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Abstract. This paper reports on the work for optimizing GCC on ARM
to improve performance of libevas rasterization library. We used manual
profiling and analysis as well as ACOVEA [3] compiler options tuning
tool to identify weak places and tune GCC optimization parameters. We
identified a number of deficiencies in GCC optimizations with libevas on
ARM, including GCSE, register allocation, autovectorization and loop
prefetching, and proposed solutions to them, that altogether brought
15.78% average performance increase, and with up to 119% increase on
certain tests, as measured with customized expedite benchmark. These
results show that tuning existing GCC optimizations for specific platform
and application may provide significant performance boost, comparable
to that of developing a new compiler optimization.

1 Introduction

GCC is designed to be a multiplatform compiler. It also contains dozens of opti-
mization passes that are parameterized in such a way that any target platform
code can influence their decisions. Given the complexity of GCC, usually there
is a room for improvement if you need to tune GCC for one particular target,
while not paying attention to performance on other targets. The improvement
may come from several sources. First, since most of the tuning happens for
x86 and x86-64 architectures, there may be code generation deficiencies for a
less popular target. A fix for them usually requires adding new instruction pat-
terns or peephole optimizations to the backend, or adjusting target-dependent
costs. For example, GCC inlining pass has internal constants specifying costs of
function calls, prefetching pass has parameters that control cache metrics, etc.
Second, machine-independent optimizations may not be tuned for a given target,
meaning that their default behavior should be changed. For example, register
allocator and/or inlining may use different limits on embedded targets than on
general targets. Finally, a new target-independent feature could be implemented
to take into account certain specific features of the target. For example, to make
advantage of speculation feature of Intel Itanium, we have implemented its sup-
port in the instruction scheduler. This kind of improvements may take much
time and resources.



In this work, our primary optimization target was ARM Cortex-A8 [1] ar-
chitecture, including its NEON vector unit. In the paper we show a number of
deficiencies that we found in GCC optimizations, and that are specific either
to Cortex-A8 architecture or ARM platform in general. These optimizations in-
clude GCSE, prefetching, and autovectorization for NEON. We have proposed
solutions to the problems found which altogether brought 15.78% average per-
formance increase, with up to 119% gain on certain tests (as measured with
customized expedite benchmark described in Section 2). We also show that
using automatic compiler option tuning tools like ACOVEA may facilitate iden-
tification of those optimizations that need improvement as well as determining
optimal optimization parameter values.

Rest of the paper is organized as follows. In Section 2 we give overview on
libevas rasterization library, expedite benchmark test suite, ACOVEA tool
and the environment we have used. In Section 3 we describe GCC optimiza-
tions we have analyzed and the improvements we made to them. In Section 4
we present the performance results of our optimizations and tuning. Section 6
outlines areas for the future work, and Section 6 concludes.

2 Test Application and Environment

As our primary performance target for GCC optimizations we have chosen
libevas. It is a part of EFL (Enlightment Foundation Libraries) [2], which are
base libraries for E window manager as well as other applications. This multi-
platform library contains various routines for fast rasterization and processing
image data, such as blending, scaling, clipping images, drawing polygons, etc. To
measure libevas performance, we used a modified version of expedite bench-
mark suite, available in EFL repository. It was customized to improve results
precision and speed, so it can provide results with variance less than 0.5% in
1-2 minutes test run time. The improvements to precision include adding few
iterations to each test that are executed before time measurement is started so
to exclude time required to fill cache from the result; a median filter is applied to
evaluate final fps value for each benchmark among several runs. Better precision
allowed us to significantly decrease the minimal number of iterations required for
each test to obtain stable results. Also we have excluded from the original test
set benchmarks with similar profiles and those with volatile results. To compute
composite benchmark result value geometric mean is used. These improvements
altogether allowed us to use this benchmark suite with automatic tuning tools
as a complement to manual tuning.

To aid manual tuning, we used ACOVEA [3] automatic tuning tool. It aims
to find a combination of options and parameters that provide best performance
on a given benchmark using genetic algorithm [4, 5]. We have adapted ACOVEA
to work in a cross environment. The changes include added capability to cross-
compile benchmarks on x86 machine, transfer binaries to ARM testboard, execute
them, and transfer the resulting fps value back to x86 host. Then, ACOVEA
core cross-breeds GCC options from different runs according to performance



these options provide: the better fps the certain options combination achieves,
the greater chance it has to reproduce.

