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Abstract

The notion of Magnetism as relativistic side effect of Electro Statics can be derived from the
work of Lienard & Wiechert around 1900, and the correct form of the Lorentz transformations
established a few years later. 100 years later we are now teaching this concept to undergrade
students with the help of a popular derivation following Purcell who presented this derivation
in his 1963 textbook.

This derivation however is questionable. Mainly so because the test-charge used to measure the
force outside the wire-with-current, has a velocity alongside the wire which is, unrealistically,
taken to be always the same as the charge velocity inside the wire itself. So, when the test-
charge doubles it speed, the current I through the wire is also doubled and the magnetic force
is quadrupled. This however, makes it impossible to determine if the contributions to the
higher magnetic force come from either the higher current I, the higher speed v, or both.

The electrons in a real live wire drift with a wide range of different velocities which together
produce the current I. We will discuss our derivation, which only needs the current I through
the wire and the speed v of the test-charge. Surprisingly, this derivation turns out to be even
simpler as Purcell’s. (for the case of the charge moving parallel to the wire).

We will also derive the case where the charge is moving perpendicular instead of parallel to
the wire. We discuss the required charge-carrier-density in a current carrying wire in order
to be electrically neutral in the rest-frame. To be self consistent we will derive the relativistic
EM Potential and the relativistic Electrostatic Field for a point particle from the classical EM
wave equations in a way which is both short and simple.
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1 The correct derivation based on non-simultaneity.

We’ll now give the correct derivation for the case when the test-charge moves parallel with the
wire. This derivation is actually even simpler than Purcell’s one. We want to prove that Special
Relativity alters the apparent net charge density qL of the wire from neutral to a non-zero value.

As stated, we in fact do not need to deal with the speed of the electrons in the wire at all, just with
the current I which the wire is carrying. We start of with the two standard textbook formulas
involved. Here Q is the test-charge which is moving alongside the wire with a speed of v and y is
the distance between the test-charge and the wire.

Fmag. =
vI

2πεoc2y
Q ≡ Felec. =

qL
2πεoy

Q ⇒ qL = I
v

c2
(1)

The first formula gives the magnetic force on the test-charge moving in parallel with the wire.
The second formula gives the electric force on the test-charge from the wire when the wire has a
non-zero charge-density qL. By equating the two formulas we get an expression for the net charge
density. That is: The test-charge moving with a speed v along a neutral wire with current I should
see a non-neutral wire with a charge density of qL = Iv/c2. With this expression in mind we now
turn to the standard Lorentz transformations:

t = γ
(
t′ − v

c2
x′
)
, x = γ (x′ − vt′) (2)

All we need here is the factor v/c2 in the expression for the time t which describes the non-
simultaneity. The magnetic force is proportional to this factor as shown above. We can even
ignore the factor γ in the formula for t, We can use v/c2 instead of γ v/c2. The difference at low
speeds can be neglected for our purpose. The typical average drift velocity of electrons in domestic
electro motors is in the order of a millimeter per second.

We need an understanding of what is happening as a result of non-simultaneity: An observer in
the moving test-charge frame, who moves along with the wire (say in the same direction as the
electrons in the wire) will, due to non-simultaneity, ’see’ into the future of the wire downstreams
of the electrons, and into the past at the side where the electrons enter the wire. ’Seeing’ is of
course the wrong word. We just redefine simultaneity different in a different reference frame. We
however have to adopt our calculations as if these events in the past and future are simultaneous
to our time when we are observing from the test charge’s rest-frame.

Figure 1: The correct derivation based on non-simultaneity.

The future at the downstream side of the electrons means that they did stream further out of the
wire there. At the other hand, the past, at the side where the electrons enter the wire, means that
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less electrons have streamed into the wire there. The overall result is thus that we must calculate
with less electrons in the wire per unit of length as positive ions. More electrons have streamed
out while less of them have streamed in. Now, how much does the charge density change? Well,

qL dx = I dt = I
v

c2
dx (3)

qL dx is the total charge in the piece of wire dx, this corresponds with the current I going on for
a time dt. The time difference dt due to non-simultaneity between the two ends of a piece of wire
dx is v/c2dx as we did see from the standard Lorentz transformation.

