Chapter 1: Process Management - Tasks and Threads 1

5

Process Management - Tasks and Threads

5.1 Introduction

Significant changes in the use of multiprocessor systems require new support from operating system
schedulers. Earlier, multiprocessor systems have increased throughput by running several applications
simultaneously, but no individual application ran faster. Such usage has given way to parallel program-
ming, which reduces the runtime of individual applications.

Parallel-programming models and languages often anticipate dedicated use of processors or an
entire multiprocessor, but few machines are used in this fashion. Most modern general purpose multi-
processors run a time sharing operating system such as Unix. The shared use model of these systems
conflicts with the dedicated-use model of many programs, but the conflict is seldom resolved by
restricting multiprocessor use to one application at a time.

Another impact on scheduler comes from the increased popularity of concurrency. The application
parallelism for a multiprocessor application is the actual degree of parallel execution achieved, while
application concurrency is the maximum degree of parallel execution that could be achieved with
unlimited processors. For instance, an application consists of 10 independent processes/tasks running
on a six CPU multiprocessor system has an application parallelism of six, based on the six CPUs, and an
application concurrency is 10, because it could use up to 10 processors. Application concurrency
beyond hardware parallelism can improve hardware use; if one portion of the application blocks (for
example, a disk or network operation), other portions can still proceed. The use of concurrency can also
simplify programming of concurrent applications by capturing the state of ongoing interactions in local
variables of executing entities instead of in a state table.

Application parallelism and concurrency complicate two areas of scheduling: making effective use
of the processing resources available to individual applications and dividing processing resources
among competing applications. The problem of scheduling within applications seldom arises for serial
applications because they can often be scheduled independently with little impact on overall perfor-
mance. In contrast, the medium- to fine-grain interactions of parallel and concurrent programs together
to achieve acceptable performance. Parallel applications that require a fixed number of processors
complicate scheduling across applications. They make division of machine time more difficult and may
introduce a situations for which a fair-sharing policy is inappropriate. For instance, an application
configured for a fixed number of processors may be unable to cope efficiently with fewer processors.

C-DAC's PARAS operating system introduced some new approaches to scheduling which are
similar to Carnegie Mellon University's Mach operating system. PARAS provides flexible memory
management and sharing, multiple threads within a single address space or task for concurrency and
parallelism, and a network transparent communication subsystem. The communication subsystem is

2 The Design of the PARAS Microkernel

called IPC (interprocess communication) subsystem for historical reasons; all communication in PARAS
is actually between tasks.

The PARAS microkernel does not provide the traditional notion of the process. This is due to the
following two reasons:

1. Traditional operating system environment has considerable semantics (abstractions supported) as-
sociated with a process (such as user-ID, signal state, etc.). It is not the purpose of the PARAS
microkernel to recognize or provide these extended semantics since it aims at providing only funda-
mental services.

2. Many systems (BSD, for instance) equate a process with an execution point of control. Some systems
(POSIX 1003.4a—threads interface, for instance) do not. PARAS kernel as a microkernel decides to
support multiple points of control in a way separate from any given operating environment’s notion
of process.

Instead, PARAS provides two notions: the task and the thread. A thread is PARAS’s notion of the
point of control. A task exist to provide resources for its containing threads. This split is made to
provide for parallelism and resource sharing. Hence, UNIX equivalent of a process is a task with a single
thread of control.

A thread:

« Is a point of control flow in a task.

« Has access to all of the elements of the task’s resources.

« Potentially executes in parallel with other threads, even threads within the same task.
« Has minimal state for low overhead; thread appear like a mini-program.

Atask:

« Is a collection of system resources. These resources, with the exception of the address space, are
referenced by ports. These resources may be shared with other tasks if rights to the ports are so
distributed.

« Provides a large, potentially sparse address space, referenced by machine address. Portions of this
space may be shared through external memory management.

+ Contains some number of threads.

PARAS Microkernel Interface
The PARAS microkenel provides the following interface calls for both tasks and threads:

« create: create a new task/thread.

« terminate: destroy an existing task/thread.

« suspend: suspend a task/thread.

« resume: resume a task/thread.