Initially we ran ACOVEA tuning with a set of GCC flags that are enabled by
default by -O3 optimization level, plus -fprefetch-loop-arrays flag. It took
about 4 days to complete with the following ACOVEA parameters: 20 genera-
tions, 3 populations, and 60 species in a population. This tuning run have shown
that the greatest effect on performance has -fno-gcse option, which disables
Global Common Subexpression (GCSE) optimization. This positive effect was
observed on 44 out of 45 tests, and it didn’t depend from other options specified
along with -fno-gcse, or an input data. We give analysis of the GCSE optimiza-
tion problem in Section 3.1. Other option combinations found by ACOVEA we
have analyzed didn’t tend to show consistent performance improvement, e.g. sim-
ply enabling -fprefetch-loop-arrays without tuning its parameters affected
tests controversially, improving some by up to 10-15% while slowing down others
as much as 25%.

Since there are more than 100 numeric parameters in GCC, each with its
own integer value range, it is impractical to tune them all at once, so we selected
few optimizations for detailed tuning of their parameters with ACOVEA. These
optimizations are inlining, loop unrolling, register allocator and loop prefetching.
We discuss results of this tuning in Sections 3.1–3.4, dedicated to corresponding
optimizations.

In our work we used GCC 4.4.1 release branch as the base compiler.

3 GCC optimizations

In this section we discuss problems found in GCC optimizations and propose
solutions for them.

3.1 GCSE

We have analyzed assembly code of libevas and identified a common deficiency
in the way GCC deals with long immediate constants on ARM. On ARM, due
to architecture constraints, a constant can be used as an immediate instruction
operand if and only if it can be represented in the form CONST 32 = CONST 8
<< (2 * N), where CONST 8 is an 8-bit constant, and 0 ≤ N < 16. If a constant
doesn’t comply with this constraint, the instruction can’t use it as an immedi-
ate value, but should either preload it into a register or split original operation.
Figure 1 shows an example of such constant splitting. Let’s say we need the
2nd and 4th byte components from 4-byte integer variable b (this access pattern
is very common in libevas blend routines). The C code to access appropriate
components with a bit mask (at the left) is translated into two bic instructions
(at the right). Assuming that in original application these instructions are lo-
cated inside loop, in this case better solution would be store this constant into a
register outside a loop and then use just one and instruction with that register



int a, b;

a = b & 0x00ff00ff;

(a) C code

ldr r3, [fp, #-8] ; load b

bic r3, r3, #-16777216 ; r3 = r3 & ~0xff000000

bic r3, r3, #65280 ; r3 = r3 & ~0x0000ff00

str r3, [fp, #-12] ; store a

(b) ARM assembly code generated by GCSE pass

Fig. 1. Splitting long ARM constants

as an operand instead of two bic instructions with immediate constants inside
the loop.

We found that the main reason for generating such inefficient code is that dur-
ing global common subexpression elimination (GCSE [6, 7]) optimization pass
GCC doesn’t consider ARM architecture specifics regarding immediate value
representation in instruction code, assuming that constant propagation is al-
ways profitable, which is not true when propagating constants inside loops on
ARM. There are three GCC passes that are involved in this problem: pass gcse,
pass rtl move loop invariants, pass split all insns (by default executed
in this order). At GCSE pass, two instructions reg1 = const and reg2 = reg2
& reg1 are merged into reg2 = reg2 & const. At this stage, the compiler
doesn’t know whether const is a valid immediate constant for ARM or it
needs splitting into two separate instructions and proceeds with merge any-
way. Then, at move loop invariants pass, it wouldn’t have any invariant to
move, since at this point it is already an immediate value in instruction. Then,
split all insns is run, which adds an extra instruction into the loop body.
Changing the order of passes (doing loop invariant motion after split) doesn’t
help since after split it isn’t a loop invariant any more because of data depen-
dencies.

