Elliptic Curves in the BasicCard

Tony Guilfoyle
ZeitControl cardsystems GmbH
e-mail: TonyGuil@aol.com

14" February 2000
4 N\
7 AN
A P+Q
N/
S >
0
_ J

Abstract: This paper describes the implementation of Elliptic Curve Cryptography in ZeitControl’s
Enhanced BasicCard, an inexpensive programmable smart card. The full BasicCard documentation and
development software is available, free of charge, from our web site at www.BasicCard.com.

Note: This paper assumes familiarity with IEEE proposed standard P1363.

ZeitControl

cardsystems GmbH

<

Siedlerweg 39
D-32429 Minden
Germany

Tel: +49 (0) 571-50522-0
Fax: +49 (0) 571-50522-99
Web sites:

http://www.zeitcontrol.de
http://www.basiccard.com

http://www.basiccard.com/
http://www.zeitcontrol.de/
http://www.basiccard.com/

1 Introduction

ZeitControl’s BasicCards were developed with the aim of making the programming of smart card
applications as simple and inexpensive as possible. There are two types of BasicCard: the Compact
BasicCard, with 1K of EEPROM, and the Enhanced BasicCard, with up to 16K of EEPROM. Elliptic
Curve Cryptography requires the Enhanced BasicCard; the entry level version, the Enhanced
BasicCard ZC3.3 with 8K of EEPROM, is available for $3.95 in small quantities. Enhanced BasicCard
versions ZC3.5 and ZC3.6 contain the Elliptic Curve Fast Signature Algorithm (EC-FSA), which
enables them to perform an Elliptic Curve digital signature in 1.2 seconds.

A BasicCard application is programmed in ZeitControl’s ZC-Basic language. This language is similar
to Microsoft® Visual Basic, with special features to facilitate the implementation of 1SO-compatible
commands. An application will typically consist of two programs: the Terminal program, running in a
PC and issuing commands; and the BasicCard program, running in a BasicCard and executing those
commands. The commands are compatible with ISO standard 7816-4, so it is not necessary to program
both ends in ZC-Basic. For instance, you can write a ZC-Basic Terminal program to talk to a German
Geldkarte; or you can program a BasicCard in ZC-Basic to respond to ISO commands from a card
reader in a bank. (We have done both these things; fortunately the highly-secure Geldkarte system
offered us no temptations that we had to resist.)

So ZC-Basic is an amphibious language, running equally happily in a PC or in a BasicCard. With a few
exceptions, the Elliptic Curve library presents the same user interface on both platforms.

2 Elliptic Curves in Basic?

Basic is a much-denigrated language. It has been estimated (by Microsoft, admittedly) that 70% of all
programs are written in Basic; but | have never met anybody who claims to be a Basic programmer.
Perhaps | move in the wrong circles. In any case, when ZeitControl came to me and asked if | could
make them a Basic card, my immediate response was, “Surely you mean Java card?” “No, no”, they
said, “we want to build a Volkswagen, not a Ferrari! Look out of your window — how many Ferraris do
you see in the street?” And they were right. Basic has proven to be perfectly adequate for smart card
applications, and free of all the implementation headaches associated with Java cards.

In particular, the ZC-Basic language copes admirably with the data elements used in Elliptic Curve
Cryptography. The algorithms themselves are written in other languages (C++ in the PC, and 8051
Assembly Language in the BasicCard), but session keys and curve parameters and such like can be
handled quite naturally in Basic. A variable of type String is stored as a length byte n followed by n
bytes of data; so it can hold binary data, including nulls. A fixed-length String*n type is also available.
And ZC-Basic supports user-defined types, or structures. So, for example, we can define a data type
that contains all the curve parameters:

Type ECl61Donai nPar ans
a as Byte
b As String*21
r As String*21
k As Byte
G As String*22
End Type

This definition comes from the file EC-161.DEF, supplied with the BasicCard development kit.

The Elliptic Curve library is not contained in ROM,; it is loaded into EEPROM with the ZC-Basic
statement:

#Include EC-161.DEF

The Elliptic Curve library (together with the Secure Hash Algorithm library, which it uses) occupies
about 5 kilobytes of EEPROM. Even in the 8-kilobyte Enhanced BasicCard, this leaves plenty of room
for a simple application; and more complex applications are possible in the 16-kilobyte version.

3 EC-161: An Overview

The EC-161 library implements 161-bit Elliptic Curve Cryptography, for Terminal programs and
Enhanced BasicCard programs. The following operations are supported:

e private/public key pair generation;

e shared secret derivation;

e session key generation;

e digital signature generation;

e digital signature verification (Terminal program only).