« info: obtain useful information about a task/thread.

E.g: thread create creates a new thread, task creaste creates a new task.

A thread is defined as a piece of code that can execute in concurrent with other threads. Thread
consists of registers, status word, program counter, thread procedure with all the resources allocated to
the task. Thread object is shown in the Figure 5.1. Threads contains statically ordered sequence of
instructions. Multiple threads may operate concurrently within a task or process, each with its own
program counter and local state, but with some state shared by all the threads in the process.

Chapter 1: Process Management - Tasks and Threads 3

Hardware
Context

Registers

Status Word

Program Counter

Running

Figure 5.1: Thread Object

Multithreading is defined as a technique of parallelization of programs for execution on parallel comput-
ers. The program having multiple threads of execution is called as multithreaded program.

As whole task can be viewed as the parent and threads can be viewed as children of the task in
which they are created. Hence, a task can have any number of threads running within its address space.
Note that a task has no life of its own; only threads execute instructions. When it is said that “a task A
does B” what is really meant is that “a thread contained within task A does B”.

A task is a fairly expensive entity (see Figure 5.2). It exists to be a collection of resources. All of the
threads in a task share everything. Two tasks share nothing without explicit action (although the active
is simple) and some resources cannot be shared between tasks at all (such as port receive rights).

STACK STACK

memory
segments,
pipes open

DATA DATA

TEXT TEXT

Figure 5.2: Basic Process Model

A thread is a fairly lightweight entity (see Figure 5.3). It is fairly cheap to create and has low overhead
to operate. This is true because a thread has little state (mostly its register state); its owning task bears
the burden of resource management. On a multiprocessor it is possible for multiple threads in a task to

4 The Design of the PARAS Microkernel

execute in parallel. Even when parallelism is not the goal, multiple threads have an advantage in that
each thread can use a synchronous programming style, instead of asynchronous programming with a
single thread attempting to provide multiple services. That is if task is exhibiting any nature, it can be
exploited to achieve better utilization of the CPU and speedups program execution (by overlapped
computation and communication).

THREAD
STACK

SHARED [
MEMORY

THREAD
DATA

THREAD
TEXT

Figure 5.3: Threaded Process Model

The process management is one of the core component of operating systems. The microkernel process
manager is responsible for handling issues related to the process/thread creation, scheduling, dis-
patching, control, resource handling, etc. To support these, the kernel essentially has deal with trap
handling, context switching, scheduler logic, schedulable entities, scheduling schemes, interface call
handlers, and IEEE 754 exception handlers.

In order to execute a task (also called process), it must reside in the main memory. The issues related
to task loading and managing its memory will be discussed in Virtual Memory Management chapter. It
also covers how a process’ address space is mapped or how physical memory is managed.

For parallel programs to be executed on distributed memory MIMD machines (PARAM), the
Interprocess Communication (IPC) plays a major role. The issues related to how messages are received
(either from within the node or from outside) or sent out (local/outside) will be discussed in the
Interprocess Communication chapter.

5.2 PARAS Tasks and Threads

A task in PARAS consists of an address space and a collection of threads that execute in that address
space. Tasks are passive (they perform no computation) and are mainly used to collect all the resources
needed for its threads. Tasks are a framework for running threads.

Threads are the basic schedulable entity with the Microkernel. Each thread is associated a kernel
data structure maintained by the Microkernel. At any point of time, this data structure reflects the “run
state” of the thread, which may contain values for the processor’s special registers, windows, fp
registers, etc. The Microkernel ensures that every thread starts up with a kernel-defined startup state of
registers.

Chapter 1: Process Management - Tasks and Threads 5

Threads are the basic units of execution and hence they contain the processing state associated
with a computation. (e.g. A program counter, a stack pointer and machine registers). All threads within
a task share the task’s resources and resource limits, and are not protected from one another. Threads
are the active units which are scheduled.

A thread may be in a suspended state (prevented from running) or in a “runnable” state (may be
running or scheduled to run). There is a non-negative “suspend count” associated with each thread.
This count may be modified by suspend and resume calls. The suspend count is zero for runnable
threads and is positive for suspended threads.