The problem can be worked around by disabling GCSE completely, but this
isn’t an appropriate solution, since in this case optimization opportunities can
be missed. So we developed a solution for ”conservative” GCSE, which takes
into account ARM immediate value representation specifics. In order for loop
invariant to work, we moved loop invariant code motion pass before GCSE pass,
where all constants that could be moved outside of a loop body still reside in sep-
arate pseudo-registers. Our tests have shown that such pass order change doesn’t
affect the performance of expedite test suite. Loop invariant code motion pass
has its own heuristics that estimate register pressure and doesn’t allow moving
invariant if it will likely result in a register spill. After loop invariants have been
moved, our restricted GCSE will only allow to move ”short” constants (those
which don’t require several operations to load) if moved into the loop body from
the outside, and will allow GCSE to proceed in its usual way on the same loop
hierarchy level. More strictly, at GCSE pass, we deny the transformation if the
following two conditions are met:

1. The expression moved is a ”long” 32-bit ARM constant, i.e. the constant
doesn’t fit into 12-bit immediate value (8-bit number and 4-bit shift values);



2. The expression is moved to destination block with a deeper loop hierarchy
level than the source block, e.g. from an outer loop into a nested loop body.

Our patch includes two options to control GCSE behaviour on ARM. First
option, -farm-fix-gcse checks just the first of above conditions, only deny-
ing transformation for long constants, and retaining original pass order; sec-
ond, -farm-fix-gcse-loop-hierarchy, checks both conditions before allowing
GCSE transformation and swaps GCSE and invariant code motion passes.

Restricting GCSE and letting loop invariant code motion pass to do its job
increases performance of libevas on average by 5.5%. Though it isn’t bet-
ter than simple -fno-gcse for this application, we believe that it’s the right
way to address the problem and that there are applications that benefit from
this approach. While testing our optimization on Aburto’s benchmark suite,
we found that it brings performance gain up to 10% on several tests without
any significant regressions on others, compared to completely disabling GCSE
which actually causes performance loss on this test suite. For example, on hanoi
benchmark, completely disabling GCSE causes ”short” constant 1 to be put into
separate register, which results in additional register save and restore instruc-
tions in function prologue and epilogue. Since the subject function is recursive,
these excessive instructions result in performance degradation by 10%, which is
fixed by our patch that lets GCSE to propagate this ”short” constant. We still
need to test this optimization on more applications to make sure loop invariant
code motion heuristics can handle well an increased number of loop invariants,
so it doesn’t cause performance regressions in loops with high register pressure.

3.2 The Register Allocator

Another problem we have found is excessive memory loads generated inside
loops. Figure 2(a) shows the original code generated by GCC for a simple
loop from evas common scale rgba in to out clip smooth c. Both load in-
structions could be placed outside the loop, if there were enough free hardware
registers available.

The reason for these excessive loads in the loop is that the cost of corre-
sponding pseudo registers was calculated using basic block frequency via integer
math, and truncating rounding caused sub-optimal code generation. We have
tried a patch to use rounding to nearest integer in the register allocator, and it
fixed the test case, but it did not provide performance improvements. We believe
that due to the NP -complete nature of register allocation problem [6] this case
represents just the bad case for register allocator heuristics, and in general it can
be possibly improved by providing better estimation for basic block frequencies,
which means using profiling information. Indeed, we have confirmed that when
the compiler has precise execution counts from profiling, it generates exactly the
same code for the problem loop either with or without the fix.

We have also tuned with ACOVEA the following GCC register allocator [9]
options and parameters: -fira-coalesce, -fira-algorithm, -fira-region,
-fno-ira-share-spill-slots, -fno-ira-share-save-slots, and ira-max-



.L133:

ldr lr, [fp, #-84]

mov r3, r1, asr #16

add r1, r1, r0

str r3, [lr, r2, asl #2]

ldr r3, [fp, #24]

add r2, r2, #1

cmp r3, r2

bgt .L133

(a) original code

.L133:

mov r3, r1, asr #16

str r3, [lr, r2, asl #2]

add r2, r2, #1

cmp r9, r2

add r1, r1, r0

bgt .L133

(b) code after a fix for reg-
ister frequency rounding
was applied

Fig. 2. Removing excessive invariant loads inside loops

loops-num. There were different option combinations found, that showed up
to 6.5% gain on certain tests, while causing sometimes even bigger regression
on others. Though only one option, -fira-coalesce seemed to improve per-
formance consistently for the majority of the tests, giving 1-1.5% average gain.
However, after we enabled -fprefetch-loop-arrays option later and tuned its
parameters, the positive effect from -fira-coalesce was not longer reproduced.
This shows that option tuning should involve all GCC options of interest at once,
since optimizations tend to influence each other. At the same time, increased op-
timization search space may result in too much time to complete the tuning to
make this approach practical.

