

that are responsible of creating new instances. If you did not redefine the new message locally to the class
of SimpleCounter, when you send the messagaw to the classimpleCounter, the new method executed

is the one defined iBehavior. Try to understand why the methodswandbasicNeware on the instance

side on clas8ehavior while they are on the class side of your class.

2.4 SUnit

For the advanced ones, we suggest you to look at the videos and download the tutorial SUnit explained
from http://www.iam.unibe.ch/~ducasse/Books.html. Then define &estCase with several tests for
the SimpleCounter class. To open the test runner execute

TestRunner open

10

2.5 Saving your Work

Several ways to save your work exist: You can
e Save the class by clicking on it and selecting the fileout menu item.

e Use the Monticello browser to save a package

11

3

A Simple Application: A LAN

simulation

Main Author(s): Ducasse, Wuyts

Basic LAN Application

The purpose of this exercise is to create a basis for writing future OO programs. We work on an application
that simulates a simpleocal Area Network (LAN) . We will create several classeRacket, Node, Work-

station, andPrintServer. We start with the simplest version of a LAN, then we will add new requirements
and modify the proposed implementation to take them into account.

Creating the ClassNode

The classNode will be the root of all the entities that form BAN. This class contains the common
behavior for all nodes. As a network is defined as a linked list of nodes, a Node should always know its
next node. A node should be uniquely identifiable with a name. We represent the name of a node using
a symbol (because symbols are unique in Smalltalk) and the next node using a node object. It is the node
responsibility to send and receive packets of information.

Node inherits from Object

Collaborators: Node and Packet

Responsibility:

name (aSymbol) - returns the name of the node.
hasNextNode - tells if a node has a next node.
accept: aPacket - receives a packet and process it.
By default it is sent to the next node.

send: aPacket - sends a packet to the next node.

Exercise 19 Create a new categobAN, and create a subclass@bject calledNode, with two instance
variables:name andnextNode.

Exercise 20 Create accessors and mutators for the two instance variables. Document the mutators to in-
form users that the argument passeddme: should be a Symbol, and the arguments passaexttNode

should be a Node. Define them inpaivate protocol. Note that a node is identifiable via its name. Its
name is part of its public interface, so you should move the method name frgmitage protocol to the
accessing protocol (by drag’n'drop).

Exercise 21 Define a method callekdasNextNode that returns whether the node has a next node or not.

Exercise 22 Create an instance meth@dintOn: that puts the class name and name variable on the
argumengStream. Include my next node’s name ONLY if there is a next node (Hint: look at the method

12

printOn: from previous exercises or other classes in the system, and consider that the instance variable
name is a symbol andghextNode is a node). The expectgutintOn: method behavior is described by the
following code:

(Node new
name: #Node1l ;
nextNode: (Node new name: #PC1)) printString

Node named: Nodel connected to: PC1

Exercise 23 Create a&lassmethodnew and aninstancemethodinitialize. Make sure that a new instance
of Node created with the new method usegialize (see previous exercise). Leawstialize empty for
now (it is difficult to give meaningful default values for ttlame and nextNode of Node. However,
subclasses may want to override this method to do something meaningful).

Exercise 24 A node has two basic messages to send and receive packets. When a packet is sent to a node,
the node has to accept the packet, and send it on. Note that with this simple behavior the packet can loop
infinitely in the LAN. We will propose some solutions to this issue later. To implement this behavior, you
should add a protocaend-receive, and implement the following two methods -in this case, we provide
some partial code that you should complete in your implementation:

accept: thePacket

"Having received the packet, send it on. This is the default
behavior My subclasses will probably override me to do
something special”

send: aPacket
"Precondition: self have a nextNode”

"Display debug information in the Transcript, then
send a packet to my following node”

Transcript show:
self name printString,
' sends a packet to ’,
self nextNode name printString; cr.

Creating the ClassPacket

A packet is an object that represents a piece of information that is sent from node to node. So the responsi-
bilities of this object are to allow us to define the originator of the sending, the address of the receiver and
the contents.

Packet inherits from Object

Collaborators: Node

Responsibility:

addressee returns the addressee of the node to which
the packet is sent.

contents - describes the contents of the message sent.
originator - references the node that sent the packet.

13

=] System Browser: OutputServer =ijife]

Shout-Fluggable Views ® AtstractDestination o --all - o accept: -
Shout-Parsing 4 Node A testing & zend dhy
Shout-Styling Outputierver printing

Services-Baze-Subsyste: Packet acoessing

Services-Baze-CLI initialize-releaze

Services-Baze-Requesto sending-receiving

Services-Eaze

Kevmapping

LAN

DemoCounter Y
Y ingtanes | 7 class

u > v v
trowse | senders | implementors | versions | inheritance | hierarchy | inst wars | class vars | source

]

accept: thelscket
"Hawvitig received the packet. serpd it orr . Thir iz the defsult belisvicr”
"My subclasses will probably override this method to o0 sometliing specisl”

-

self zend: thePacket

Figure 3.1: Definition okccept: method

Exercise 25 In the LAN, create a subclass @fbject calledPacket, with three instance variableson-
tents, addressee, andoriginator. Create accessors and mutators for each of them im¢bessing
protocol (in that particular case the accessors represents the public interface of the object). The addressee
is represented as a symbol, the contents as a string and the originator has a reference to a node.

Exercise 26 Define the methogrintOn: aStream that puts a textual representation of a packet on its
argumengStream.

Creating the ClassWorkstation

A workstation is the entry point for new packets onto the LAN network. It can originate packet to other
workstations, printers or file servers. Since it is kind of network node, but provides additional behavior,
we will make it a subclass dfode. Thus, it inherits the instance variables and methods definddde.
Moreover, a workstation has to process packets that are addressed to it.

Workstation inherits from Node

Collaborators: Node, Workstation

and Packet

Responsibility: (the ones of node)

originate: aPacket - sends a packet.

accept: aPacket - perform an action on packets sent to the
workstation (printing in the transcript). For the other
packets just send them to the following nodes.

Exercise 27 In the categonLAN create a subclass dfode calledWorkstation without instance vari-
ables.

Exercise 28 Define the methodccept: aPacket so that if the workstation is the destination of the
packet, the following message is written into the Transcript. Note that if the packets are not addressed to
the workstation they are sent to the next node of the current one.

(Workstation new

14

name: #Mac ;
nextNode: (Printer new name: #PC1))
accept: (Packet new addressee: #Mac)

A packet is accepted by the Workstation Mac

Hints: To implement the acceptance of a packet not addressed to the workstation, you could copy and
paste the code of thdode class. However this is a bad practice, decreasing the reuse of code and the “Say
it only once” rules. It is better to invoke the default code that is currently overriden by sspey.

Exercise 29 Write the body for the methodriginate: that is responsible for inserting packets in the
network in the method protocskend-receive. In particular a packet should be marked with its originator
and then sent.

originate: aPacket

"This is how packets get inserted into the network.
This is a likely method to be rewritten to permit
packets to be entered in various ways. Currently,
| assume that someone else creates the packet and
passes it to me as an argument.”

Creating the classLANPrinter

Exercise 30 With nodes and workstations, we provide only limited functionality of a real LAN. Of
course, we would like to do something with the packets that are travelling around the LAN. Therefore,
you will now create a claskanPrinter, a special node that receives packets addressed to it and prints
them (on the Transcript). Note that we use the name LanPrinter to avoid confusion with the existing class
Printer in the namespace Smalltalk.Graphics (so you could use the name Printer in your namespace or the
Smalltalk namespace if you really wanted to). Implement the class LanPrinter.