It means that the current-out-of-the-wire has gone on longer for a time of dt = v/c2 dx compared
to the current-into-the-wire at the other side. This then simply gives us the change of the charge
in the piece of wire dx and thus gives us the charge density qL. We see that the expression for qL
is exactly the one we found which was needed.

2 Neutral wire condition from the relativistic charge field.

After the simple derivation given above we want to look at the full derivation. We start with
the electrostatic field of a point charge which depends on the speed of the charge, That is, the
shape of the electrostatic field itself changes as a result of Special Relativity. This was first shown
by Lienard & Wiechert in 1900, before Einstein’s paper of 1905. They derived it from classical
physics, presuming that the speed of propagation is c. Indeed, Lorentz contraction and also time
dilation arise from classical physics. We will derive the relativistic electrostatic field in the final
section of this paper in a both simple and short way directly from the classical wave equation of
the EM potentials.

Figure 2: The Electrostatic Field of the Ion at rest and the moving electron

Here we will start with the formula in the form as given by Jackson (11.154). We will use the
remainder of this section to show one thing: In order for a current carrying wire to be neutral in
its rest frame it is required that the density of the moving electrons (density per unit of length)
is simply equal to that of the density of the positive ions. So even if the field of the individual
moving electrons is different, the end result is the same.

This is because two effects cancel each other. The field becomes stronger in the y direction by a
factor γ but weaker in the x direction (along the wire) by a factor γ2. The two effects cancel if we
integrate over the wire. This does mean that the presumption that the electron density is equal to
the ion density for a neutral current carrying wire was indeed correct. We’ll do the math starting
with the formula as given by Jackson:
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E =
qr

4πεor3γ2(1− β2 sin2 ψ)3/2

(
lim
v→0

E =
qr

4πεor3

)
(4)

Unlike Jackson we maintain the factor 4πεo. This is just a question of using more familiar units.
E and r are vectors, pointing in the same direction and β = v/c as usual. If we set sinψ = 0 we
have the field in the x-direction along the wire, which is weaker by a factor γ2. Setting sinψ = 1
gives us the field in the y-direction, stronger by a factor γ. We can separate this formula in its
individual Ex, Ey components:

Ex =
qx

4πεor3γ2(1− β2 sin2 ψ)3/2
, Ey =

qy

4πεor3γ2(1− β2 sin2 ψ)3/2
(5)

We’ve can get rid of the sinψ factor here by substituting sinψ = y/
√
x2 + y2. We start using βx

for β here just to emphasize that the speed is in the x-direction.

Ex =
q(1− β2

x)x
4πεo(x2 + (1− β2

x)y2)3/2
, Ey =

q(1− β2
x)y

4πεo(x2 + (1− β2
x)y2)3/2

(6)

Now we have the formula in a way which is appropriate to integrate over x, along the (infinitely
long) wire. Thanks to the fact the we have symbolic integrators nowadays we immediately get:∫

Exdx =
−(1− β2

x)qL
4πεoy

√
x2 + (1− β2

x)y2
,

∫
Eydx =

qLx

4πεoy
√
x2 + (1− β2

x)y2
(7)

Well, this one wasn’t that difficult, so you might have recognized it. Note that we have changed q
into qL, the charge-density per unit of length. Since the wire is infinitely long we integrate from
−∞ to +∞. ∫ +∞

−∞
Exdx = 0,

∫ +∞

−∞
Eydx =

qL
2πεoy

(8)

We see that the field of the moving electrons is the same as the field for the electrons at rest. The
result is independent of the speed of the electrons. We arrived at this result by assuming that the
number of electrons per unit of length stays the same, regardless of if they do move or not move.