3.3 Function Inlining

While tuning GCC inlining with ACOVEA, we found that libevas doesn’t
respond much to tuning its parameters, so we examined its source code to find
whether there is a potential for this optimizations or it’s just a problem with
automatic tuning strategy that can’t find the right parameters.

In libevas most CPU cycles are spent in tight loops performing rasteriza-
tion. These loops are manually optimized by EFL developers, so this application
has little inlinable calls that may affect the performance. We found that out of
19 EFL hottest functions that are invoked by expedite test suite 11 don’t have
calls at all, 4 have indirect calls through pointers, 1 is just a stub for memcpy, so
function calls that can be inlined by GCC present only in 3 of these functions,
which performance impact is minor. This way, the compiler options and param-
eters controlling inlining don’t affect significantly the performance of expedite
test suite, as we have found with automatic tuning, so libevas just might be
not the right candidate to tune these optimizations. A good candidate for such
study might be an application written in C++ that contains many small class
member functions.



3.4 Loop Unrolling and Prefetching

As a part of original libevas hand-optimization, most critical loops are unrolled
using custom UNROLL8 PLD WHILE macro, which duplicates given loop body 8
times. This leaves compiler with little options for loop unrolling optimization:
further unrolling such pre-unrolled loops usually doesn’t yield any additional
improvement. That’s why automatic tuning of the RTL unroller parameters,
similarly to inlining, didn’t show significant improvement.

Modern ARM architectures have a prefetching feature, which allows preload-
ing values from memory into L2 cache. This mechanism is controlled explicitly
by a programmer or a compiler by issuing pld instruction, which hints CPU that
data referenced by its argument soon will be needed, so CPU may start fetching
it into its cache.

The abovementioned UNROLL8 PLD WHILE macro, besides performing unrolling,
inserts one pld prefetch instruction per unrolled loop body, assuming that cache
line size equals to 32 bytes, and prefetching next cache line ahead of one iter-
ation. Though this configuration shows +2.5% performance increase on ARMv6,
it was found to be not optimal for Cortex-A8. Technical documentation for this
architecture specifies L2-cache line size equal to 64 bytes, so each pld instruction
generated with the macro hits the same cache line twice on Cortex-A8. Also,
prefetching just 32 bytes ahead may be too little to allow complete loading next
cache line before a new loop iteration begins. On the other hand, if the unrolled
loop iterates just 4 times, long prefetching distance would be fetching values that
will never be used.

We tried different prefetching parameters (distances in range from 32 to
320) and unrolling factors (from 2 to 16) and found that the best performance
with this macro on Cortex-A8 is achieved with no prefetching instruction at
all and with unrolling factor equal to 4. These changes together yield increase
of libevas performance by 6.5%, and the result can be evenly attributed to
removing prefetching and changing unroll factor from 8 to 4. These results par-
tially can be explained by the results of value profiling of UNROLL8 PLD WHILE
parameter size: about 20% of executed loops that are unrolled using this macro
iterate just 4 times, and for about half of these loops the number of iterations
doesn’t exceed 16.

Prefetching is an optimization feature that is hard to implement properly, if
it’s done manually at the source code level, especially when it comes to tuning
for different architectures at the same time. To benefit from this optimization,
hardware cache specification should be taken into the account, such as L1 and
L2 cache sizes, cache line size, the number of memory operations that can be
processed simultaneously, and a latency of loading data from main memory into
cache. GCC has a prefetching optimization (-fprefetch-loop-arrays) com-
bined with loop unrolling, which takes these parameters into account in effort
to generate optimal prefetching code.