LanPrinter inherits from Node

Collaborators: Node and Packet

Responsibility:

accept: aPacket - if the packet is addressed to the
printer, prints the packet contents else sends the packet
to the following node.

print: aPacket - prints the contents of the packet

(into the Transcript for example).

Simulating the LAN

Implement the following two methods on the class side of the dlste, in a protocol callegxamples.
But take care: the code presented belowswse bugghat you should find and fix!.

simpleLan
"Create a simple lan”
"self simpleLan”

— mac pc nodel node?2 igPrinter —
"create the nodes, workstations, printers and fileserver”

mac = Workstation new name: #mac.
pc := Workstation new name: #pc.

15

nodel := Node new name: #nodel.
node2 := Node new name: #node2.
node3 := Node new name: #node3.
igPrinter := Printer new name: #IGPrinter.

"connect the different nodes.”
mac nextNode: nodel.
nodel nextNode: node2.
node2 nextNode: igPrinter.
igPrinter nextNode: node3.
node3 nextNode: pc.

pc nextNode: mac.

"create a packet and start simulation”
packet := Packet new
addressee: #IGPrinter;
contents: 'This packet travelled around
to the printer IGPrinter.

mac originate: packet.

anotherSimpleLan
"create the nodes, workstations and printers”

|mac pc nodel node2 igPrinter node3 packet |
mac:= Workstation new name: #mac.

pc := Workstation new name:#pc.

nodel := Node new name: #nodel.

node2 := Node new name: #node2.

node3 := Node new name: #node3.

igPrinter := LanPrinter new name: #IGPrinter.

"connect the different nodes.”
mac nextNode: nodel.
nodel nextNode: node2.
node2 nextNode:igPrinter.
igPrinter nextNode: node3.
node3 nextNode: pc.

pc nextNode: mac.

"create a packet and start simulation”

packet := Packet new
addressee: #anotherPrinter;
contents: 'This packet travels around
to the printer IGPrinter’.

pc originate: packet.

As you will notice the system does not handle loops, so we will propose a solution to this problem in
the future. To break the loop, use eitli&rl-Y or Ctrl-C , depending on your VisualWorks version.

Creating the ClassFileServer

Create the claskileServer, which is a special node that saves packets that are addressed to it (You should
just display a message on the Transcript).

16

FileServer inherits from Node

Collaborators: Node and Packet

Responsibility:

accept: aPacket - if the packet is addressed to the
file server save it (Transcript trace) else send the
packet to the following node.

save: aPacket - save a packet.

17

Some Useful Tools in Squeak

Main Author(s): Bergel, Denker, Ducasse

4.1 SqueakMap Package Loader

Before starting the exercises provided in this booklet, you need to install some useful tools. These are
installable packages offered from the SqueakMap package loader. If you are behind a proxy, you need to
set it: in a workspace, evaluat€éT TPSocket useProxyServerNamed: 'proxy.unibe.ch’ port: 80. To

open a SqueakMap package loader, click on the background, this will bring the so-called World Menu,
select open... SqueakMap Package Loader. You obtain a list of all the packages available in Squeak. We
suggest you to load the packages:

X SaueakMap Package Loader (473/473) @0
|Sh0ut | Hame: Shout =
¥ SIETEas TeaWs =il 17 . ¥: 3Svntax highlighting az vou type
b Shout (-3} . Author: Tweetn
P ShoutMonticello {-:Alpha, Owner: Andy Tween amtweenghotmail, com:
P ShowtDmniBrowser (-:Alp
b ShoutTraits (hlpha.l) Description:
: gﬁgﬁ:ggg;’;ég‘?_ﬁ?a'l) Syntax highlighting that dynamically changes az vou edit a
b ShowlverdrawPreference method, After each key stroke (or other change) the code iz
b ShrinkingSelection () parsed and the syntax highlighting updated so that it iz in
B Simulations () zyne with the current method source.
b Singletons ()
Sk+CzWinToSqueak () Categories:
: gﬁgletoﬁl (()) Development tools - Add-on development tools for Sguesk,
b Skigz 1 for Squesk 3.4 Licenszes/Squeakl - The license of Squesk from Apple. The
b Sking Importer Support £t aly liceniee we allow for bclugsion in base Syuesk,
.| 4 Maturity level/dlpha - Useable by daredevils, Frobably still
I Squeak versions full af bugs,

Applications
Class libraries

Package group/Non official package - Just 8 packsge for
Squesk. o COMMUtY guarsness, 1t

I Compatibility lewvel : - N T .
Development tools Squeak Yerswnsz’Squeak‘B.? gamma - This is the currsnt

b Entertainment moving target of 3.7,

b Licenses

I Maturity level Published version: 5

P Package format Created: 26 June 2004 5:18:44 pm

I Package group

b Package type

Homepage: hitp://kilana unibe chi8885/shout/

Figure 4.1: SqueakMap Package Loader on Shout

1. Monticello: Monticello is a package support for Squeak (normally already included in 3.7 full re-
lease).

Shout (syntax highlighter while typing),
KomHttpServer (web server): answer yes to the first two questions, andltapsno,

Seaside (the dynamic web application framework): it asks you for a login and password,

a &~ DN

Refactoring Browser for Squeak 3.7.

18

4.2 Monticello

Monticello is a CVS-like tool for Squeak. You can find the documentatiohtgp://www.wiresong.ca/Monticello/UserManual/.
Open Monticello using open... Monticello. Monticello allows you to save projects in various kind of

servers: http, ftp, file system, data bases, You can save your project on SqueakSource, if you want
(http://www.squeaksource.com).

By convention, the name of a package should be the same as a class-category. As in Smalltalk this is
possible to extend classes, you can associate a class extension with a package by putting a * followed by the
name of the package in the method category. For example in Fig8rthe method namestylerAbout-

ToStyle: is defined in théShout-Styling category, therefore it belongs to the pack&fpeut-Styling.

You can browse the contents of a package by clicking on the browse button and in particular you can

see the extensions associated to a package. See the Monticello chapter.

@ Monticello Browser @

+Package || Browse | History | Changesz || Save | +Repository | Open

Monticello (Monticello-avi, 182) & 0S5 UTzersidusasze: Workspase: ThirdCis
Morphic-Slideshow (Morphic-Slids -
Refactory (Refactorvy-md.3.7.32)

SMBaze (SMEaze-gk.55)

SMLoader (SMLoader-gk.21)

Services-Base (Services-Base-rr.2

Services-RE (Servicez-RE-rr.9)

Shout (Shout.3)

Figure 4.2: Monticello

=] Snapshot Browser: Shout talile]
*Extensions “ Behavior &l #Shout-Styling Sl stylerAtoutToStyle:
Shout-Parsing | Browser A Al
Showt-Pluggatble View | ChangeSorter
Shout-Styling CodeHolder
Shout-Windows Detugger
Dictionary
FileContentsBrowser
MessageSet v
Y| instance | ? | class
w4 . v v
stylerabouiToStyle: aTextStyler
“zet up the compilation class in aTextStyler. —
Answer true if styling should go ahead. false otherwise”

Preferences syntaxHighlightingAsTouType ifEalse: [+false],
self showingSourse ifFalse: [+falsel

alextStyler classOrMetaClass: self selectedClassOrMetaClass,
true

Figure 4.3: Browsing the changes associated to a package.

4.3 SqueakSource: the Squeak SourceForge

SqueakSourceniww.squeaksource.com) is a free source forge like open-source code repository. You
can manage your squeak source there. For that you should define a project there and add it into your
Monticello list of repositories.