3 The test charge moving perpendicular to the current.

Here we derive the Magnetic force on a test-charge moving perpendicular to the wire. This force
should be parallel to the wire itself. This derivation is a little bit more involved, so we start with
the formula for the relativistic electrostatic field for a point charge from Jackson (11.154)

E =
qr

4πεor3γ2(1− β2 sin2 ψ)3/2
(9)

We repeat: E and r are vectors, pointing in the same direction and β = v/c as usual. If we set
sinψ = 0 we have the field along the direction of motion of the point charge, which is weaker by
a factor γ2. Setting sinψ = 1 gives us the field perpendicular to the direction of motion of the
charge, being stronger by a factor γ. Again we start by separating this formula in its individual
Ex, Ey components:
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Ex =
qx

4πεor3γ2(1− β2 sin2 ψ)3/2
, Ey =

qy

4πεor3γ2(1− β2 sin2 ψ)3/2
(10)

In this case we have a β = v/c which can have components both in the x and y-direction. We shall
consider the test-charge at rest. This means that the positive ions in the wire move either to us
or away from us. Their speed has an y-component only. The electrons in the wire have the same
y-component and, in adition to that, a component in the x-direction because they move through
the wire.

Figure 3: The charge moving perpendicular with the current.

The image shows how the electron fields are rotated. There will be a net force pulling a positive
test charge from left to right. In order to integrate we want to get rid of the sinψ term first. We
can do this with the following identity:

| ~r × ~β | = rβ sinψ (11)

(~r × ~β) · (~r × ~β) = r2β2 sin2 ψ = (βyx− βxy)2 (12)

We get the absolute value of the cross-product by doing a dot-product with itself. It turns out
that the squared value is exactly what we need to get rid of the sin2 ψ terms:

Ex =
q(1− β2

x − β2
y)x

4πεo(x2 + y2 − (βyx− βxy)2)3/2
, Ey =

q(1− β2
x − β2

y)y
4πεo(x2 + y2 − (βyx− βxy)2)3/2

(13)

These expressions show all the x values explicitly. This is what we need to integrate the fields from
all the charges over the wire. (in the x-direction)

Symbolic integration software really helps with these ones. We obtain the following as the results:∫
Exdx =

−QL

(
βxβyx + (1− β2

x)y
)

4πεoy
√

(1− β2
y)x2 + 2βxβyxy + (1− β2

x)y2
(14)

∫
Eydx =

QL

(
(1− β2

y)x + βxβyy
)

4πεoy
√

(1− β2
y)x2 + 2βxβyxy + (1− β2

x)y2
(15)

Note that we have changed q into QL, the total charge-density per unit of length for each type
of charge carrier, either the electrons or the positive ions. This is the total charge and not the

6



net difference of the charges, for which we have used qL. Now, since the wire is infinitely long we
integrate from −∞ to +∞.

∫ +∞

−∞
Exdx =

−βxβy QL

2πεo
√

1− β2
y y

,

∫ +∞

−∞
Eydx =

√
1− β2

y QL

2πεoy
(16)

We must take these values for both the electrons and positive ions. Only the electrons have a
non-zero Ex value since the ions have no βx, which is the speed at which the electrons move trough
the wire. We see that the Ey fields for both charge types cancel each other. We use the following
to make a few substitutions:

I = vx QL = cβx QL, vy = cβy (17)

Now, in this case, we have the right formula for the current I through the wire, because vx is the
speed of the electrons relative to the positive ions and QL is the charge-density of the electrons.
Substituting and ignoring the γ factor we get the required result. The magnetic force on a charge
moving perpendicular to a current carrying wire:

Fmag =
vyI

2πεoc2y
Q ≡ Felec =

vyvx QL

2πεoc2y
Q ⇒ I = vxQL, vy = cβy (18)

4 The relativistic Potentials of the point charge.

To be self consistent and complete we will derive here the relativistic EM potentials of a moving
point charge. In the next section we will use this to get the relativistic electrostatic field formula
which we have used several times in this document. We start with the classical wave function which
naturally generates the Lorentz contraction of the potentials. Yes. classical physics generates these
relativistic effects.

Classical Wave equation:
∂2ψ

∂t2
= v2 ∂

2ψ

∂x2
(19)

The derivatives in time and space are equal, except for a constant which comes from the characteris-
tic speed of the medium. This simply means that the equation is satisfied by any arbitrary function
which shifts along with a speed v (or −v). We can expand this equation to three dimensions, for
instance for the electric potential field V :

Electric Potential:
∂2V

∂t2
= c2

∂2V

∂x2
+ c2

∂2V

∂y2
+ c2

∂2V

∂z2
(20)

Where c is the speed of light. The same expression holds for the three components of the magnetic
vector potential. Again these equations are satisfied by any arbitrary function which shifts along
with the characteristic speed c.