GCC ARM backend doesn’t override hardware cache parameters, so with
this optimization common default GCC values are used, which were never tuned
specifically for this architecture. However, as we found with libevas tuning,



these parameters should be set distinctly even among different ARM architec-
tures. Not only these architectures have different latencies, cache sizes and limits
on number of parallelly executed loads, but also prefetch-latency parameter,
measured in number of instructions executed before prefetch operation is com-
pleted, has different meaning depending on instruction latencies and an issue
rate (e.g. Cortex-A8 is a dual-issue, while ARMv6 is single-issue architecture).

We tried to specify cache parameters found in ARM technical specification
(l1-cache-line-size=64, l1-cache-size=32, l2-cache-line-size=256) as
well as tuning them with ACOVEA. Specifying correct parameters from doc-
umentation does improve the performance, but with automatic tuning we have
found other parameter sets that slightly differ from those in technical specs but
give even greater improvement. Here are two best parameter strings found by
ACOVEA, each of them is beneficial for distinct subset of benchmarks:

1. l2-cache-size=256 l1-cache-size=16 simultaneous-prefetches=8
prefetch-latency=200 l1-cache-line-size=32

2. l2-cache-size=512 l1-cache-size=64 simultaneous-prefetches=6
prefetch-latency=400 l1-cache-line-size=64

The second parameter set provides slightly better overall performance, so
in final results table we use the latter. These two parameters have one com-
mon property: the simultaneous-prefetches parameter is set far above GCC
default value of 3.

Some parameters found by ACOVEA differ from those in hardware specifi-
cation, e.g. the best value found for l1-cache-line-size is 32, though ARM
documentation specifies line size equal to 64. Smaller cache line value causes
prefetch optimization to choose smaller unrolling factor (since it tries to issue
one prefetching instruction per unrolled loop body). So the fact that ACOVEA
has found cache line size to be less than that in specification shows that for some
tests smaller unrolling factor is better than not have an extra preload instruction,
which hits the same cache line twice.

Also, it can be noted that prefetching optimization with parameters properly
adjusted is overall 4% better than without prefetching and with just 4 regres-
sions in range 2.73%, opposed to default prefetching parameters which yield 9
regressions in that range and two 13% regressions, while gaining just 2% on av-
erage. Prefetching with parameters properly tuned speeds up certain tests by as
much as 20%.

3.5 Autovectorization for NEON

GCC features autovectorization for many SIMD architectures [8], including NEON
vfpu that is available in Cortex-A8. We studied how well this feature works with
libevas code. After enabling autovectorizer (-ftree-vectorize -mfpu=neon
-mfloat-abi=softfp), we were surprized to observe performance regression.
Since the target application spends most of its runtime in tight rasterization
loops, supposedly it should have respond well to vectorization.



int main() {
int a[256], b[256];
int i;

for (i = 0; i<256; i++) {
a[i] = b[i] >> 8;

}
}

(a) original code

.L2:
add r2, r0, r3
fldd d16, [r2, #0]
vmov.32 r2, d16[0]
vmov.32 r1, d16[1]
mov r2, r2, asr #8
str r2, [r5, r3]
add r2, r5, r3
add r3, r3, #8
mov r1, r1, asr #8
cmp r3, #1024
str r1, [r2, #4]
bne .L2

(b) Original assembly
code generated by
GCC

.L2:
add r2, r5, r3
add r1, r0, r3
add r3, r3, #8
cmp r3, #1024
fldd d16, [r1, #0]
vshl.s32 d16, d16, d17
fstd d16, [r2, #0]
bne .L2

(c) Assembly code after
NEON backend was
fixed

Fig. 3. Autovectorization of shift operation on NEON

First, we have analyzed why so few loops (just about 25%) were vectorized
automatically by GCC. Most common causes of autovectorizer’s failure were
the following: function calls within the loop body (mostly indirect calls, so they
can not be inlined), switch operator within a loop, and unsupported operations
(e.g. there is no support for vector division on NEON). It’s worth to note that
switch operators within loops in libevas are used to specialize two cases for
transparency values 0 and 1, so a multiplication by alpha-channel value could
be replaced with simple copy of either source or destination color value. Though
such specialization prevents the loop from being vectorized for NEON, pure
ARM specialized code still significantly outperforms autovectorized NEON code
on expedite tests.