Tasks may also be suspended or resumed as a whole. Like the thread’s suspend count, a counter, the
task s suspend count, may be modified by suspend and resume calls. A thread may only execute if it and
its task are runnable. Resuming a task causes all threads which are not suspended to be scheduled and
run.

Tasks and threads can have a number of special ports associated with them. In general, these are
ports that the kernel must know about in order to communicate with the task or thread in a structured
manner. Currently, there is one special port, the “task exception port”, associated with each task and
one special port, the “thread exception port” associated with each thread. Details of exception handling
are described later section in this chapter.

The Microkernel manages the creation, suspension, resumption and termination of both user and
kernel threads apart from other query routines to manage user threads. Most of the process manage-
ment primitives have been derived from the Mach Microkernel of Carnegie Mellon University.

Basic internal primitives of the PARAS microkernel are the following:

[ITTTTTTITTITTT hssert that thread is above sleep
LCITTTITTTITTTTTdive up CPU if others can execute

[T TITTTIITI I Idlear waiting condition
[ITTTTTITITTITTTdause thread to stop if not already stopped.
[ITTTITTTITITTT T Wait for thread to stop.
[TTTTTITTITITTI T Irklease one hold on thread.

The last three primitives are used to implement both thread and task operations.

5.4 PARAS Scheduler

The PARAS operating system splits the usual process notion into task and thread abstractions, but the
PARAS time-sharing scheduler only schedules threads. Each task is represented in the PARAS
microkernel by its own Task Control Block (TCB; also called a Process Control Block). ATCB is a data
block or record containing many pieces of information associated with a specific task, including task
state, program counter, CPU registers and scheduling information, memory management information,
accounting information, I/O status information, task’s exception ports, etc. The data structures declara-
tions related to the task can be found in the header file task.h. The members of task’s data structure are
given below:

OO OO T T T T T T T O]

O

[ITT1 [CITTTTTITTT] [TMUTTTTIT TN TITTTITTU T OITNT]
[TITITTIIMIITTIIT [TITHT T IO I I I T I IO I I I I TITITIInmoi
1111 [IITTITTTTITTIT1] [TIMMI I T T T I I I I I T I T IO

[TITITTI T I I I T I I I I IIIIIori [TIMTTTITII I I TIITIInmDi

6 The Design of the PARAS Microkernel

1111 [TITTITTTTITTT1] [MIMMT T T I I I T I IIIoTl
11711 [ITTTITTTTITTTITTT] [IIMMT I T I T I T T T I IT I TIIT]
[ITT1 [CITITITTIT] [TIUTTIOT TN OTTTTITITNNT]

[T T T I I T I I I I T T I T I T T T T T T T I T T T I T T TN T T T AT I I T IO T T T I T I
[T T I I I T I I T T T T T I T T I I T T T T IO I T T T AT T T T T T TN T IO T TN T T T T T IIIT]
[ITTTT] [IITITTIT]
[TI1TT] [(CIITTTITTITTTTTTT] T T T IT T T TN TTUNTTTIT

I [IIT11 [T T T T T I NI I I T T I T IO T TTIIT]

OO O T OO I O OO OO O OO T OO T T

11
OO O T OO OO I

The task structure mainly keeps status of various resources associated with it. Such as memory
usage, ports, threads owned by it. The information related to memory resources owned by a task has to
be maintained since microkernel allows multiple tasks to be executed by time sharing on a single node.
But, on PARAM it is advisable to execute one task per node instead on multiple tasks. Each task can
have any threads execute simultaneously on a single node and they are executed by time sharing based
on priorities using round-robin scheduling algorithm. A thread during its lifespan, goes through many
states depending on a operation it wants to perform and external conditions such as sharing CPU when
multiple threads are to be executed. Thread’s states are explained in the following section using the
thread state machine.

Thread State Machine

As a thread executes, it changes state. The state of a thread is defined in part by that thread’s current
activity. Each thread may be in one of the following states and they can be combinations of these as
shown in Figure 5.4:

+ R running — Instructions are being executed

« W waiting (or on wait queue) — A thread is waiting for some even to occur

+ S suspended (or will suspend) — suspended by the user

+ N non-interruptible — during which thread cannot be preempted. Threads manipulating kernel data
structure can move to this state before they can modify.