In our world however we also see things which are stationary or move at other speeds as the speed
of light. If we go to three (or more) space dimensions then such solutions become possible. A
stable solution which shifts along with an arbitrary speed v in the x direction will satisfy both (19)
with a speed of v and (25). We can use this to eliminate the time dependency:
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(
1− v2

c2

)
c2
∂2V

∂x2
+ c2

∂2V

∂y2
+ c2

∂2V

∂z2
= 0 (21)

This shows that the solutions are Lorentz contracted in the direction of v by a factor γ, The first
order derivatives are higher by a factor γ and the second order by a factor γ2. Velocities higher
then c are not possible. The solution for v = 0 is:

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0, ⇒ V =

1
r

(22)

Which is the electro static potential. The equation is satisfied at all points except for r = 0
where we have a singularity. This singularity is now associated with the classical (point)charge.
Without it there would be no solutions at sub-luminal speeds. The total solution is an arbitrary
superposition of 1/r functions. This includes the Quantum Mechanical fields where the charge is
spread out over the wave function. Now going to the EM potentials. For a non-relativistic speed
(along the x-axis) these are the familiar:

V =
q

4πεor
, Ax = βxV, Ay = Az = 0 (23)

These now simply become contracted in the x-direction by a factor γ, so we multiply any occurrence
of x by γ. Since the size of the whole decreases we multiply the overall result also by a factor γ,
to maintain the same result if we integrate over all of space:

V =
q γ

4πεo
√
γ2x2 + y2 + z2

, Ax = βxV, Ay = Az = 0 (24)

We should mention here, although without further proof, a property of fundamental importance
of the wave function in the form of the d’Alembert operator:

d’Alembert operator: � ψ =
(
∂2

∂t2
− c2 ∂

2

∂x2
− c2 ∂

2

∂y2
− c2 ∂

2

∂z2

)
ψ (25)

This operator performs a deconvolution of the field ψ with the light cone. What this means is that,
if ψ is for instance the potential caused by numerous moving and accelerating (radiating) charges
on arbitrary curved paths, that, this operation will give you back a function which is everywhere
zero except on all the paths of the charges. Using this operator on the magnetic vector potentials
will give you back the velocities which the charges had on every location of their paths.

5 The relativistic Electrostatic Field of the point charge.

Finally we want to derive Jackson’s formula (11.154) for the relativistic electric field ~E here. This
is straight forward by using Maxwell’s laws to obtain the field from the potentials V and Ax, Ay

and Az.

Ex = −∂V
∂x
− ∂Ax

∂t
, Ey = −∂V

∂y
− ∂Ay

∂t
, (26)

The magnetic vector potentials Ax and Ay have a simple relation with the potential V :
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Ax = βxV, Ay = βyV = 0 (27)

We can change a derivative in t to derivative in x by simply multiplying it with −βx since our
solution shifts in the x-direction with a speed vx, so we have:

∂Ax

∂t
= −βx

∂Ax

∂x
= −β2

x

∂V

∂x
, thus: (28)

Ex = −∂V
∂x
− ∂Ax

∂t
= −(1− β2

x)
∂V

∂x
= (1− β2

x)
q γ3x

4πεo(γ2x2 + y2)3/2
(29)

The Ey case is simple since Ay = 0. We now get for the components of the electric field:

Ex =
q γ x

4πεo(γ2x2 + y2)3/2
, Ey =

q γ z

4πεo(γ2x2 + y2)3/2
(30)

Which we can write in vector form:

E =
q γ r

4πεo(γ2x2 + y2 + z2)3/2

(
lim
v→0

E =
qr

4πεor3

)
(31)

Finally by the substitution of sin2 ψ = (y2 + z2)/(x2 + y2 + z2) we get Jackson’s formula (11.154)

E =
qr

4πεo r3γ2(1− β2 sin2 ψ)3/2
(32)
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