We have found a problem with autovectorization of shift operations for
NEON. If a loop being autovectorized contains shift operations (>>), autovector-
izer is not able to find appropriate vector shift operation, so loop is vectorized
partially: for all the rest operations (except shifts) vector instructions are gener-
ated, but for shifts data is moved first from NEON vector registers to ordinary
ARM 32-bit ones, then ARM shifts for each vector component are issued, and
finally data is moved back to NEON registers to store the vector into memory.
Such transfers from NEON to ARM core and back cause severe performance
degradation of the affected loops. Figure 3 gives an example of such poor loop
auto-vectorization.

The cause for this problem was a bug in ARM NEON backend, which as-
signed shift operations to wrong operation table. Fixing this issue improved
overall expedite performance by 8.82%, while certain tests (”Rect Blend” fam-
ily), which suffered the most from poor shifts vectorization, grow as much as by
171%. There are few regressions, but most of them are within an error margin.

Also, we have found that specifying -mvectorize-with-neon-quad option
gives slightly better overall results (about 1%) than default double-integer vec-
torization.



4 Experimental results

The performance results on reduced expedite test suite (as described in Section
2) are presented in Table 1. These results were obtained on EBV Beagle board
with vga profile and using linux framebuffer. All the values presented are medians
among 3 runs of the whole test suite. Due to space constraints, we omit those
tests which performed similarly across all optimizations.

We reference each column with corresponding number. In the first row we
specify the options used for benchmarks, or reference with square brackets an-
other column where these options can be found, and specify just those options in
which they differ from the referenced column, e.g. ”[A2] no prefetch, unroll=4”
means ”the same compile parameters as for A2, but with manual prefetching in
macro turned off and unrolling factor set to 4”.

The first column of Table 1 (A1) gives numbers for base GCC optimization
level, -O2. We have chosen -O2 as the base, since our tests have shown that -O2
outperforms -O3 on expedite by 0.5-1%. The second column, A2, shows results
for base optimization level with GCSE turned off. It can be seen that this option
is good for almost every test, since in libevas long constants, whose perfor-
mance is highly affected by GCSE, are widely used in color component masks
(like 0xFF00FF00). The next column, A3 shows our efforts on fixing GCSE to
work properly on ARM rather than disabling it completely. Though currently
with libevas it doesnt show additional gain relative to -fno-gcse, we still
believe that for other applications this approach may be more profitable than
disabling GCSE, as we have seen 10% gain on Aburto’s hanoi benchmark. Still,
this optimization delivers performance 5.5% better than -O2. The next column,
A5, shows results for adjusting unrolling factor from 8 to 4 in UNROLL8 PLD WHILE
macro and disabling there manual prefetching (each of them contributed approx-
imately by 3%). The next two columns, A6 and A7, show numbers for prefetch-
ing/unrolling optimizations (-fprefetch-loop-arrays). This GCC optimiza-
tion with default parameters gives 2% average improvement, but with few seri-
ous regressions up to -13%. If parameters are tuned properly (we used the second
parameter string from Section 3.4), this optimization provides 4% improvement
(A7), while growth is more evenly distributed among tests and without signif-
icant regressions. Total average gain on customized expedite from all ARM
optimizations developed/tuned comparing to base -O2 level is 15.78%.

Due to space constraints, we don’t show separate results table for NEON
autovectorization. The main results for NEON autovectorization are as follows.
Fixing the autovectorization of shifts improved overall expedite performance by
8.82%, while certain tests (”Rect Blend” family), which suffered the most from
poor shifts vectorization, grew as much as by 171%. These results are achieved
with -mvectorize-with-neon-quad option, which gives about 1% overall gain,
and manual unroll factor set to 4 in macro. The manual unrolling factor setting
makes sense for those loops that don’t get autovectorized (e.g. due to the presence
of switch operator). Still, performance on pure ARM (without NEON) is 1.5%
better than that with NEON autovectorization due to unaligned data accesses
that autovectorizer currently doesn’t handle.
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  1 - Widgets File Icons 11.53 11.79 2.25 11.9 3.21 12.35 3.87 13.26 7.37 13.07 -1.43 5.83 13.36 

  2 - Widgets File Icons 2 23.81 24.07 1.09 23.98 0.71 26.85 12.02 31.19 16.16 30.05 -3.66 11.92 26.21 

