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Boolean and Set

Algebra

It has been known for sometime in mathematics that set algebras and Boolean1 algebras

are different perspectives on the same thing.   The treatment of sets here is informal and is

known as naive set theory.  Most of the time naive set theory is sufficient for the purposes of

even professional mathematicians.  Those familiar with this will want to skip the first part of the

chapter.  However, later there is some useful material not usually found in texts.

Set Algebras Boolean Algebras

A set is a collection of objects.  This is not

a formal definition but a casual definition. 

A formal definition of sets is deceptively

difficult and is unnecessary for our

purposes.

A Boolean algebra is a logic algebra.  The

variables take on two values corre-

sponding to truth (1 or T) and false (0 or

F).

There is a more comprehensive treatment of Boolean Algebra 
near the top of cargalmathbooks.com 

1After George Boole (1815-1864).
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The Universal set can be denoted by U or

by 1.

Figure 1 The Universal Set

Truth is denoted by T or by the integer 1.

The empty set is denoted by i or 0.  The

empty set is sometimes known as the null

set.  (Think of an empty file cabinet, or

equivalently a college administrator's

mind.)

False is denoted by F or by the integer 0.

Figure 2 The Empty Set
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Figure 4 The Complement of the
Set X

A set is a collection of objects.  (In this

case it is represented by the interior of a

circle.)

Figure 3 A Set X

A Boolean variable X can take on either

of two values 1 (T) or 0 (F).

The complement of a set is the collection

of all objects not in that set.  (If the set is

the interior of the circle, the complement

is the outside).  The complement of set X

is denoted by X)  or by X'.

Not X is denoted by -X.

If X = 1 then -X = 0.

If X = 0 then -X = 1.
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Figure 5 A c B 

Figure 6 A 1 B

The union of set A and set B is denoted

A c B (sometimes A + B).

A or B is denoted by AwB (sometimes

A + B).

A = 1 and B = 1 Y (implies) AwB = 1.

A = 1 and B = 0 Y AwB = 1.

A = 0 and B = 1 Y AwB = 1.

A = 0 and B = 0 Y AwB = 0.

The intersection of set A and set B is

denoted A 1 B (sometimes AAB).

A and B is denoted by AvB (sometimes

AAB).

A = 1 and B = 1 Y AvB = 1.

A = 1 and B = 0 Y AvB = 0.

A = 0 and B = 1 Y AvB = 0.

A = 0 and B = 0 Y AvB = 0.
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Figure 7 A ! B.

The difference of set A and set B is

denoted A ! B.

There is no (common) logic operator

corresponding to the set operation !. 

Essentially A minus B is A and -B:
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The Laws of Sets and Logic

Associativity

(A c B) c C = A c (B c C)

(A 1 B) 1 C = A 1 (B 1 C)

Associativity

(A w B) w C = A w (B w C)

(A v B) v C = A v (B v C)

Commutivity

A c B = B c A

A 1 B = B 1 A

Commutivity

A w B = B w A

A v B = B v A

Negation

U)  = i

i)  = U

A ! B = A 1 B)

Negation

-1 = 0 (-T = F)

-0 = 1

(Again, there is no common logic relation

corresponding to A ! B.)
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Double Negation Double Negation

--X  =  X

Distribution

A 1 (B c C) = (A 1 B) c (A 1 C)

A c (B 1 C) = (A c B) 1 (A c C)

Distribution

A v (B w C) = (A v B) w (A v C)

A w (B v C) = (A w B) v (A w C)

Complementarity

X c X)   = U

X 1 X)  = i

Complementarity

X w (-X)  = 1

X v (-X)  = 0

Absorption

X c X = X

X 1 X = X

X c U = U

X 1 i = i

Absorption

X w X = X

X v X = X

X w 1 = 1

X v 0 = 0

Identity

X 1 U = X

X c i = X

Identity

X v 1 = X

X w 0 = X

DeMorgan’s Laws DeMorgan’s Laws 

-(A v B) = (-A) w (-B)

-(A w B) = (-A) v (-B)

Of the above laws the distributive laws and the DeMorgan laws are the least intuitive and

perhaps the most useful.  It is a good idea to memorize both of these laws.
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Earlier, to define the logic operator or I used:

A = 1 and B = 1 Y AwB = 1.

