
CIRCUIT DETAILS
Because the prototype would be the

only unit I would need, I wanted to
use a commercial development board
and just add the few custom parts
needed for the design. I chose the
Futurlec 8535 development PCB
because it’s inexpensive, contains
headers for commonly used peripher-
als, and has a large enough prototype
area to mount the few extra compo-
nents I needed to complete the design.

Figure 1 is a diagram of the circuit.
Some of the circuitry on the Futerlec
board that is not required for this project
is not shown in the diagram. For exam-
ple, the in-circuit serial programming
port for the 8535’s flash program memo-
ry is not shown. There is one small

change that I had to make to the
Futurlec board itself. The board
comes fitted with an 8-MHz
MCU clock crystal. I changed
that to 3.579 MHz so that I
could use a common clock for
both the MCU and BasicCard,
which has a 5-MHz maximum
clock rate and communicates
at 9600 bps when clocked at
3.579 MHz.

I mounted an Amphenol
C702 10M0008 2834 smartcard
socket in the prototype area of
the PCB. This socket contains
an NC switch that opens up
when a card is inserted, mak-
ing it easy for the MCU to
know when to establish com-
munications with the card.

24 Issue 165 April 2004 CIRCUIT CELLAR® www.circuitcellar.com

Last month, I introduced you to
ZeitControl’s BasicCard, which is a
smartcard that is programmed in
BASIC. In Part 2, I’d like to further
explore the programming of these
cards and discuss a project.

I built a device that allows you to
use BasicCards like debit cards to con-
trol the dispensing of liquid from a liq-
uid nitrogen generator/storage tank.
The idea is to issue each liquid nitro-
gen user here at Dalhousie University
with a BasicCard. Each card is person-
alized by entering the user’s name,
account number, and a zero balance.
Card personalization is done on a PC
using a Windows-based application.
This user-friendly application inter-
faces to the BasicCard using the
CyberMouse reader that comes
with the development kit.

To access some liquid nitro-
gen (LN2), insert your BasicCard
into the custom controller con-
nected to the LN2 generator.
The controller checks to ensure
that the card is properly person-
alized for this use, and displays
your name, account number,
and the number of liters of LN2

previously consumed during the
current billing period. You then
enter the amount of LN2 desired
on the controller’s keypad. After
updating the BasicCard EEP-
ROM variable, which stores
the accumulated LN2 usage,
the controller activates a relay
that opens a valve and lets the

BasicCards 101 (Part 2)

Now that you’re familiar with ZeitControl’s BasicCard, it’s time to take a closer look at the
process of programming one and incorporating it in a design. Brian shows you how he inte-
grated BasicCard technology in the design of a liquid nitrogen generator.

liquid nitrogen flow for a long enough
period to dispense the necessary
amount of LN2.

Periodically, the BasicCards are col-
lected and another PC application is run
that zeroes out the accumulated LN2

total. It transfers that figure to a table
that is used for the actual billing process.

In the past, an honor system was
used in which users entered their
LN2 usage on a sign-out sheet posted
next to the generator. We lost some
LN2 billings here at the university
because of dishonesty and low-ball
estimates of the actual amounts
taken. Also, there was a significant
amount of clerical time spent tally-
ing all of the entries on the daily
sign-up sheets.

FEATURE ARTICLE by Brian Millier

Photo 1—Check out the monitor before it’s mounted in its cabinet. Note the
BasicCard sticking out of the card socket on the right-hand side.

Use in a Liquid Nitrogen Monitor

Circuit Cellar, the Magazine for Computer Applications. Reprinted
by permission. For subscription information, call (860) 875-2199, or
www.circuitcellar.com. Entire contents copyright ©2001 Circuit
Cellar Inc. All rights reserved.

www.circuitcellar.com CIRCUIT CELLAR® Issue 165 April 2004 25

Atmel’s AT90S8535 is a versatile
MCU. In some respects it is overkill
for this application. With the program
written in compiled BASIC, much of
its 8-KB flash program memory is
unused. It contains 512 bytes of EEP-
ROM, which is unused apart from a
few bytes used to store some valve
time calibration parameters. The eight-
channel ADC, UART, and SPI func-
tions weren’t needed either. However,
the assembled Futurlec development
board, including the ’8535 MCU and
programmer cable, cost less than $30,
so I thought it made a lot of sense to
do things this way.

INTERFACE TO THE AVR MCU
Before I ordered the BasicCard

development kit, I wanted to be sure I
could use the cards with my MCU of
choice, the AVR series from Atmel.
The BasicCard development kit con-
tains software to program the cards
themselves, as well as a few different
programs to develop PC applications.
However, the kit doesn’t provide any

Although I connected this line to port
D3 of the ’8535 (INT1), I don’t use this
pin as an interrupt input, instead I
poll the pin to see when a card is either
inserted or removed. There are a few
different phases in the program, and
the removal of a card must be handled
differently in each case, so using an
interrupt to signal card-in-socket status
was not ideal for this project.