You can define a new repository in Monticello and publish automatically to this repository. For that

you should paste the project information specified in SqueakSource into the repository dialog as shown in
Figure5.5

19

Ehttp:,-’,fwww.squeaksource.com [@gNAkgNOzCUEIFjgw /tvngQdA B 'fQ' Google

maa

_:.m bib scg SCGWk leo stef STwk ESUG S5T03 Smallwiki BDG frsq Stefwk SDwk selfbooks KCP Flnter 3.7a

SqueakSource), © 58

Home Projects Members Help

.
Y

Actions
Syndication
Register Member
Register Project

Home

Welcome to SqueakSource, the smart Monticello code-repository for Squeak. To get started register your
personal account and create any number of projects to host on our server. You'll immediately get all the
necessary permissions to create and manage your account, projects and versions. Detailed instructions can be

Authentication
Login found on the Help page.
This service is brought to you for free: it is hosted on a Solaris server that is backed up daily. Still, please make
sure that you have proper backups and note that we cannot give any accessibility guarantees. However, if you
wish you can set up your own SqueakSource server. It is self-hosted and can be downloaded from SgueakMap.
Please report any problems or suggestions to the Squeak Mailing-List. Enjoy!
Statistics
Members (123)
Recently Joined: Jeff Sparkes, Bernd Eckardt, Luc Fabresse, ...
Most Active: Lex Spoon, Hernan Tylim, Samuel Tardieu, ...
Projects (111)
Recently Created: Bougie, SandBox, Preference Browser, ...
Recently Used: Bougie, Bougie, Bougie, ..
Most Active: Chuck, Preference Browser, Bougie, ...
Most Downloads: Chuck, A Cell style framework for Squeak, Traits, ..
XHTML | €SS 22 September 2004

Figure 4.4: SqueakSource is a source forge like server for Squeak.

HTTF Repository:

MCHttpReposzitory |
location: "http/fwww.squeaksource, com’ =
uzer: ‘ducasse’
password: ‘aqueak’

L

Acceptiz) Cancel(l)

Figure 4.5: Adding a repository to your monticello repository list.

20

D

Monticello

5.1 Packages in Monticello: Packagelnfo

The Packagelnfo system is a simple, lightweight way of organizing Smalltalk source: it is nothing more
than a naming convention, which uses (or abuses) the existing categorization mechanisms to group related
code. Let me give you an example: say that you are developing a framework named SqueakLink to facilitate
using relational databases from Squeak. You will probably have a series of system categories to contain all
of your classes (e.g., categoBgjueakLink-Connections containing the classe3racleConnection,
MySQLConnection and PostgresConnection) (SqueakLink-Model containingDBTable, DBRow and
DBQuery) and so on. But not all of your code will reside in these classes - you may also have, for example,
a series of methods to convert objects into an SQL friendly formaject>asSQL, String>>asSQL and
Date>>>asSQL.

These methods belong in the same package as the clasSegiéakLink-Connections and
SqueakLink-Model . You mark this by placing those methods in a method categor@lfct, String,
Date, and so on) nametsqueaklink (note the initial star). The combination of tBgueakLink-...
system categories and thequeaklink method categories forms a package named "SqueakLink”.

The rules, to be precise, are this: a package named "Foo” contains

e All class definitions of classes in the system catedgéog, or in system categories with names
starting with "Foo-".

¢ All method definitions in any class in method categories narfieal or with names starting with
*foo-

¢ All methods in classes in the system categéop, or in system categories with names starting with
Foo- , except those in method categories with names starting*wi{tithich must belong to other
modules).

5.2 Getting Started

Installing The best way to install Monticello is via SqueakMap. Note however, that MC has two de-
pendencies, both are part of the standard image, so it's usually not necessary to install them explicitly.
However, the update stream tends to lag behind the versions on SqueakMap, so it's often a good idea to
upgrade them before installing MC.!

e Packagelnfo groups classes and methods into packages using a simple naming convention. It became
part of the standard image in update 5250.

e MClinstaller provides a way to load Monticello Versions into an image that doesn’t have Monticello
installed. Since Monticello is self hosting, it's used for bootstrapping. It's present in images updated
through 5710 and later.

Creating a Working Copy Once Monticello is installed, the Monticello Browser will be available from
the 'open...’ menu. Open it by selecting World / open... / Monticello Browser.

The first thing you need to do is tell Monticello about the package you are interested in versioning. You
do this by creating a Working Copy.

21

From an .mcz version file Open a FileList and navigate to the version file. Click on the Load’ button to
load the package into your image.

From a version in a repository First connect to the repository, either local or remote, that contains the
verison you want to load. See below for details. Then open the repository: select the repository in the list
on the right-hand side of the Monticello Browser, and click the 'Open’ button. This will open a Repository
Inspector. Select your version and click the 'Load’ button.

From scratch Click on the '+Package’ button, and enter the name of a Packagelnfo package. It doesn't
matter whether or not the code for the package already exists.

Once the Working Copy has been created, the name of the package will appear in the package list on the
left side of the Monticello Browser. If you loaded an existing version, the version name will be displayed in
parenthesis after the package name, otherwise the parenthesis will be empty, indicating that your working
copy has no ancestors.

Connecting to a Repository If you've already got a Working Copy, click on the package name on the left
side of the Monticello Browser, so that your repository will be associated with your package. To connect
to a repository, click on the '+Repository’ button in the Monticello Browser. A pop-up menu will appear,
allowing you to select the type of repository you want to connect to.

The simplest repository type is 'directory.” When you select this type of repository, Monticello will
open a FileList2 to allow you to select an existing directory in which to store versions. Other types of
repositories typically require more configuration, and will open a text pane to allow you to enter it.

Saving Changes Changes to your working copy are automatically logged in your changes file, so you
only need to create a new version of your package when you want to share the changes with others. Select
the package on the left side of the Monticello Browser and the repository to save to on the right, then click
the 'Save’ button. See Repositories for discussion of how to publish to shared repositories.

Merging Changes If you or some other developer have made changes to the same version of a package,
load one version as your working set and then select the repository containing the other version in the
Monticello Browser, open a Repository Browser and select the other version. Clicking the 'Merge’ button
will automatically load all non-conflicting changes from the other version. If you need to control which
changes to accept, you may instead click 'Changes’ to browse every difference.

5.3 Elements of Monticello

Packages Packages are the units of versioning used by Monticello; the classes and methods they contain
are recorded and versioned together. Monticello uses the packages defined by Packagelnfo.

Snapshots A Snapshot is the state of a Package at a particular point in time

Versions A Version is a Snapshot of a Package and it's associated metadata - author initials, the date and
time the snapshot was taken, and the Version’s ancestry - the list of Vlersions from which it is derived.

A Version is the standard currency of the system. You save them, load them, give them to others, merge
them, delete... you get the picture. Versions are often stored in mcz files - see File Format

Working Copies Each package in an image that is being versioned with Monticello has a Working Copy.
The Working Copy represents the Version of the package that is currently active in the image, and which
may be modified by the Smalltalk development tools.

22

Repositories These are places to store your Versions. Unlike CVS, in which a Package is associated
with one Repository, a Monticello Package can have Versions in many repositories. When adding a new
Repository to use, you can choose from SqueakMap Cache, FTP, HTTP (webdav), SqueakMap Release,
SMTP, or a directory somewhere on your hard drive (or network drive).

For example, if | have six versions of package Foo, | could have Foo versions 1-4 being on my local
harddrive, and 5-6 being on an ftp server. You could download version 5, make some changes and commit
a new version (7) to your WebDAV repository. | can download and merge that version with my own work
to produce version 8, which | save to my ftp repository.

This is a key element of Monticello’s distributed development model.