A = 1 and B = 0 Y AwB = 1.

A = 0 and B = 1 Y AwB = 1.

A = 0 and B = 0 Y AwB = 0.

Frequently a truth table is used instead.  The truth table for or is:

A or B 1 0

1 1 1

0 1 0

The 1 and the 0 at the left are the possible values for A;  the 1 and the 0 at the top are the

possible values for B.  

Recapitulating and and not we get:

Not A 1

1 0

0 1

A and B 1 0

1 1 0

0 0 0
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Three other important logical relations are XOR, Equiv, and Implies.

XOR represents the exclusive-or relation and is represented by r.  A r B means A or B but not

both.

A XOR B 1 0

1 0 1

0 1 0

G   Exercise  1 Draw the set diagram for A XOR B.  By a set diagram I mean a diagram

like the diagrams for A c B and for A 1 B.  These types of digrams are

known as Venn diagrams.

EQUIV represents the equivalence relation and is represented by /.  A / B means A and B, or

not A and not B.  Note that A / B is true if and only if A r B is false.

A EQUIV B 1 0

1 1 0

0 0 1
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Implication is symbolized by Y or 6.  This is the definition that always bothers students:  A Y B

is false if and only A is true but B is false.  In ordinary discourse we usually avoid the case that

A is (known to be) false.  Formally though, if A is false then A Y B is true.

A IMPLIES B 1 0

1 1 0

0 1 1

G   Exercise  2 Rewrite A r B, A / B, A Y B each using just w, v, and -.  Hint: the

answer is not unique.  Note also, that due to DeMorgan's laws one can

use just w and - or one can use v, and -.  Lastly, if you are new to logic,

don't lose sleep over this exercise;  just try to see if you can understand

the answer given in the back of the book.

10



A Useful Programming Trick (Indicator Functions)

In programming, there are two methods used for handling Boolean logic.  The first

method is to use Boolean logic that is built into the language itself.  Another method is to define

Boolean functions.  A definition for or might look like this:

Define Or(X,Y)

Begin

Comment:  X and Y should only have values 0 and 1.

If X = 1 then Return 1

Else  If Y = 1 then Return 1

Else Return 0

End

This works okay but it is too much (computational) time and code. Another method is  simply

to define the following function:

OR(X,Y) = X + Y ! XAY

Note that if either X or Y is 1, this function returns 1 otherwise it returns 0.  It behaves as the or

is supposed to behave, that is according to the truth table in the previous section.  All the logical

functions can be treated analogously:

NOT(X) = 1 ! X

AND(X,Y) = XAY

XOR(X,Y) = X + Y ! 2AXAY

EQUIV(X,Y) = 1 ! X ! Y + 2AXAY

IMPLIES(X,Y) = 1 ! X + XAY

These functions are sometimes referred to as indicator functions.  (AND(X,Y) = 1 indicates that

X and Y is true. 

G   Exercise  3 Show that the functions just defined give the answers that are required by

their respective truth tables.
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Some Unusual Boolean Algebra1

(This section extremely optional)

It so happens that there are many sets of logical operations that are sufficient for

describing the rest.2  Ordinarily most of us feel comfortable with and, or and not.  Again, we can

use DeMorgan's laws to dispense with either and or or.  However, it is convenient to use these

three operators.  This is largely because they obey the laws given above.  In particular both and

and or are associative and commutative.  

However, the two operations r and / are also commutative and associative and they can

be extremely useful.  In particular, all of Boolean algebra can be easily described with v, and

r.  Again, r is the exclusive-or relation and is sometimes call the ring-sum relation.3  Also, it

is convenient to write the and relation as multiplication.  That is, instead of A v B, we write AAB

or just AB.