State is based on 3 bits: WAIT (W), SUSP (S), RUN (R). They have the following meaning;:

RUN: running normally (processor or run queue)

WAIT: waiting for event (on wait queue). Interruptable and non-interruptable waits are distinguesged.
SUSP: suspended (not on any queue). Driven by suspend count.

RUN+WAIT: after [CITTTTTTTTITTITIWill waitat CITTTTTTITTTTTTT]
RUN+SUSP: will suspend at next CTTTTTTTTTTTITT]

WAIT+SUSP: waiting and suspended if wait is interruptable. Waiting and will suspend otherwise.

RUN+WAIT+SUSP: will wait at next CLTTTTTTTTTTTT {flwait is non-interruptable. Will suspend at
next CITTTTTITTTITTIT biherwise.

Chapter 1: Process Management - Tasks and Threads 7

/X thread-block (set-run)

<—
@ thread-block

(wake-active)

(wake-active)

R - Running
W-Waiting(or on wait queue

S -Suspended (or will suspend)
N - Non-interruptible

<>
@ thread-block@

Figure 5.4: Thread State Diagram

The PARAS microkernel as a multitasking and multithreaded kernel, not only maintains Task Control
Block, but also Thread Control Block. Thread control block maintains information such as thread
registers (CPU registers), its state (ready, run, etc.), scheduling factor and policy, cpu usage, priority.
When thread is created, it will have the same priority as its creater. The PARAS microkernel, allows the
user to change priority explicitly. The structure of thread control block is shown below:

[IITTTTTOOTITIIm1l
[TTTTTTTTITITIIIIOTI Il IO HII T I T T I MM T I I IInmri
[ITTTTIITIT] [TIMMT I T T T I I I T I T I M AT I T IO I I I T T T T I T T I
MMM I T I T T I I ITIITIIIT]
(HEEEEHII IR SN NS ENN N EEEE N EEEEEENEEN NN NEEENEEEEEEENNNNEEEENEEE
[T TOMII IO T I T I T T T I T I T I T IO NT I Il

11

[TIMH T T IO I I T T T T T T T I I I I T I T I I T I I T IITIIT]
[T T T IO I T T IO I I T IO T T T I T T I T T I T I T I T IW I IIIITII 1
[T T I I T T I T T T I T T T T T T T T I AT T T I T IO I T I T T T T T I AT I IIITd
[T T I T I T I T I I T T I T IO T I T I I T I I I mI I IIIT i

11

8 The Design of the PARAS Microkernel

(HEEEER NN NN EEEEENEEEEE|
[ITTITTTTITTIMIIOOO I T T TTIITT]

[ITTTTTTTTIT IO I I I I I T] CTIm I I T IO T T T T T I AT T T T T T IO IM T T I IIIT]
[T T T I I T I Mmm I I T T T T T T T T I I I T T T T T I I T T T T IIIoT]
[TTTTTTTITIIIImImaTIITai

(HENEENRENNENNNNNNENEEE

[ITITTTT T T I T I T T T I I I I TIITITII]

(HEEER NN NN NENENEEENENEENEEEEE NN
[HEEEE NN NN ENEEEEENE N EEEEEEEENENENEEEEEEE NN
(EEEENENENEN N NENEEEEEEENINEEEENEEEEEEEEENNEENEREE|

[T T T T I T mmm I I T T T T T I I I T I T I T I T T T T I I I I T T I I Irrormmoi
[T T T I I I I T T T T T T T IO I T I T T T T T I T T T T I T I I I T T T T I T T]
[T T I I I T I I T T T T T I T T I I A T T I T T T I T I I T T T T T I I I I I T T I IT]
(EEEEEEEEEE NN NS EEEEEENNENEEENENEEENNEEEEEEENNEEEEEEEEE

1111 MM T T T T I T I I I T T I T T IO I I T I T T T T IO T T T]

[T T I I I T I I T T I I I T T T T T T T T T T T T T T I I T IO T I I T T I I IT T I ImoT]