Package cache The package-cache is a local repository the Monticello uses to cache any package that is
loaded into a particular image in a directory. That means it is filled with .mcz files, whether it is a package
you create in your image, or one you download from somewhere else.

When you use images in different directories you will have multiple package-caches, and may hold
many of the same packages. If MC is loaded into an image which is subsequently moved, MC will continue
to use the package-cache in the directory the image was moved from. Otherwise MC creates a new package-
cache in the local directory. This can become a real mess and so some have used symlinks on unix systems
to centralize it.

Why cache packages at all? When a Version is loaded into the image, it is likely to become the ancestor

of new versions that are created as part of the development process. During merges, Monticello needs to
examine the Snapshots of these ancestors in order to detect conflicts. By caching these ancestors as it loads
them, MC reduces the chance that the necessary version will be unavailable - either because the repository
it's in is no longer available or because it was loaded directly from a file and isn’t in any repository.

5.4 Repositories

There are currently 8 types of repositories, each with different characteristics and uses. Repositories can
be read-only, write-only or read-write.

HTTP HTTP Repositories are often general purpose read-write repositories for day-to-day development
using a shared server. (Although the server can be configured for read-only access. Saving Versions via
HTTP uses the PUT method, wich must be enabled on the server.)

The nice thing about HTTP repositories is that it's easy to link directly to specific versions from web
sites or SqueakMap. With a little configuration work on the HTTP server, HTTP repositories can be made
browseable by ordinary web browsers, WebDAV clients, etc.

FTP Similar to an HTTP repository, except that it uses an FTP server instead.

GOODS This repository type stores Versions in a GOODS object database. It's a read-write repository,

so it makes a good "working” repository where Versions can be saved and retreived. Because of the
transaction support, journaling and replication capabilities of GOODS, it is suitable for large repositories

used by many clients.

directory A directory repository stores Versions in a directory in the local filesystem. Since it requires
very little work to set up, it's handy for private projects or disconnected development. The Versions in a
directory repository can be uploaded to a public or shared repository at a later time.

SMTP SMTP repositories are useful for sending Versions by mail. When creating an SMTP repository,
you specify an a destination email address. This could be the address of another developer - the package’s
maintainer, for example - or a mailing list such as squeak-dev. Any Versions save to the repository will be
emailed to this address.

23

SqueakMap Release This is a write-only repository used for publishing releases of a package to SqueakMap.
To configure the repository enter the name of the package on SqueakMap, your SM initials and your SM
password. Now any Versions saved to the repository will be uploaded to your SM account, and registered
as a new release with SqueakMap.

SqueakMap Cache When packages are installed through SqueakMap, the downloaded files are stored
in a cache. In order to make these files, which are often Versions in .mcz format, available to Monticello
for loading, merges etc, a SqueakMap Cache repository is created when these files are loaded for the first
time.

package-cache The package cache is a special repository that Monticello creates automatically. Like a
directory repository, the package cache stores files in a directory on your local filesystem. See Elements of
Monticello for more information.

5.5 File Format

Versions are often saved in binary files for storage in repositories, distribution to users etc. These files are
commonly call 'mcz files’ as they carry the extension .mcz.

Archive contents Mecz files are actually ZIP archives that follow certain conventions. Conceptually a
Version contains four things:

e Package. A Version is related to a particular Package. Each mcz file contains a member called
‘package’ which contains information about the Version’s Package.

e VersioniInfo. This is the meta-data about the Snapshot. It contains the author initials, date and time
the Snapshot was taken, and the ancestry of the Snapshot. Each mcz file contains a member called
‘version’ which contains this information.

e Snapshot. A Snapshot is a record of the state of the package at a particular time. Each mcz file
contains a directory named 'snapshot/’. All the members in this directory contain definitions of
program elements, which when combined form the Snapshot. Current versions of Monticello only
create one member in this directory, called 'source.st’.

e Dependencies. A Version may depend on specific Versions of other packages. An mcz file may
contain a 'dependencies/’ directory with a member for each dependency. These members will be
named after the Package depended upon.

Source code encoding The member named 'snapshot/source.st’ contains a standard fileout of the code
that belongs to the package.

Metadata encoding The other memebers of the zip archive are encoded using S-expressions. Concep-
tually, the expressions represent nestable dictionaries. Each pair of elements in a list represent a key and
value. The following example needs little explaination:

(keyl ‘valuel’ key?2 (subl 'sub value 1))

Distributing mcz files The metadata for a Version ends up being fairly compact, so it's not unreasonable
to distribute with a release. It's also important that it be present if somebody decides to start hacking on
your Package. Then they can create a mcz with their Version of your package and it will have the correct
ancestry information, enabling you to easily and correctly merge it back into your work.

Stated another way, a Version doesn'’t contain a full history of the source code. It's a snapshot of the
code at a single point in time, with a UUID identifying that snapshot, and a record of the UUIDs of all the
previous snapshots it's descended from. So it's a great thing to distribute.

24

5.6 The Monticello Browser

The Monticello Browser is the central window of the interface. All versioning operations begin with the
Monticello Browser.

The browser contains two panes. The left pane contains the list of packages that have Working Copies
in the image. In parenthesis, the immediate ancestors of the Working Copies are also listed. Packages that
have been modified since they were loaded are displayed with an asterisk before their names. The list on
the right shows the repositories that are configured for the selected package. The buttons across the top are
enabled and disabled depending on the selections in the two panes; many commands require you to first
select a package and repository.

+Package The '+Package’ button is used to create a Working Copy for a package. When you click on it,
Monticello will ask for the name of the Package you want to version, the same name that Packagelnfo uses
to identify the package. Once the Working Copy has been created, the name of the package will appear in
the left pane.

The '+Package’ button should only be used to create a Working Copy for a brand-new package, one
that has not previously versioned with Monticello. To create a Working Copy from an existing Version,
you should load the version from a repository or directly from an .mcz file using the FileList. See Getting
Started for details.

Browse The 'Browse’ button takes a Snapshot of the current state of the selected package and opens a
Snapshot Browser on it.

History The 'History’ button opens a History Browser on the Working Copy for the selected pacakge.

Changes The 'Changes’ button is used to display the changes made to the selected package since it was
last saved or loaded. Monticello first takes a Snapshot of the package and compares it to the package’s first
immediate ancestor. If any changes have been made, a Patch Browser is opened to display them.

Save The 'Save’ button is for saving new Versions of the selected package. It opens a dialog that allows
you to enter the name of the new version and a log message describing the changes made since the last
version. If you click 'accept,” Monticello will take a Snapshot of the package and save it as a Version to the
selected repository.

+Repository The '+Repository’ button is used to connect to a Repository. It opens a menu allowing
you to choose the type of repository you with to connect to, and depending on the repository type, a
configuration dialog for the connection.

Open The 'Open’ button opens a Repository Inspector on the selected repository. The is useful when
you need to find a specific Version to load, merge, browse etc.

5.7 The Snapshot Browser

The Snapshot browser is much like the standard Smalltalk System Browser except that it displays the
contents of a Snapshot, rather than the code that is active in the image. Since Snapshots are immutable, the
Snapshot browser does not allow editiing.

One difference between the Snapshot Browser and the familiar system browsers is that the Snapshot
browser uses the special system category *Extensions’ to categorize classes that do not belong to the
package, but which have extension methods that do.

25

5.8 More on Packagelnfo

To get a feel for this, try filing the Refactoring Browser. The Refactoring Browser code uses Packagelnfo’s
naming conventions, using "Refactory” as the package name. In a workspace, create a model of this
package withrefactory := Packagelnfo named: 'Refactory’.