  5 - Image Blend Unscaled 14.89 14.9 0.07 15.47 3.90 16.46 10.40 16.63 1.03 16.89 1.56 2.61 13.43 
  6 - Image Blend Solid 
Middle Unscaled 10.92 11.06 1.28 11.12 1.83 11.65 4.48 11.78 1.12 11.75 -0.25 0.86 7.60 
  7 - Image Blend Fade 
Unscaled 7.3 7.92 8.49 7.81 6.99 8.3 5.60 8.15 -1.81 8.35 2.45 0.60 14.38 
  9 - Image Blend Solid 
Unscaled 50.71 52.01 2.56 51.58 1.72 50.37 -3.25 50.91 1.07 52.54 3.20 4.31 3.61 
 10 - Image Blend Solid 
Fade Unscaled 10.44 11.73 12.36 11.63 11.40 12.53 6.10 12.38 -1.20 12.54 1.29 0.08 20.11 
 11 - Image Blend Solid 
Fade Power 2 Unscaled 10.46 11.74 12.24 11.63 11.19 12.55 6.18 12.38 -1.35 12.54 1.29 -0.08 19.89 
 12 - Image Blend Nearest 
Scaled 6.41 6.48 1.09 6.73 4.99 7.09 9.92 7.4 4.37 7.45 0.68 5.08 16.22 
 14 - Image Blend Smooth 
Scaled 1.37 1.45 5.84 1.45 5.84 1.47 7.30 1.43 -2.72 1.43 0.00 -2.72 4.38 
 16 - Image Blend Nearest 
Same Scaled 22.81 23.91 4.82 23.86 4.60 24.62 1.53 25.12 2.03 25.05 -0.28 1.75 9.82 
 17 - Image Blend Nearest 
Solid Same Scaled 63.29 64.85 2.46 64.25 1.52 63.84 -1.51 65.43 2.49 66.1 1.02 3.54 4.44 
 18 - Image Blend Smooth 
Same Scaled 22.87 24.22 5.90 23.71 3.67 24.74 2.02 25.13 1.58 25.1 -0.12 1.46 9.75 
 19 - Image Blend Smooth 
Solid Same Scaled 69.94 71.61 2.39 71.31 1.96 69.36 -4.01 70.91 2.23 73.27 3.33 5.64 4.76 

 20 - Image Blend Border 1.47 1.56 6.12 1.56 6.12 1.62 10.20 1.58 -2.47 1.58 0.00 -2.47 7.48 
 21 - Image Blend Solid 
Middle Border 14.15 14.61 3.25 14.61 3.25 14.82 4.15 14.83 0.07 14.84 0.07 0.13 4.88 
 22 - Image Blend Solid 
Border 20.69 21.57 4.25 21.59 4.35 21.73 3.97 21.52 -0.97 21.74 1.02 0.05 5.07 
 23 - Image Blend Border 
Recolor 1.4 1.49 6.43 1.48 5.71 1.51 9.42 1.49 -1.32 1.49 0.00 -1.32 6.43 

 25 - Image Data ARGB 48.18 47.74 -0.91 47.07 -2.30 47.64 1.21 53.73 12.78 55.33 2.98 16.14 14.84 
 26 - Image Data ARGB 
Alpha 18.18 18.41 1.27 18.31 0.72 19.94 8.90 24.02 20.46 22.2 -7.58 11.33 22.11 
 27 - Image Data YCbCr 
601 Pointer List 31.04 31.88 2.71 31.18 0.45 31.89 2.08 32.55 2.07 33.16 1.87 3.98 6.83 
 28 - Image Data YCbCr 
601 Pointer List Wide 
Stride 25.95 27.51 6.01 27.13 4.55 27.57 6.12 27.13 -1.60 28.29 4.28 2.61 9.02 

 29 - Image Crossfade 33.21 34.6 4.19 34.36 3.46 34.85 1.46 45.6 30.85 41.99 -7.92 20.49 26.44 

 30 - Text Basic 38.4 38.89 1.28 38.74 0.89 39.74 4.44 40.68 2.37 41.31 1.55 3.95 7.58 