Here is a list of the procedures in the EC-161 161-bit Elliptic Curve library. The definitions (in bold
type) are presented in standard Basic. For those unfamiliar with the Basic language, there are two ways
to specify the data type of a function or parameter:

e with the final character of the function or parameter name (here only ‘$” occurs, specifying a
String type);

e with ‘As type’ following the declaration.
Initialisation Procedures

Sub EC161SetCurve (Params As EC161DomainParams)

Specify the domain parameters for the Elliptic Curve. (These will usually come from a file
generated by ZeitControl software, but this is not required.) See previous section for the
definition of type ECDomainParams.

Note: This procedure is required only in Terminal programs, not BasicCard programs.
Sub EC161GenerateKeyPair (Seed$)

Generate a private-key/public-key pair, saving the results in the public String variables
EC161PrivateKey and EC161PublicKey.

Sub EC161SetPrivateKey (Key$)

Set a specific private key, and generate the corresponding public key, saving the results in the
public String variables EC161PrivateKey and EC161PublicKey.

Cryptographic Schemes

Function EC161SessionKey (KDP$, SharedSecret$) As String

Generate a 20-byte session key from the Key Derivation Parameters KDP$ and the given
SharedSecret$. This is the P1363 scheme ECKAS-DH1: Elliptic Curve Key Agreement
Scheme, Diffie-Hellman version, where each party contributes one key pair.

Sub EC161HashAndSign (Signature$, Message$) As String

Compute the SHA-1 hash of the given message, and sign it with EC161Sign. This is the
Signature Generation Operation of P1363 scheme ECSSA: Elliptic Curve Signature Scheme
with Appendix.

Function EC161HashAndVerify (Signature$, Message$, PublicKey$)

Compute the SHA-1 hash of the given message, and verify the signature with EC161Verify.
This is the Signature Verification Operation of P1363 scheme ECSSA: Elliptic Curve
Signature Scheme with Appendix.

Cryptographic Primitives

Function EC161SharedSecret (PublicKey$) As String

Generate the shared secret corresponding to the given PublicKey$. This is the P1363 primitive
ECSVDP-DH: Elliptic Curve Secret Value Derivation Primitive, Diffie-Hellman version.

Sub EC161Sign (Signature$, Hash$) As String

Compute the signature for the given Hash$ value. This is the P1363 primitive ECSP-NR:
Elliptic Curve Signature Primitive, Nyberg-Rueppel version.

Function EC161Verify (Signature$, Hash$, PublicKey$)

Verify a signature for the given Hash$ value. This is the P1363 primitive ECVP-NR: Elliptic
Curve Verification Primitive, Nyberg-Rueppel version.

In the descriptions of the individual libraries, error codes may be defined. These error codes are
signalled via the ZC-Basic variable LibError. This variable contains the most recent error code
signalled by a library procedure.

4 EC-161: The Elliptic Curve Library

This section describes the procedures in more detail. (For a full explanation of the ZC-Basic language,
download the BasicCard documentation from www. Basi cCar d. com) To load the Elliptic Curve
library:

#Include EC-161.DEF
The file EC-161.DEF is supplied with the distribution kit, in the Basi cCr d\ Li b directory.

Setting the Elliptic Curve Parameters

An Elliptic Curve is defined by its EC Domain Parameters; three suitable Elliptic Curves are supplied
in the directory Basi cCrd\Li b. Choose one of these at random for your application. Files
EC161-1.CRV through EC161-3.CRV contain curve definitions in ZC-Basic, for inclusion in a source
program. File EC-161.BIN contains the binary data for all three curves, for run-time loading in a
Terminal program.

To specify an Elliptic Curve in an Enhanced BasicCard program:
#Include EC161-X.DEF

where X is a number from 1 to 3. In a BasicCard program, the curve must be chosen at compile time; it
can’t be re-loaded at run-time.

In the Terminal program, an Elliptic Curve must be explicitly loaded using EC161SetCurve. There are
three ways of doing this:

e If you know in advance which curve to use, you can include its definition file. For example:

#1 ncl ude EC161- 3. DEF
Call ECl161Set Curve (ECl61Parans)

But note that only one such definition file is allowed in a program.

e If the card has a suitable command, you can load the curve from the card. For example:

Private Curve As ECl161Donai nPar ans
Call GetCurve (Curve) : Call CheckSWLsSwe()
Call EC161Set Curve (Curve)

See Basi cCr d\ Exanpl es\ EC for an example of this.

e You can read the curve from the binary file EC-161.BIN. For example:

Private Curve As ECl161Donai nPar ans

Open "EC-161. BIN' For Random As #1 Len=64
Get #1, 3, Curve ' Read Elliptic Curve #3
Cl ose #1

Cal | CheckFil eError()

Call ECl161Set Curve (Curve)

If the EC domain parameters are invalid, procedure EC161SetCurve returns error code
EC161BadCurveParams in variable LibError.