It is now possible to introspect on this package; for example, refactory classes will return the long list
of classes that make up the Refactoring Browser. refactory coreMethods will return a list of MethodRef-
erences for all of the methods in those classes. refactory extensionMethods is perhaps one of the most
interesting queries: it will return a list of all methods contained in the Refactory package but not con-
tained within a Refactory class. This includes, for exampteng>expandMacroswithArguments: and
Behavior>>>parseTreeFor:.

Since the Packagelnfo naming conventions are based on those used already by Squeak, it is possible
to use it to perform analysis even of code that has not explicitly adapted to work with it. For example,
(Packagelnfo named: 'Collections’) externalSubclasses will return a list of all Collection subclasses outside
the Collections categories.

You can send fileOut to an instance of Packagelnfo to get a changeset of the entire package. For more
sophisticated versioning of packages, see the Monticello project.

26

Part Il

Seaside

27

6

Web dynamique avec Seaside

Main Author(s): N. Bouragadi, UniversitLibre de Bruxelleshouragadi@ensm-douai.fr

6.1

CompEments sur Seaside

Quelques messages pourgrer du html. Le destinataire de ces messages est I'objet pasgararatre
de la méthoderenderOn: (instance d&VAHtmIRender).

6.2

text: 'chaine de caracteres’ affiche simplement la chane de cages.

heading: 'texte du titre’ level: niveau affiche un titre. Le deurime pararétre est un entier qui
correspond au niveauévarchique du titre (1 correspond au le plus grand)

break introduit un retoum la ligne
horizontalRule introduit une ligne horizontale

form: ["definition de boutons, zones de saisies, "] définit un formulaire au sens Html.8¢essaire
pour avoir des boutons et autres zones de saisies dans une page Html. Reoit étrpamrbloc
qui contient les messages déation des boutons, zones de saisie,

textinputWithValue: valeurlnitiale callback: [:valeur |'traitements”] crée une zone de saisie
simple (sans barre deefilement). La valeur initiale est celle qui est aféehau @marrage (nil pour

ne rien afficher). Le dernier argument est un bloc qui recoit comme gdraita valeur saisie (valeur)
dans le champ. Cette valeur pétrte utili®e dans le traitemenééini par le bloc. Ce bloc est érué
guand la touche "Enée” est pres=e ou quand on clic sur un bouton du formulaire dans lequel se
trouve la zone de saisie.

submitButtonWitAction: ["traitements”] text: 'titre du bouton’ ajoute un bouton qui a pour titre la
chane de caragtes passe comme deugime argument. Un clic sur le bouton provoque &ewtion
des traitementséfinis dans le bloc passomme premier parastre.

Encore des compteurs !

Il s’agit de ®aliser encore un compteur, mais cette fois, il dédtra accessible via le web (utilisation
de Seaside). De plus, il devédre personnalisable dans la mesutel’otilisateur doit pouvoir modifier
directement la valeur du compteur et modifier I'iaorent. Con@&tement, vous devezfinir une classe
CompteurPersonnalise sous-classe d&/AComponent qui repesente une application Seasi@omp-
teurPersonnalise sera munie de :

e deux champsv@alue etincrement),

e une nethode d'initialisationifitialize),

e ainsi que la rethode de grération du code htmrénderOn:).

28

’3 Compteur personnalisé - Microsoft Ink - |EI|‘L|

Fichier ~ Edition Affichage Favoris Qutils 7 |Liens 2| e

-

Compteur personnalisé
Valeur courante : 23

Increment courant : 5

Nouvelle valeur : |23
Mouvel increment ; |5
Actualiser

Resat Incrémenter/Décrémentar |

=

Figure 6.1: L'interface du compteur personnalis

Linterface utilisateur doiétre analogua celle de la figur&.1 Deux champs de saisie permettent de
modifier la valeur du compteur et son ianent apes clic sur le bouton "Actualiser”. Le bouton "Reset”
réinitialise le compteumMalue misea 0 etincrement misa 1). Enfin, le bouton "In@menter/Bcémenter”
permet d’'ajouter I'incement au compteur et donc de l'iéonenter si I'incement est positif ou de le
déciementer dans le cas contraire.

6.3 Separer l'interface du code métier

La structure suggrée pour I'exercice feedent n'est pas é&s propre. En effet, un @me objet prend en
chargea la fois le traitement (code &tier : incémenter/@ciémenter, modification de I'inément,) et
l'interface utilisateur. Ce choix de conception rend difficile &@®ntuelle€volutions ou gutilisation. En
particulier, si 'on souhaite changer d’interface utilisateur, voire deateode communication distante.

Dans cet exercice, on se propose de fairéfmsation entre codeétier et code d’interface et enillustrer
I'utilit & a I'aide d’'un exemple simple. Cet exemple tourne autour d’'une calculatrice atithm. Vous
définirez tout d’abord la clasg@alculatrice qui dispose de deux champs qui regpentent respectivement
'opérande gauche et I'@ande droite. Munissez la classe d’accesseurs en leatutarea ces deux
champs, ainsi que de 4éthodes pour&aliser les 4 oprations arithrétiques. Bien entendu, ces quatre
méthodes :

e ne prennent pas de paratres,
e effectuent le calcul en utilisant les champs ég@ntant les deux épandes,
e etretournent le@sultat du calcul

Définissez ensuite la clas€alculatriceWeb sous-classe d&/AComponent qui repésente une ap-
plication SeasideCalculatriceWeb permet I'utilisationa travers le web des épations fournies patal-
culatrice. Son interface s’apparentéecelle donge par la figurg.2

Vous allez maintenant exploiter I&aration entre codeétier et code d'interface utilisateur. En ef-
fet, vous allez @utiliser la classeCalculatrice pour faire un nouveau compteur accessible via le web.
L'interface devragtre identiquea celle du compteur de I'exerciceguedent.

29

23 Calculatrice sur le web - Microsoft Inke; B m[
Fichier — Edition Affichage Favoris Qutils 7 | Liens f,’
-
|4 I5
Ajouter | Soustraire | Multiplier | Diviser |

Figure 6.2: L'interface de la calculatrice.

6.4 Une application un peu plus sophistigae

Il s’agit ici de céfinir un outil qui permet de &rer des tableaux blancs paragvia le web. Un tableau
blanc est une zone de texte que plusieurs utilisateurs peuvent modifier. Chaque tableau ésseg@ct
un nom et dispose d’'une liste identifiants les utilisateurs qui ont le droit d§deac

Chaque utilisateur dispose d’un identifiant et d’'un mot de passe qu'il fournit pour se connecter. Une
fois connect il a le choix entre &er un nouveau tableau ou modifier tableau existant. Les utilisateurs qui
ont ac@sa un tableau peuvent en modifier le contenu ainsi que la liste des utilisateurs qui @niaacc
tableau.

30

7

A Simple Application for

Registering to a Conference

Main Author(s): A. Bergel, Universitaet Berhergel@iam.unibe.ch
The goal of this tutorial is to give you a feeling on creating a web application using Seaside. RegConfis
a tool intended to help people to register to a conference.

7.1 RegConf: An Application for Registering to a Conference

Four steps are necessary to complete a registration:

1. A participant has to enter some personal data such as firstname, name, the institute where she is
attached, and her email address.

2. Then some information about the hotel are required. For instance a room can be single or double in
an hotel ranked between 1 and 4 stars. A price has then to be computed.

3. Finally informations regarding the payment are required. Once the credit card number, the issue
date, and the type are entered,

4. A confirmation screen shows a summary of what was entered.

The flow of the application is described in the following figure.

The dashed rectangle designate the part of the application whieblased This means that once the
flow of the running application leaves this box, there is no way to come back in it, specially using the back
button.