The BasicCard interfaces to the ’8535
using only two port lines. The *RESET
input to the BasicCard is connected to
port D2, and the I/O line connects to
port D4. As I mentioned earlier, the
BasicCard gets its clock signal directly
from the ’8535’s XTAL1 pin, which is
its oscillator buffer output. Although
you have to be careful tapping off a
clock signal from an MCU’s oscillator
output, the BasicCard presents, in this
case, such a small load that the oscilla-
tor is unaffected by its presence.

The user interface is the standard key-
pad/LCD. I had a Grayhill series 88 key-
pad on hand, which contains the num-
bers in a telephone-like arrangement,
as well as several extra keys
labeled Enter, Clear, etc. that
provide all the necessary input
functions. Eight lines are need-
ed to interface this Matrix key-
pad, and I used port A for that
purpose. Doing so meant I
could not make use of the
eight-channel ADC contained
in the ’8535, but I didn’t need
an ADC for this project. The
Futurlec board has a 10-pin
header connected to this port,
which made it easy to connect
the keypad using a ribbon cable.

I didn’t need a large LCD,
because there isn’t a lot of
information to display.
Therefore, I used a 2 × 16 dis-
play, and connected it to the
’8535 in 4-bit mode using six
lines of port C. The Futurlec
board also provides a 14-pin
header for the LCD, with all
the signal and power wiring
taken care of, as well as POT1
for contrast adjustment.

Apart from wiring a few
lines to the smartcard socket,
all the circuitry I needed to add
was the driver and relay to

activate the dispensing valve. This was
a solenoid valve that required 120 VAC
to operate, so I decided to use a relay to
keep any inductive kickback from its
coil away from the MCU circuitry. Any
relay with a 12-V coil and contacts able
to switch 1-A AC will do for K1. If the
coil needs more than a few hundred
milliamps to operate, you’ll need a larg-
er transistor than a 2N3904 for Q1.
Diode D1 is placed across the relay coil
to protect Q1 from the spike that
occurs when the relay turns off.

The 5-V power supply regulator is
contained on the Futurlec PCB, but
the power transformer, bridge, and fil-
ter capacitor are mounted externally.
Photo 1 shows the development board
with the extra components needed for
this project.

The development board comes with a
MAX232 for RS-232 communications
purposes. Although I did not use this
feature, it would be easy to wire the
controller to a remote PC, for example,
if you want to log all the transactions
in real time to a computer file.

Figure 1—The liquid nitrogen dispensing monitor was built on a Futurlec 8535 development board. Apart from the card socket,
keypad/LCD, and relay driver, most of the circuitry already exists on the development board.

26 Issue 165 April 2004 CIRCUIT CELLAR® www.circuitcellar.com

support for interfacing them to MCUs,
apart from providing a technical refer-
ence document describing the ISO/IEC
7816-3 standard that the cards use for
communication. From what I could
see, it would have been quite time-con-
suming to personally write a suitable
driver to allow AVR MCUs to talk to
BasicCards. As luck would have it, the
developer of the BASCOM AVR compil-
er (the language I use exclusively for all
of my AVR-based projects) had a beta
version of a driver library available. This
was one of those good news/bad news
situations. I was able to get the library
free from the developer, but I was, at
that time, the first and only beta tester! I
ended up figuring out on my own some
of the patches needed to make it work.

To interface a BasicCard to an AVR
MCU using the BASCOM compiler,
you must run BASCOM version
1.11.6.8 or newer. You must also load
the BasicCard library (available from
MCS) into BASCOM’s LIB folder.

Next, within your BASCOM program,
you must do the following four things.
First, use the CONFIG BCCARD command
to tell the driver which port pins you
have connected your BasicCard socket
to. This is simple because you only have
to tell it which port you are using and
to which pins the *RESET and I/O lines
are connected. This is clearly described
in the documentation that comes with
the library.

Second, you must declare each of
your BasicCard commands to the BAS-
COM program using the BCDEF com-
mand. Because you have already written
the BASIC code that runs in the
BasicCard, you will have already defined
the commands that the BasicCard recog-
nizes. These command names, followed
by their parameter lists, are used with
the BCDEF command.

Next, instruct the compiler to use

the proper data rate. Use the $BAUD =
9600 and the $Crystal = 3579000
directives. Finally, issue a BCRESET
command to initialize the BasicCard
as soon as you see that a card has been
inserted into the card socket.