In the Terminal program, you must call EC161SetCurve before you call any other procedures from the
EC-161 library. If not, error code EC161CurveNotlInitialised will be returned in variable LibError.

Key Generation

To generate a public/private key pair:
Call EC161GenerateKeyPair (Seed$)

This procedure uses Secure Hash Algorithm library SHA-1 to generate a cryptographically strong
pseudo-random number from Seed$, for use as a private key. The 21-byte private key and its associated
22-byte public key are stored in Eeprom strings EC161PrivateKey and EC161PublicKey.

See the BasicCard documentation for more about pseudo-random numbers in SHA-1.
Setting an Explicit Private Key

To set an explicit value for a private key:
Call EC161SetPrivateKey (Key$)

This procedure copies Key$ (reduced modulo r) to the 21-byte Eeprom string EC161PrivateKey, and
computes the associated 22-byte Eeprom string EC161PublicKey. (Here r is the order of point G —
see 5 Binary Representation Formats: EC Domain Parameters.)

If Key$ is zero modulo r, error code EC161BadProcParams is returned in variable LibError.

Note: In Enhanced BasicCard versions ZC2.3 and ZC2.4, this procedure takes about 2 seconds to
execute at a clock speed of 3.57 MHz. However, in the EC-FSA cards, it can take up to 7 seconds. But
if you don’t need to compute EC161PublicKey, you can simply copy Key$ to the public variable
EC161PrivateKey, and the Elliptic Curve routines will work correctly.

Generating a Digital Signature

A private key is used to generate digital signatures. To sign a message consisting of a String
expression:

Call EC161HashAndSign (Signature$, Message$)

This subroutine returns a 42-byte string in the Signature$ parameter.

To sign a longer message, first compute the hash function for the message (see the Secure Hash
Algorithm library SHA-1 in the BasicCard documentation), and then

Call EC161Sign (Signature$, Hash$)

If no private key has been set, these functions return error code EC161KeyNotlnitialised in variable
LibError.

In Enhanced BasicCard versions ZC2.3 and ZC2.4, digital signature generation takes about 2.5 seconds
at a clock speed of 3.57 MHz. In the EC-FSA cards, it takes about 1.2 seconds.

Verifying a Digital Signature
Note: Verification of Digital Signatures is only possiible in a Terminal program. It is not supported in
the Enhanced BasicCard.

To verify a digital signature, you need the signer’s public key. To verify the signature of a message
consisting of a String expression:

Status = EC161HashAndVerify (Signature$, Message$, PublicKey$)

Signature$ The 42-byte signature to be verified

Message$ The message that was signed

PublicKey$ The signer’s 22-byte public key

This function returns True of False according to whether the signature is valid or not.

To verify a longer message, first compute the hash function for the message (see the Secure Hash
Algorithm library SHA-1 in the BasicCard documentation), and then verify its signature with the
function:

Status = EC161Verify (Signature$, Hash$, PublicKey$)

If Signature$ is not 42 bytes, or PublicKey$ is not 22 bytes, error code EC161BadProcParams is
returned in variable LibError.

Session Key Generation

If two parties know each other’s public keys, they can use them to agree on a secret 21-byte value. This
value is called the shared secret for the two parties; to compute it, you need to know the private key of
one party (either one will do) and the public key of the other party. To compute the shared secret:

SharedSecret$ = EC161SharedSecret (PublicKey$)
PublicKey$ The other party’s 22-byte public key
SharedSecret$ The 21-byte shared secret

If PublicKey$ is not 22 bytes long, or it is not a point on the curve, error EC161BadProcParams is
returned in variable LibError.

This shared secret can then be used to generate 20-byte session keys for encrypting messages between
the two parties; unlike the shared secret, a session key can be different on different occasions.

To generate a session key, the parties must agree on a Key Derivation Parameter, which can be any
sequence of bytes, and need not be kept secret. For maximum security, it should be different each time
a session key is generated. For example, it might be a standard header followed by the date and time.
To generate the session key:

SessionKey$ = EC161SessionKey (KDP$, SharedSecret$)

KDP$ Key Derivation Parameter, a string of any length
SharedSecret$ The shared secret value, returned by EC161SharedSecret
SessionKey$ The 20-byte session key

Note: In the BasicCard, generating a shared secret takes about 7 seconds at a clock speed of 3.57 MHz.
But once a shared secret has been generated for a given public key, session key generation takes less
than half a second at the same clock speed, provided Len(KDP$) <= 42. (Typically, a smart card
application will only need to generate session keys for a single public key, for which the shared secret
is computed just once in the card’s lifetime.)