Isolation
yes |
Get personal Get hotel info Get I?ayment : S'how .
info info || Confirmation

no

is cart number valid ?

Figure 7.1:

31

7.2 Application Building Blocks
7.2.1 The Entry Point: RCMain

The control flow of the application has to be described in a tagkimethod. This method also represent the
entry point of the application. Thus a name lIREMain sounds appropriatedRC stands for RegConf).

Your job: Create a tasRCMain with ago method that describes the control flow of the application.
Your job: Start the web server on by executm¢AKom startOn: 9090.

Your job: Create aninitialize method on the class side to register your application in Seaside under the
nameregconf.

7.2.2 Getting User Information: RCGetUserInfo

All the control flow is defined in the class you previously defined. Getting user information is implemented
as a normal seaside component (i.e., subcla¥8ALomponent). Instance variables of this class should
reflect the structure of a user. Pressing shbmitbutton returns to the caller component usargwer:.
Fetching the participant’s informations can be done using text fields and submit button. Here is an example:

SESNS. /seaside/regconf2

| « [& ||+ | @ nup://localhost: @ ~Qr Coogle
[0 aal Package Universes phdcomic CyCab b3
| £} Radio Ho... |'ﬂ' NEWS | P... ! & /seaside... |'El' Le Conju... 2
First name

Family name

Institute

Email

" submit

MNew Session Configure Toggle Halos Profile Memory Use XHTML
Go to “http: [/localhost: 9090/ sea.. . s=iivbEai]UFsWyytWE_k=NDiYyrnwQ™ e

Your job: Write the methodenderContentOn: in RCGetUserlInfo.

Your job: Try your application using your favorite web browser. Make it poirttttp://localhost:9090/seaside/regconf.

The information passed around different states of the application can be contained in a dictionary. A
more advanced design would require a cldssr for which an instance is passed around through.

7.2.3 Getting Hotel Information: RCGetHotellnfo

A list of choices is pleasant to fetch informations of the hotel.

32

- /seaside/regconf2

| F - [i] [i] @ http://localhost: @ = Q- Coogle |

[0 aal Package Universes phdcomic CyCab

Arrival date| 07 Mars | 2)
Departure date| 12 Mars ' &)
Hotel rank == %)

Room' single &)

submit

| IR RO

i

Mew Session Configure Toggle Halos Profile Memory Use XHTML
| Go to “http: [fvalidator.w3.org/check freferar” P

Your job: Write the clasfRCGetHotellnfo

7.2.4 Payment:RCPayment

The payment is valid only if 16 number was provided and if the issue date is not over.

N [seaside/regconf2
E < > [i] [i] @ hup://localhost @ = Q- Google q

:_'—-EI} aal Package Universes phdcomic CyCab »

Cart Number 1234 1234 1234 1234

Issue date o205
Card type' mastercard §

[Submit)

Mew Session Configure Toggle Halos Profile Memory Use XHTML
g “

Your job: Write the clasiRCPayment

7.2.5 Confimation: RCConfirmation
Once the payment is done, it is nice to show a summary of what was done.

Your job: Write the clasfRCConfirmation

7.3 Extensions
Your job: Study the class MiniCalendar of Seaside. Create a calendar starting from Yodayob: Use

33

the mini calendar to add the possibility to say when and until which day the person wants to keep the room.

34

Part Il

Object-Oriented Design

35

3

Fundamentals on the Semantics
of Self and Super

Main Author(s): Ducasse, Wuyts
This lesson wants you to give a better understandirggtifandsuper.

8.1 self

When the following message is evaluated:

aWorkstation originate: aPacket

The system starts to look up the methmifinate: starts in the class of the message receiver: Work-
station. Since this class defines a metbddinate:, the method lookup stops and this method is executed.
Following is the code for this method:

Workstation>>originate: aPacket

aPacket originator: self.
self send: aPacket

1. It first sends the messageiginator: to an instance of clasBacket with as argument self which
is a pseudo-variable that represents the receiveriginate: method. The same process occurs.
The methodoriginator: is looked up into the clasBacket. As Packet defines a method named
originator:, the method lookup stops and the method is executed. As shown below the body of
this method is to assign the value of the first argument (aNode) to the instance varighiator.
Assignment is one of the few constructs of Smalltalk. It is not realized by a message sent but handle
by the compiler. So no more message sends are performed for this padioator:.

Packet>>originator: aNode

originator := aNode

2. In the second line of the methamtiginate:, the messagseend: thePacket is sent toself. self
represents the instance that receivesdhginate: messageThe semantics of self specifies that
the method lookup should start in the class of the message receivedilere Workstation. Since
there is no methodend: defined on the clas®/orkstation, the method lookup continues in the
superclass ofVorkstation: Node. Node implements sendso the method lookup stops and send:
is invoked

Node>>send: thePacket

self nextNode accept: thePacket

The same process occurs for the expressions contained into the body of the method send.:.

36

8.2 super

Now we present the difference between the useself and super. self and super are both pseudo-
variables that are managed by the system (compiler). They both represents the receiver of the message
being executed. However, there is no use to pass super as method argument, self is enough for this.

The main difference between self and super is their semantics regarding method lookup.

e The semantics of self is to start the method lookutp the class of the message receiver and to
continue in its superclasses.

e The semantics of super is to start the method looktiiosuperclass of class in which the method
being executed was defined and to continue in its superclassefake care the semanticsNEOT
to start the method lookup into the superclass of the receiver class, the system would loop with such
a definition (see exercise 1 to be convinced). Using super to invoke a method allows one to invoke
overridden method.

Let us illustrate with the following expression: the message accept: is sent to an instance of Worksta-
tion.

aWorkstation accept: (Packet new addressee: #Mac)

As explained before the method is looked up into the class of the receiver, here Workstation. The
method being defined into this class, the method lookup stops and the method is executed.

Workstation>>accept: aPacket

(aPacket addressee = self name)
ifTrue: [Transcript show: 'Packet accepted’, self name asString]
ifFalse: [super accept: aPacket]

Imagine that the test evaluates to false. The following expression is then evaluated.

super accept: aPacket

The method accept: is looked up in the superclass of the class in which the containing method accept:
is defined. Here the containing method is defined into Workstation so the lookup starts in the superclass of
Workstation: Node. The following code is executed following the rule explained before.

Node>>accept: aPacket

self hasNextNode
ifTrue: [self send: aPacket]

Remark. The previous example does not show well the vicious point in the super semantics: the
method look intdhe superclass of class in whichor the method being executed was defined and not in
the superclass of the receiver class.

You have to do the following exercise to prove yourself that you understand well the nuance.

Exercise 31 Imagine now that we define a subclass of Workstation called AnotherWorkstation and that
this class does NOT defined a method accept:. Evaluate the following expression with both semantics:

anAnotherWorkstation accept: (Packet new addressee: #Mac)

You should be convinced that the semantics of super change the lookup of the method so that the lookup
(for the method via super) does NOT start in the superclass of the receiver class but in the superclass of the
class in which the method containing the super. With the wrong semantics the system should loop.

37

9

Object Responsibility and

Better Encapsulation

9.1 Reducing the coupling between classes
To be a good citizen you as an object should follow as much as possible the following rules:

e Be private. Never let somebody else play with your data.
e Be lazy. Let do other objects your job.

e Be focused. Do only one main task.

While these guidelines are not really formal, one of the main consequences is that this is the responsibil-
ity of an object to provide a well defined interface protecting itself from its clients. The other consequence
is that by delegating to other objects an object concentrates on a single task and responsibility. WWe now
look how such guidelines can help us to provide better objects in our example.