After this preparation/initialization,
all you have to do to access a particu-
lar command in the BasicCard is use
the BCCALL procedure. This is similar
to any BASIC procedure, except that it
includes some BasicCard-specific
parameters. The following is the syn-
tax for this command:

BCCALL name(nad , cla, ins, p1,
p2 [param1 , paramn])

where name is the name of the proce-
dure in the BasicCard to call. It must
be defined first with BCDEF. The name
used with BCDEF and BCCALL does not
need to be the same as the procedure
in the BasicCard, because the CLA and
INS bytes actually tell the BasicCard
which command to execute. However,
it makes sense to use the same names
for consistency.
nad is the node address byte. Basic-

Cards respond to all node address val-
ues; zero is used here as a default.
cla is the class byte. It is the first of a
2-byte CLA-INS command. It must
match the value you used for the com-
mand in the BasicCard program itself.
ins is the instruction byte. It is the

second of the 2-byte CLA-INS com-
mand. The same consideration applies
as for the CLA byte. p1 is parameter 1
of the CLA–INS header. (Use a zero for
your purposes.) p2 is parameter 2 of
CLA-INS header. (Again, use a zero for
your purposes.) param1 through
paramn are the parameters you want
to pass to the BasicCard (as required
by the command).

The BasicCard operating system

Command Name Description Used by

PersonalizeCard Initial card with name, account number, and balance PC
IncreaseAmount Increase balance by amount dispensed AVR
GetCardData Read name, account number, and balance AVR and PC
CancelLastTransaction Self-explanatory AVR
ReadLastTransaction Needed by previous command AVR
PRDisplay Display information on key fob balance reader Balance reader

Table 1—These six commands are implemented in the BasicCard for this application. As you can see, some com-
mands are used by both the LN2 dispensing controller and the PC application that personalizes and reads the cards.

www.circuitcellar.com CIRCUIT CELLAR® Issue 165 April 2004 27

BasicCard, and the user infor-
mation contained in the card is
displayed on the LCD. You are
then prompted to enter the
amount of LN2 needed. This
amount is first added to the
BasicCard’s balance variable,
and then the program waits
until you indicate you’re ready
for the dispensing to start. It
then activates the relay for the
amount of time necessary to
dispense the necessary LN2.

This is where calibration is
needed. When dispensing LN2,
it takes a little while for the
transfer tube to become chilled
enough to pass the liquid.
Thereafter, the liquid flows
steadily, with the amount dis-

pensed being proportional to the time
the valve remains open. After this
amount of time, the program waits
until the card is removed, and then
goes back to the start of the loop.
Calibration involves determining the
initial chill time and the time/liter
parameters empirically, and storing
them as calibration parameters.

It’s important that this calibration
can be done in a way that’s both con-
venient for the operator of the genera-
tor and secure from tampering. To that
end, I designed the program so that
when it sees a card with an account
number equal to zero (the operator
account), it goes into a calibration rou-
tine and prompts the operator for an
initial (transfer tube chilling) time, as
well as the number of seconds required
to transfer 1 liter of LN2. These param-
eters are subsequently saved to EEP-
ROM in the ’8535 and used in all
future liquid transfers, unless the cali-
bration is changed.

If you remove the card before enter-
ing the desired number of liters to
dispense, the LCD indicates that the
card has been removed prematurely
and returns to the start of the loop.

CARD ISSUER PROGRAM
Photo 2 shows a screen capture of

the Visual Basic Card Issuer applica-
tion. This program is run on a secure
PC because it is used to personalize
the BasicCard with the username and
account number, and to set the initial

employs a comprehensive error-
reporting scheme. This is neces-
sary in any device used for com-
merce, particularly in a device
that you can pull out of its sock-
et in the middle of program exe-
cution! Describing the error
handling is beyond the scope of
this article, but I will mention
that the BCCARD library sup-
ports it to some extent. In
essence, if the BasicCard returns
an error, the library will set the
BASIC variable ERR and two sta-
tus bytes—SW1 and SW2—will
contain error codes. Many of
these codes are predefined in the
BasicCard protocol, but you can
also set the value of these vari-
ables yourself within your
BasicCard program should your code
encounter an error condition.

In most designs, the card-in-socket
switch will notify the program if the
card is removed during use; but, if an
actual data transaction is in progress
when this happens, the BasicCard
driver within BASCOM may hang
the program until a time-out interval
passes. Depending on a number of
variables, this might take up to a
minute, so beware of this during
debugging.

Before trying your own Basic-Card
program, I recommend that you load
the sample Bccard.bas program into
your AVR MCU, program a BasicCard
with the Calc demo program provided
with the development kit, and try that
combination. If everything is satisfac-
tory, you will see the results of the
communication between the two
devices. You can then enter some
numbers into your AVR MCU, and let
the BasicCard act as a calculator.

CARD FIRMWARE
Table 1 shows a list of the commands

that I’ve defined in the BasicCard for
this application. The last column in
this table indicates where the com-
mand is used: The LN2 Dispenser is
labeled “AVR.” The PC application
personalizes the card and later reads
the accumulated total usage (labeled
“PC”). The balance reader is the little
key fob device that comes with the
development kit.