In the rest of this section, I will work in the language of logic.  However, everything can

be reinterpreted in terms of sets.  I am going to state the laws of Boolean rings, that is the logic

based upon v, and r.  The laws of Boolean rings are easier to use than the usual Boolean algebra

that is described in the first section of this chapter.  Boolean rings require fewer laws than

Boolean algebras.  The greatest advantage of Boolean rings is that given two expressions E1 and

E2 in a Boolean ring, it is easy to see if they are equivalent, that is whether E1 = E2.  The

corresponding problem in Boolean algebras can be difficult to solve.  The drawback to Boolean

rings is that Boolean ring expressions require far more terms than Boolean algebra expressions. 

1This material is definitely not required later.

2In particular all of the logic operations can be described in terms of just a single
operation.  One operation that will do this trick is NOT BOTH.  The other operation that will do
the trick is NEITHER-NOR.  Logic based upon using just one of these two operations is quite
unpleasant.  The operation IMPLIES will do everything as well if one is willing to use
F IMPLIES x, to indicate NOT x.  

3(For advanced students) the set algebra with operators v, and r is an algebraic ring.  It
is known as  a Boolean ring.  The ring has elements 1 (the universal set) and 0 (the empty set). 
A Boolean ring can be characterized as a ring such that for any element  x, xAx = x.
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However, for small problems that occur in computer programming, Boolean rings can be much

more convenient than Boolean algebras.

It is not difficult to prove any of the following statements but I am going to simply list

the basic laws of Boolean rings:  

< (XY)Z  =  X(YZ),  (X r Y) r Z  =  X r (Y r Z) (associativity)

< XY  =  YX,  X r Y  =  Y r X  (commutivity)

< X(Y r Z)  =  (XY) r (XZ)  (distribution)

< X r X  =  0  (cancellation)

< XX   =  X 

< X or Y  =  X r Y r XY.  In general, A or B or ... N is the ring-sum of all products of

terms of A,B,...,N.  For example, A or B or C  =  A r B r C r AB r AC r BC r ABC.

<  A xor B  =  A r B.  XOR(A,B,C) by which we mean A or B or C but no more than one

of those is A r B r C r ABC.  In general,  XOR(A, B, ... N) is the ring-sum of all odd

products of terms of A,B,...,N. 

< Not X is written 1 r X.

If we extend our algebra to include / we get the following very interesting laws:1

< (X / Y) / Z  =  X / (Y / Z)  (associativity)

< X / Y  =  Y / X  (commutivity)

< X / Y = 1 r (X r Y)  

< X r Y  =  0 / (X / Y)

< X r Y r Z  =  X / Y / Z

< X r (Y / Z)  =  (X r Y) / Z,  X / (Y r Z)  =  (X / Y) r Z

< X r (Y / Z)  =  X / (Y r Z)

1These laws can be extended to include the or relation, w.  Obviously if we use  all the
relations !, -, /, r, v, w we get one hell of a syntax, but it is not as difficult to learn as one
might think, and there can be a great pay-off in efficiency.
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A Simple Application of Boolean Rings

We will use the laws of Boolean rings to prove DeMorgan's laws:

-(AB) = (-A) w (-B)  

-(A w B) = (-A)(-B)

To prove the first law, we write (-A) w (-B) as 

(1 r A) r (1 r B) r (1 r A)(1 r B).

Using the distributive law we get 1 r A r 1 r B r 1 r A r B r AB.  Using cancellation we get

1 r AB and we are done.

To prove the second law we write -(A w B) as 1 r (A  r B r AB).  However, this can

be seen to be equal to (1 r A)(1 r B) and we have proven the second law.
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1.   A cubist rendition of A XOR B.

2. XOR:  A r B  =  (Av(-B))w ((-A)vB)
EQUIV:  A / B  =  (AvB)w ((-A)v(-B))
IMPLIES:  A Y B  =  (-A)wB  also worth mentioning is -(Av(-B))

3. This exercise requires that in each function you substitute all four cases (X = 0 or 1 and
Y = 0 or 1) and that the function gives the same value as required in the truth table for
that logical operation.  There is one logical operation that only has two cases to investi-
gate:  NOT(X) = 1 ! X.  If X is 0 then NOT(X) = 1.  Similarly, if X = 0 then
NOT(X) = 1.  This is precisely as is required by the truth table for NOT.
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