[T T I I I T I I I T T T IO I I T T T T T I T T T T T T T T IO I T T T TN T IO T I T I I Immoi

(NN RN NN NN NENENNEEEENENENENEENENENEEEEEEE|

[N RN NN I NN EEEEENE NN NN NNEEEENENEEENEN]
[IITTT1 [T T T I T T I I AT T T T T TN T I I I Il

[ITTTITITTIT] (EEEEEEEENNNI NN EEEEEEENNNEEENNEEENEREEEN

[ITTTITITTIT] (EEEEEEEERNN NN NEEEEEEEENNEEEENEEENERIEEE

1111 (EEEEEENENNE NSNS EENNEEEEENNNEEEENEEEEEEE

[TTTTTTITTTI I T ImnnnnITTITr’Dl
[Tl [CIITTTTTITTTITTT]
LITTTTITT] LITTTTTTITTT]

[TITMTIIIT T I ITITTIImoL]
[TITIMIM I IIIIIITi
[ITTTTNMI MM I T I T I TITITIITIITIT]1
[ITTTITIUIT I TTTITTTITIT]
[TITTTTTT T I I T I I I I IIITITTIT]
11
[ITITTTTIMMI I I T I T I T I IO I I rIraT’Qi

The PARAS microkernel maintains two main queues for threads management. First, Run Queue and
Second, Wait Queue.

Chapter 1: Process Management - Tasks and Threads 9

Run Queue

The primary data structure used by the PARAS scheduler is the run queue, a priority queue of runnable
threads implemented by an array of doubly linked queues. PARAS uses 32 queues, so four priorities
from the Unix range 0 to 127 map to each queue. Current implementation use a priority range of 0to 31
so that queues and priorities correspond. Lower priorities correspond to higher numbers and vice
versa.

All those threads which are in run state are maintained in a run-state table. The number of entries in
this table can accommodate is depends on maximum priority any thread can assume (or user may set).
Each entry in this table holds a pointer to queue of threads whose priority is the same. The maximum
priority value in the PARAS Microkernel is NRQS (current implementation’s NRQS value is 32). The
organization of run-queue in shown in Figure 5.5.

myprocessed.rung TUNq[NRQS] //—j
—>» = 5
2 1

3 thread thread thread
thread thread thread
—> <«
-« <

Figure 5.5: Thread Run Queue

Wait Queue

Wait queue is organized in the form of hash table. The waiting protocols and implementation details are
given below:

Each thread may be waiting for exactly one event; this event is set using assert_wait(). That thread
may be awakened either by performing a thread wakeup prim() on its event, or by directly waking that
thread up with clear_wait().

The implementation of wait events uses a hash table. Each bucket is queue of threads having the
same hash function value; the chain for the queue (linked list) is the run queue field. (It is not possible
to be waiting and runnable at the same time.)

Scheduling operations may also occur at interrupt level.

10 The Design of the PARAS Microkernel

The wait event hash table declarations are as follows:
(I T T T TN
(EEEEEEEEEEEEINIEEEEEEEEEEEEEEEEEEEEE]
(IO T I T
O OO T T OO OO LTI I T I I T I T T 1]

There are totally NUMQUEUES queues are maintained in wait queue (see Figure 5.6). Depending on
even type, hash table (wait-queue table) entry is made. The hash table entry point is found using the
following relation:

OO OO O O O I

O O OO OO OO0 I I T O I T 11

Interruptible and Non-interruptible Threads

If a thread is not interruptible, it may not be suspended until it becomes interruptible. In this case, we
wait for the thread to stop itself, and indicate that we are waiting for it to stop so that it can wake us up
when it does stop.

If the thread is interruptible, we may be able to suspend it immediately. There are several cases:

1) The thread is already stopped (trivial).

2) The thread is runnable (marked RUN and on a run queue). We pull it off the run queue and mark it
stopped. This assumes the thread was interrupted in user code.

3) The thread is running. We wait for it to stop.

Scheduler Operations:

Initializes the data structures required for scheduling; hz is the number of clock ticks per second;
min_quantum is the time quantum given for each thread. Preempt during quantum requires higher
priority than preempt after quantum. The clock handler decrements quantum and reschedules when
quantum expires.