The PersonalizeCard command,
which the PC application uses to ini-
tialize the card with user information
and zero out the balance, is the only
command that requires encryption in
order to work. This guards against the
possibility of fraudulent card produc-
tion. ZeitControl’s Visual Basic API,
which is part of the development kit
software, includes support for encryp-
tion. This command is only used by
the PC program that personalizes the
cards, and that is written in Visual
Basic. Although not a concern in this
application, the fact that the BAS-
COM AVR BasicCard library does not
currently support encryption could be
a disadvantage in other applications.

For this application I used the
BasicCard ZC3.9 enhanced card,
because it was included with the
development kit. However, the lesser
models of the card would work as well
because this is a simple application. In
the first part of this series I gave you
some hints on how to program the
BasicCards by supplementing the
instructions in the user manual.

AVR FIRMWARE
Next, I’ll describe the program that

runs on the ’8535, which controls the
LN2 dispenser. After some initialization
of the ports, the program basically
enters a loop. The program prompts
you to insert the card and then waits
for this to happen. The ReadCardData
command is then issued to the

Photo 2—This is a screen shot of the PC application that initially person-
alizes the BasicCard and reads out its balance periodically.

28 Issue 165 April 2004 CIRCUIT CELLAR® www.circuitcellar.com

Brian Millier is an instrumentation
engineer in the Chemistry
Department at Dalhousie University
in Halifax, Canada. He also runs
Computer Interface Consultants. You
may reach him at brian.millier@dal.ca.

PROJECT FILES
To download the code, go to ftp.
circuitcellar.com/pub/Circuit_
Cellar/2004/165.

SOURCES
C702 10M008 2834 Acceptor
Amphenol-Tuchel
(734) 451-6400
www.amphenol-tuchel.com

AT90S8535 Microcontroller, AVR
assembler and simulator
Atmel Corp.
(714) 282-8080
www.atmel.com

90S8535 Development board
Futurlec
www.futurlec.com

Series 88 keypad
Grayhill, Inc.
(408) 354-1040
www.grayhill.com

BASCOM AVR Compiler/program-
mer, BasicCard driver library
MCS Electronics (Holland)
+31 75 6148799
www.mcselec.com

BasicCard
ZeitControl Cardsystems
+49 0 571-50522-0
www.zeitcontrol.de

balance variable to zero. Obviously,
anyone with access to this program
can insert their card and wipe out its
balance easily.

After start-up, the program waits
until a card is inserted. It checks that
the card has the proper program in it
for this application. It does this by
reading the applicationID variable
contained in the card’s EEPROM. If it
matches, the program displays the
user information and the current bal-
ance. If it’s a new card that’s been pro-
grammed with the LN2 application but
not yet personalized, it will show
blank fields and allow you to enter the
applicable name/account information
and also a balance amount (typically
zero for a new account).

There is also a provision to cancel
the last transaction. The amount of
the last transaction is shown, and
there is a button to subtract this
amount from the accumulated total.
The purpose of this function is to
allow the operator of the machine to
cancel a transaction if the machine
fails to deliver LN2 as requested (i.e.,
the tank is empty or a valve sticks).

I also included a box that displays
the type of card that has been inserted
into the reader. This card-specific
information is returned by all smart-
cards as part of the answer-to-reset
(ATR) routine, which is invoked at
card insertion.

GIVE IT A TRY
I must admit that I was intrigued by

the fact that these tiny BasicCards
contain more resources (except for I/O)
than the typical MCUs I routinely use.
Furthermore, all of this capability is
sandwiched into the small area under
the gold contact pad. The rest of the
card is just plastic filler to make the
card easy to handle.

I am definitely in the compiler
camp, and generally avoid MCUs like
BASIC Stamps, which run as inter-
preters. However, for this purpose, I
have to admit that the BasicCard
interpreter design is quite useful.

I suspect that many readers, like
myself, are not quite up to the task of
designing their own device drivers for
high-level PC languages like Visual
Basic running on Windows. It was a

different story in the past, when you
could easily design an ISA card, plunk
it into the PC, and access it using
direct in and out instructions. Now, it’s
important that the device manufacturer
supplies APIs that allow these compil-
ers to easily interface to the device.
ZeitControl certainly has taken care of
this aspect, and it provides an extreme-
ly inexpensive development kit. For
BASCOM AVR users, the necessary
BasicCard drivers exist as well. So,
there’s really no reason not to give this
a try if you have an application in need
of a secure smartcard. I

ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2004/165
http://www.amphenol-tuchel.com
http://www.atmel.com
http://www.futurlec.com
http://www.grayhill.com
http://www.mcselec.com
http://www.zeitcontrol.de