 31 - Text Styles 3.76 3.8 1.06 3.82 1.60 3.93 3.69 3.94 0.25 3.97 0.76 1.02 5.59 

 33 - Text Change 19.8 19.89 0.45 19.56 -1.21 20.93 6.24 21.58 3.11 21.79 0.97 4.11 10.05 

 34 - Rect Blend 5.76 8.24 43.06 8.19 42.19 10.73 30.22 9.32 -13.14 12.61 35.30 17.52 118.9 

 36 - Rect Solid 44.63 46.73 4.71 45.9 2.85 50.47 9.55 52.88 4.78 53.13 0.47 5.27 19.05 

 37 - Rect Blend Few 711.5 824.2 15.84 818.5 15.04 923.4 14.51 889.4 -3.69 943.8 6.12 2.21 32.65 

 39 - Rect Solid Few 1066 1096 2.80 1088 2.05 1204 12.33 1230 2.14 1176 -4.37 -2.33 10.30 
 41 - Image Blend Occlude 
2 Few 131.1 133.8 2.09 136.1 3.81 139.6 4.97 143.2 2.59 146.8 2.55 5.20 12.01 
 43 - Image Blend Occlude 
1 Many 64.13 67.64 5.47 67.86 5.82 68.92 3.51 68.31 -0.89 69.28 1.42 0.52 8.03 

 45 - Polygon Blend 11.1 13.44 21.08 12.67 14.14 13.65 4.04 13.33 -2.34 15.16 13.73 11.06 36.58 

Geometric Mean 22.97 24.32 5.88 24.23 5.48 25.55 6.47 26.06 1.97 26.60 2.09 4.09 15.78 

Table 1. The performance results (frames per second)



We have also verified the results against full original expedite test suite
(as found in EFL repository) with 11.12% average performance optimization
and with two different Cortex-A8 boards. Also, we verified the results with a
different input data set, getting about 8% gain on original expedite.

5 Future work

Though we have fixed the vector shift instructions, there are still problems re-
maining with this optimization. First, autovectorizer currently is unable to pro-
duce operations involving vector and scalar arguments at the same time, e.g.
for original operation a[i] << CONST it would first produce a vector containing
four identical constants, and only then issue a vector operation a vec[j] <<
4xCONST, though NEON has a distinct operation for shifting vector by a single
scalar. Second, the vectorizer can only handle aligned data, and if at runtime
it finds out it’s misaligned, it executes regular non-vectorized version of a loop,
thus wasting time on alignment checks. We believe that this GCC optimization
has more potential, and additional efforts should be done in improving autovec-
torization for NEON.

The results of tuning GCC loop prefetching/unrolling optimization prove
that it is important for achieving good performance on ARM in applications
with intensive memory usage and regular memory access pattern (like rasteriza-
tion routines in libevas). Its performance results may vary among applications
(as they vary among expedite tests), from input data (with small data sizes
prefetching won’t have time even to complete a load of first portion of data since
prefetch distance may be greater than data size), and from the target architec-
ture. We think that this optimization needs more detailed manual analysis so
to find whether it has some implementation specifics that can be improved on
ARM, as well as automatic tuning of its parameters with more applications.

Also, more general mechanism should be developed to provide GCSE opti-
mization with a target-specific information on representation of constants (e.g.
via a target hook), so to improve code on other architectures that may have
similar constraints to those found on ARM.

6 Conclusions

We have identified a number of performance regressions in GCC optimizations
with libevas on ARM, including GCSE, register allocation, autovectorization
and loop prefetching, and suggested fixes to them. The solutions proposed alto-
gether brought 15.78% average performance increase as measured with reduced
expedite benchmark (as described in Section 2), with up to 119% increase on
certain tests. We have verified the produced speedup on the full benchmark with
11.12% average performance optimization and with up to 119% performance in-
crease on some tests.

Overall, we believe that a project on optimizing GCC compiler for certain
applications and target architecture (both manually and automatically) makes



perfect sense, as such projects identify weak places of the compiler with regard
to this target and application, and fixing these places may bring performance
improvements. The results of such optimization should be made available to
GCC community and developers of the target application so to avoid duplicate
work on the same compiler optimizations and to encourage further development
of the application using coding practices found to help compiler optimizations.
After optimizations developed will be verified on wider range of applications,
they could be enabled by default in GCC compiler for this target platform.
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