9.1.1 Current situation

The interface of the packet class is really weak. It just provides free access to its data. The main impact of
this weakness is the fact that the clients of the cRessket like Workstation relies on the internal coding
of thePacket as shown in the first line of the following method.

Workstation>>accept: aPacket

aPacket addressee = self name
ifTrue: [Transcript show: 'A packet is accepted by the Workstation ’, self name asString]
ifFalse: [super accept: aPacket]

As a consequence, if the structure of the class Packet would change, the code of its clients would have
to change too. Generalizing such a bad practice would lead to system that are badly coupled and being
really difficult to change to meet new requirements.

9.1.2 Solution.

This is the responsibility of a packet to say if the packet is addressed to a particular node or if it was sent
by a particular node.

¢ Define a method nameadAddressedTo: aNode in‘testing’ protocol that answers if a given packet
is addressed to the specified node.

e Define a method nameidOriginatedFrom: aNode in‘testing’ protocol that answers if a given
packet is originated from the specified node.

Once these methods are defined, change the code of all the clients of theadkssto call them.

38

9.2 A Question of Creation Responsibility

One of the problem with the previous approach for creating the nodes and the packets is the following: it
is the responsibility of the client of the objects to create them well-formed. For example, it is possible to
create a node without specifying a name! This is a disaster for our LAN system (create an example method
3, and try it out). The same problem occurs with the packet: it is possible to create a packet without address
nor contents.

We will find a solution to these problems.

Exercise 32 Define a class method named withName: in the class Node (protocol ‘instance creation’)
that creates a new node and assign its name.

withName: aSymbol

Define a class method named withName:nextNode: in the dlage (protocol ‘instance creation’)
that creates a new node and assign its name and the next node in the LAN

withName: aSymbol nextNode: aNode

Note that the first method can simply invoke the second one.
Define a class method namsend:to: in the class Packet (protocol ‘instance creation’) that creates a
new Packet with a contents and an address.

send: aString to: aSymbol

Now the problem is that we want to forbid the creation of non-well formed instances of these classes.
To do so, we will simply redefine the creation methraav so that it will raise an error.

Exercise 33 Rewrite the new method of the cladede andPacket as the following:

new

self error: ‘you should invoke the method... to create a...’

However, you have just introduced a problem: the instance creation methods you just wrote in exercise
11 will not work anymore, because they caélw; and that calling results in an error ! The solution is to
rewrite them such as

Node class>>withName: aSymbol nextNode: aNode
" self basicNew initialize name: aSymbol ; nextNode: aNode

Do the same for the instance creation methods in ¢Pasket.

Exercise 34 Update and rerun your tests to make sure that your changes were correct.

Note that the previous code may break if a subclass specializee#tibode: method does not return
the instance. To protect ourslef from possible unexpected extension we add yourself that returns the receiver
a the first cascaded message (heame:), here the newly created instance.

Node class>>withName: aSymbol nextNode: aNode
" self basicNew initialize name: aSymbol ; nextNode: aNode ; yourself

39

9.3 Reducing the coupling between classes

To be a good citizen you as an object should follow as much as possible the following rules:

e Be private. Never let somebody else play with your private data.
e Be lazy. Let do other objects your job.

e Be focused. Do only one main task.

While these guidelines are not really formal, one of the main consequences is that this is the responsibil-
ity of an object to provide a well defined interface protecting itself from its clients. The other consequence
is that by delegating to other objects an object concentrates on a single task and responsibility. We now
look how such guidelines can help us to provide better objects in our example.

9.3.1 Current situation

The interface of th@acket class is really weak. It just provides free access to its data. The main impact of
this weakness is the fact that the clients of the cRessket like Workstation relies on the internal coding
of the Packet as shown in the first line of the following method.

Workstation>>accept: aPacket

aPacket addressee = self name
ifTrue: [Transcript show: 'A packet is accepted by the Workstation ’, self name asString]
ifFalse: [super accept: aPacket]

As a consequence, if the structure of the clRasket would change, the code of its clients would have
to change too. Generalizing such a bad practice would lead to system that are badly coupled and being
really difficult to change to meet new requirements.

9.3.2 Solution.

This is the responsibility of a packet to say if the packet is addressed to a particular node or if it was sent
by a particular node.

e Define a method naméagAddressedTo: aNode in ‘testing’ protocol that answers if a given packet
is addressed to the specified node.

e Define a method nameidOriginatedFrom: aNode in ‘testing’ protocol that answers if a given
packet is originated from the specified node.

Once these methods are defined, change the code of all the clients of tHeadksstto call them. You
should note that a better interface encapsulates better the private data and the way they are represented.
This allows one to locate the change in case of evolution.

9.4 A Question of Creation Responsibility

One of the problems with the first approach for creating the nodes and the packets is the following: it is the
responsibility of the client of the objects to create them well-formed. For example, it is possible to create a
node without specifying a name! This is a disaster for our LAN system, the node would never reachable,
and worse the system would breaks because the assumptions that the name of a node is specified would not
hold anymore (insert an anonymous node in Lan and try it out). The same problem occurs with the packet:
it is possible to create a packet without address nor contents.

The solution to these problems is to give the responsibility to the objects to create well-formed in-
stances. Several variations are possible:

40

e When possible, providing default values for instance variable is a good way to provide well-defined
instances.

e It is also a good solution to propose a consistent and well-defined creation interface. For example
one can only provide an instance creation method that requires the mandatory value for the instance
and forbid the creation of other instances.

The classPacket. We investigate the two solutions for tfRacket class. For the first solution, the
principle is that the creation methodeiw) should invoke arinitialize method. Implement this solution.
Just remember thatew is sent to classes (a class method) andithiialize is sent to instances (instance
method). Implement the methoéw in a ‘instance creation’ protocol and initialize in a ‘initialize-release’
protocol.

Packet class>>new

Packet>>initialize

The only default value that can have a default value is contents, choose

contents = ‘no contents’

Ideally if each LAN would contain a default trash node, the default address and originator would point
to it. We will implement this functionality in a future lesson. Implement first your own solution.

Remarks and Analysis. Note that with this solution it would be convenient to know if a packet contents
is the default one or not. For this purpose you could provide the mdtasDefaultContents that tests
that. You can implement it in a clever way as shown below:

Instead of writing:

Packet>>hasDefaultContents

"~ contents = ‘no contents’

Packet>>initialize

contents := ‘no contents’

You should apply the rule: ‘Say only once’ and define a new method that returns the default content
and use it as shown below:

Packet>>defaultContents

" ‘no contents’

Packet>>initialize

contents := self defaultContent

Packet>>hasDefaultContent
“contents = self defaultContents

With this solution, we limit the knowledge to the internal coding of the default contents value to only
one method. This way changing it does not affect the clients nor the other part of the class.

41

9.5 Proposing a creational interface

Packet. We now apply the second approach by providing a better interface for creating packet. For this
purpose we define a new creation method that requires a contents and an address.

Define aclassmethods namesdend:to: andto: in the classPacket (protocol ‘instance creation’) that
creates a newacket with a contents and an address.

Packet class>>send: aString to: aSymbol

Packet class>>to: aSymbol

The classNode. Now apply the same techniques to the cldssle. Note that you already implemented

a similar schema that the default value in the previous lessons. Indeed by default instance variable value is
nil and you already implemented the methasNextNode that to provide a good interface.

Define aclassmethod namedvithName: in the clasaNode (protocol ‘instance creation’) that creates a

new node and assign its name.

Node class>>withName: aSymbol

Define aclassmethod namedvithName:connectedTo: in the classNode (protocol ‘instance cre-
ation’) that creates a new node and assign its name and the next node in the LAN.