5.5 Trap Handling

User tasks invoke microkernel services using traps; traps allows to provide location independent
services. The Microkernel has a two-level trap handling: low level and high level trap handlers.

The first level in assembly is where the control gets transferred on any kind of software or hardware
trap and from where control returns to the user once the trap is serviced. The second level trap handler
is a sandwich between the entry and exit portions of the first level handler that inspects of the cause of
trap in detail and takes appropriate action.

The Microkernel trap handler saves all the windows of the executing thread on a trap instead of
selective window-saving, since selective window-saving would make the trap handler too complicated.
Consequently, the first-level trap handler’s entry code goes through the following steps:

first_level trap_handler_entry:
1. save special registers;
2. save floating-point registers and fp queue if required,
3. save all windows of the currently executing thread;
4. transfer control to the second-level trap handler;

The trap handling model used in the PARAS microkernel is shown in Figure 5.7.

Chapter 1: Process Management - Tasks and Threads 11

LLTH-Preprocessor
m/c dependent

Transfer to HLTH (non-portable)

LLTH-Postprocessor

Trap Exit

m/c independent
(portable)

A 4

High Level Trap Handler
(Written in C)

Figure 5.7: Trap handler model of Microkernel

The second-level C trap handler decides what trap has occurred and calls appropriate routines to

service the trap. Broadly, the algorithm followed by this C trap handler is as follows:

second_level trap handler:

check for the cause of the trap;
if (trap due to microkernel system call)

call kernel function to service system call;
else if (trap due to UNIX system call)

format a message detailing the trap reason;

send message to MKFS;

block the executing thread until a reply from MKFS;
else if (trap due to hardware interrupt)
begin

case TIMER INTERRUPT:

call routines that periodically update

priorities of threads and set Asynchronous

System Traps (ASTs);

case CCP_INTERRUPT:
call ccp handler routines that handle
incoming/outgoing messages to/from the CCP;

end;
else if (trap due to exception)

dump core by sending message to PS (Process Server)
return;

12 The Design of the PARAS Microkernel

On return from this second-level trap handler, the control is transferred to the first level handler,
which then inspects data structures to see if there are any pending ASTs (probably as a result of a
change in the AST (Asynchronous System Traps) status of the current thread by a timer interrupt) for
the current thread before returning control to the user. It uses the following algorithm:

first_level trap_handler_exit:
if (ASTs pending for thread)
if (thread to be halted)
terminate current thread
else if (thread’s quantum over)
switch to next eligible thread
restore windows;
restore floating point registers and fp queue
ifrequired;
restore special registers;
return control to user;

5.6 Context Switching

When trap occurs, execution context switches from user to kernel mode and one servicing these re-
quests, again context is switches from kernel to user mode. The issues related to various operations to
be performed when context is switched is handled by context-switching routines. They are similar to the
trap handling entry and exit routines. A context save saves all the windows and special registers of the
currently running thread and a context restore restores all the windows and special registers of a
previously stored thread and transfers control to it.

The Microkernel performs a context switch from the current thread on two occasions :

a. the current blocks
b. the current has run out of its quantum and there is another eligible thread waiting to run

5.7 Predefined Threads in PARAS Microkernel

For the sake of its own operation, the microkernel creates kernel threads that execute purely within
kernel context to provide various support function. For example, scheduler thread handles the issues
related to threads’s scheduling. Threads are the basic schedulable entity with the Microkernel. Each
thread is associated a kernel data structure maintained by the Microkernel. At any point of time, this
data structure reflects the “run state” of the thread, which may contain values for the processor’s
special registers, windows, fp registers, etc. The Microkernel ensures that every thread starts up with a
kernel-defined startup state of registers.

The Microkernel manages the creation, suspension, resumption and termination of both user and
kernel threads apart from other query routines to manage user threads.