5 Binary Representation Formats

This section specifies the binary representations of the data objects that are used in the library: integers,
field elements, elliptic curves, points on the curve, and signatures.

Integers

Integers in this implementation have a length of either 1 byte or 21 bytes. The first (or leftmost) byte is
the most significant — in a 21-byte integer, it contains bits 167-160. The last (or rightmost) byte
contains bits 7-0.

Field Elements

The library EC-161 implements operations on Elliptic Curves over the field GF(2™), with m = 168. An
element of GF(2™) is represented by 168 bits stored in 21 bytes. The field representation is non-
standard (i.e. it does not use a Polynomial Basis or a Normal Basis); for this reason we provide source
code, in C and ZC-Basic, for converting between ZeitControl’s EC-161 representation and a standard
Polynomial Basis representation. This Polynomial Basis representation uses irreducible field
polynomial

p(t) - t168 +t15 +t3 +t2 +1

The source code is in directory Basi cCr d\ Sour ce\ FI dConv in the BasicCard development kit.

EC Domain Parameters

An Elliptic Curve E over GF(2™) is defined by an equation of the form
yZ+xy=x®+ax’+b

where a and b are elements of GF(2™) with b # 0. The curve E consists of all points (x, y) with x, y O
GF(2™) that satisfy this equation, together with a Point at Infinity, denoted O. The order #E of the curve
is the number of points in E. For cryptographic purposes, this order must have a large prime divisor, i.e.
#E = kr for some (large) prime r. As well as a, b, r, and k, a point G O E must be specified, of order r
(that is, r is the smallest positive integer such that rG = Q) Field elements a and b 00 GF(2"), integers r
and k, and point G [E constitute the EC domain parameters. (k is redundant, as it can be calculated
from a, b, and r; it is included for convenience.)

The library EC-161 accepts any set of EC domain parameters (a, b, r, k, G) that satisfies the following
conditions:

e aiszero in all bit positions except for bits 86-80 ;
« risexactly 161 bits long, i.e. 2'®° < r <2 ;
e kisasingle byte, equal to 2 modulo 4.

The user-defined type EC161DomainParams, defined in file Basi cCrd\ Li b\ EC- 161. DEF,
contains curve parameters a (1 byte), b (21 bytes), r (21 bytes), k (1 byte), and G (22 bytes), for a total
of 66 bytes.

Points on the Curve

Points on the curve play two roles in library EC-161.:

e EC domain parameter G is a point on the curve;
e every public key is a point on the curve. (For a private key s, the corresponding public key is sG.)

If P is on the curve and xp # 0, then y 24 Xpy = Xp° + axp> + b has two solutions, Yo and y;. Moreover,
the two expressions Y, / xp and y; / xp differ only in bit 7 (in the representation used here); so if we know
xp and bit 7 of yp / xp , we can recover point P in full. This bit is called the compressed y-coordinate of

the point P, denoted y)p. A point P on the curve is represented by 22 bytes, with xp in the leftmost 21

bytes (i.e. bits 175-8), and the compressed y-coordinate y)p in bit 0.

Signatures

A signature consists of two 21-byte integers (c, d). See IEEE P1363 for the definitions of ¢ and d.

6 Conformance Specification

This implementation follows the proposed standard IEEE P1363 / D9 (Draft Version 9): Standard
Specifications for Public Key Cryptography. In the terminology of this standard, the following

schemes, primitives, and additional techniques are implemented:

Enhanced

Scheme Description Terminal BasicCard
ECKAS-DH1 Elliptic Curve Key Agreement Scheme, Diffie-

Hellman version, where each party contributes one v v

key pair. This scheme uses primitive ECSVDP-DH,

with additional technique KDF1.
ECSSA Elliptic Curve Signature Scheme with Appendix.

This scheme uses primitives ECSP-NR (in the v v

Terminal and the BasicCard) and ECSV-NR (in the

Terminal only), and additional technique EMSAL.

Enhanced

Primitive Description Terminal BasicCard
ECSVDP-DH Elliptic Curve Secret Value Derivation Primitive,

Diffie-Hellman version. v v
ECSP-NR Elliptic Curve Signature Primitive, Nyberg-Rueppel v v

version.
ECVP-NR Elliptic Curve Verification Primitive, Nyberg- v

Rueppel version.
Additional Enhanced
Technique Description Terminal BasicCard
KDF1 Key Derivation Function. The hash function is v v

SHA-1: Secure Hash Algorithm, revision 1.
EMSA1 Encoding Method for Signatures with Appendix.

The hash function is SHA-1: Secure Hash v v

Algorithm, revision 1.

	Introduction
	Elliptic Curves in Basic?
	EC–161: An Overview
	EC–161: The Elliptic Curve Library
	Binary Representation Formats
	Conformance Specification