Node class>>withName: aSymbol connectedTo: aNode

Note that if to avoid to duplicate information, the first method can simply invoke the second one.

9.6 Forbidding the Basic Instance Creation

One the last question that should be discussed is the following one: should we or not let a client create an
instance without using the constrained interface? There is no general answer, it really depends on what we
want to express. Sometimes it could be convenient to create an uncompleted instance for debugging or user
interface interaction purpose.

Let us imagine that we want to ensure that no instance can be created without calling the methods we
specified. We simply redefine the creation method new so that it will raise an error. Rewritevthe
method of the classlode andPacket as the following:

Node class>>new

self error: ‘you should invoke the method... to create a...’

However, you have just introduced a problem: the instance creation methods you just wrote in the pre-
vious exercise will not work anymore, because they aW, and that calling results in an error! Propose
a solution to this problem.

42

9.6.1 Remarks and Analysis.

A first solution could be the following code:

Node class>>withName: aSymbol connectedTo: aNode

" super new initialize name: aSymbol ; nextNode: aNode

However, even if the semantics permits such a call using super with a different method selector than the
containing method one, it is a bad practice. In fact it implies an implicit dependency between two different
methods in different classes, whereas the super normal use links two methods with the same name in two
different classes. It is always a good practice to invoke the own methods of an object by using self. This
conceptually avoids to link the class and its superclass and we can continue to consider the class as self
contained.

The solution is to rewrite the method such as:

Node class>>withName: aSymbol connectedTo: aNode

" self basicNew initialize name: aSymbol ; nextNode: aNode

In Smalltalk there is a convention that all the methods starting with ‘basic’ should not be overridden.
basicNew is the method responsible for always providing an newly created instance. You can for example
browse all the methods starting with ‘basic* and limit yourselfabject andBehavior.

You can do the same for the instance creation methods in Rde®t.

9.7 Protecting yourself from your children

The following code is a possible way to define an instance creation method for th&loldes

Node class>>withName: aSymbol

" self new name: aSymbol

We create a new instance by invoking new, we assign the name of the node and then we return it. One
possible problem with such a code is that a subclass of the Hlade may redefine the method name:
(for example to have a persistent object) and return another value than the receiver (here the newly created
instance). In such a case invoking the method withName: on such a class would not return the new instance.
One way to solve this problem is the following:

Node class>>withName: aSymbol

| newlInstance |

newlnstance := self new.
Newlnstance name: aSymbol.
" newlnstance

This is a good solution but it is a bit too much verbose. It introduces extra complexity by the the extra
temporary variable definition and assignment. A good Smalltalk solution for this problem is illustrated by
the following code and relies on the use of the yourself message.

Node class>>withName: aSymbol

" self new name: aSymbol ; yourself

yourself specifies that the receiver of the first message involved into the cascade (name: here and not
new) is return. Guess what is the code of the yourself method is and check by looking in the library if your
guess is right.

43

10

Hook and Template Methods

Main Author(s): Ducasse and Wuyts
In this chapter you will learn how to introduce hooks and template methods to favor extensibility. First
we look at the current situation and introduce changes step by steps.

10.1 Providing Hook Methods

Current situation. The solution proposed for printingdode displays the following stringdode named:
Nodel connected to: PC1 obtained by executing the following expression:

(Node withName: #Nodel connectedTo: (Node new name: #PC1)) printString

A straightforward way to implement thgintOn: method on the claddode is the following code:

Node>>printOn: aStream

aStream nextPutAll: 'Node named: ’, self name asString.
self hasNextNode
ifTrue: [aStream nextPutAll: ’ connected to: ’, self nextNode name]

However, with such an implementation the printing of all kinds of nodes is the same.

New Requirements. To help in the understanding of the LAN we would like that depending on the
specific class of node we obtain a specific printing like the following ones:

(Workstation withName: #Mac connectedTo: (LanPrinter withName:
#PC1) printString

Workstation Mac connected to Printer PC1

(LanPrinter withName: #Pr1 connectedTo: (Node withName: #N1)
printString

Printer Prl connected to Node N1

Define the methodypeNamethat returns a string representing the name of the type of node in the
‘printing’ protocol. This method should be defined in Node and all its subclasses.

(LanPrinter withName: #PC1) typeName
‘Printer’

(Node withName: #N1) typeName
‘Node’

44

Define the methodimplePrintString on the clas®Node to provide more information about a node as
show below:

(Workstation withName: #Mac connectedTo: (LanPrinter withName:
#PC1)) simplePrintString

‘Workstation Mac’
(LanPrinter withName: #PC1) simplePrintString

‘Printer PC1’

Then modify theprintOn: method of the clasSlode to produce the following output:

(self withName: #Mac connectedTo: (LanPrinter new name:
#PC1))

‘Node Mac connected to Printer PC1’

Remark: The methodypeName is called ahookmethod. This reflects the fact that it allows the sub-
classes to specialize the behavior of the superclass, here the printing of a all the different kinds of nodes.
The methodimplePrintString, even if in our case is rather simple, is called a template method. This name
reflects the fact that the method specifies the context in which hook methods will be called and how they
will fit into the template method to produce the expected result.

Note that for abstract classes hook methods can be abstract too, one other case the hook method can
propose a default behavior.

The Smalltalk class library contains a lot of such hooks that allows an easy customization of the pro-
posed behavior. The proposed requirement already exists in the system.

Exercise 35 Study the metho@rintOn: on the clas©bject. Check its implementors and senders.

Exercise 36 Study the methodopy on the clas®©bject. Check its implementors and senders. What do
you think about the methggbstCopy check its senders and implementors.

45

	I First Contact
	Objects and expressions
	Counter Example
	A Simple Counter
	Creating your own class
	Creating a Class category
	Creating a Class

	Defining protocols and methods
	Creating and Testing Methods
	Adding an instance initialization method
	Another instance creation method

	SUnit
	Saving your Work

	Set, Dictionary et Bag
	Collections non-ordonnées
	Set
	Création
	Accès

	Dictionary
	 Création et propriétés héritées de Set
	Accès, ajouts et suppressions
	Itérations

	Bag
	Ajouts et suppressions
	Énumérations

	Performances
	Boucle externe du test et formatage
	Boucle interne du test
	Bilan

	SUnit Testing
	Set
	Dictionary
	Bag

	Some Useful Tools in Squeak
	SqueakMap Package Loader
	Monticello
	SqueakSource: the Squeak SourceForge

	Monticello
	Packages in Monticello: PackageInfo
	Getting Started
	Elements of Monticello
	Repositories
	File Format
	The Monticello Browser
	The Snapshot Browser
	More on PackageInfo

	II Seaside
	Web dynamique avec Seaside
	Compléments sur Seaside
	Encore des compteurs !
	Séparer l'interface du code métier
	Une application un peu plus sophistiquée

	A Simple Application for Registering to a Conference
	RegConf: An Application for Registering to a Conference
	Application Building Blocks
	The Entry Point: RCMain
	Getting User Information: RCGetUserInfo
	Getting Hotel Information: RCGetHotelInfo
	Payment: RCPayment
	Confimation: RCConfirmation

	Extensions

	III Object-Oriented Design
	A Simple Application: A LAN simulation
	Fundamentals on the Semantics of Self and Super
	self
	super

	 Object Responsibility and Better Encapsulation
	Reducing the coupling between classes
	Current situation
	Solution.

	A Question of Creation Responsibility
	Reducing the coupling between classes
	Current situation
	Solution.

	A Question of Creation Responsibility
	Proposing a creational interface
	Forbidding the Basic Instance Creation
	 Remarks and Analysis.

	Protecting yourself from your children

	 Hook and Template Methods
	Providing Hook Methods