The three kernel threads supported for managing kernel resources, cleanup and user thread priori-
ties. They are idle thread, reaper thread, and scheduler thread. These threads with their responsibilities
are discussed in the following sections:

Chapter 1: Process Management - Tasks and Threads 13

idle_thread

This thread has the lowest priority among all threads, whether user or kernel, and runs only when no
other thread is eligible for running. This thread just continuously checks to see if any other thread may
be scheduled using the following algorithm:

while true

if(any eligible thread to be run)
block and give up execution;

reaper_thread

When a thread wishes to halt itself, the reaper thread’s services are required. The thread wishing to get
itself terminated queues itself up with the a queue that the reaper thread periodically checks.

Normally the reaper thread gets scheduled immediately after a thread halt_self code is run by any
thread. It uses the following algorithm:

while(more threads in the reaper queue)
get thread from head of queue;
clean up thread;

scheduler_thread

The scheduler thread is executes periodically (every 2 seconds) and updates the priorities of all threads,
whether in run queue or in wait queue. On updating the thread priority, the scheduler based on the
scheduling policy, decides the next user thread to be scheduled for execution. It follows the algorithm
listed below:

update priorities of all threads;
check to see which is the most eligible thread to be run;
if(current thread can continue)
return;
else
put current thread out of action;
schedule new thread;

5.8 Tasks

The tasks are the entities that “contain” threads. Each task has at least a single thread of control. The
microkernel views these tasks as passive entities. Each task is associated with an address space with a
unique mapping of virtual pages to physical pages. All threads associated with a particular task share
and execute “within” this address space.

Threads belonging to different tasks have distinct page mappings. Hence, any context switch
involving two threads from two different tasks incur more overhead for the microkernel than a context
switch within threads of the same task.

Just as in the case of threads, the Microkernel maintains a unique data structure associated with
each task. Unlike multiple kernel threads, however, there is only one kernel task.

The Microkernel manages the creation, suspension, resumption, and termination of user tasks.

14 The Design of the PARAS Microkernel

5.9 Priority Mechanism

The Microkernel follows a priority based timesharing policy for scheduling threads. A thread’s priority
to be scheduled keeps changing depending on the amount of CPU time it is using. As it uses more and
more CPU time, its priority becomes lower and lower; this avoids starvation of low priority threads.
Conversely, the more time a thread is on the wait queue, the more its priority increases.

Priority of threads is updated when any of the following event occurs:

a. when a thread gets to run
b. when scheduler does its periodic priority update of “stuck” threads

The need for the scheduler to do periodic priority updation stems from the fact that a thread’s
priority is updated only when it is scheduled to run (rule a) but a thread cannot be scheduled unless it
runs and raises its priority. In order to remove such deadlock situations and wake up the “stuck”
threads, the scheduler periodically inspects and updates the priorities of all threads.

5.10 Asynchronous System Traps

Asynchronous System Traps (AST) are the clean way to handle context switches, current thread
termination and other similar complex situations.

When an AST situation arises as a result of servicing a trap, the current thread that was trapped has
to give up execution or has to be halted. The thread may have to give up execution either because it has
to block for some information that is not available at the time or because its time quantum has expired
and there is another eligible thread waiting to be run. In any case, the situation has arisen while the trap
handler is servicing a specific trap. And as long as the trap is not serviced completely, the Microkernel’s
data structures are in inconsistent state and therefore no new servicing could be taken.

To resolve this difficulty, the Microkernel marks the thread data structure with a “need for AST” and
then returns to servicing the trap. Once the trap is serviced and the control is about to be returned to the
user, the Microkernel checks for pending ASTs and acts accordingly.

5.11 Loading and Initialization

The Microkernel on gaining control immediately after loading, resets and initializes all special registers,
relocates itself to link address, creates and sets up new trap table, sets up memory, initializes data
structures, switches to new trap table, creates kernel threads and then jumps to idle thread. The
Microkernel does the following operations loading and initialization:

start:

reset and initialize special registers;
relocate self;
create new trap table;
if(window overflow/underflow)

install fast handlers in new trap table;
else if(level 14 ticker)

retain OBP handler in new trap table;

else

install generic handler in new trap table;

Chapter 1: Process Management - Tasks and Threads 15

clean up and organize memory map;

initialize all data structures (threads, tasks, page maps, ports, etc.);

switch to new trap table;

create load thread to load servers (first kernel thread to be scheduled when idle thread blocks
below);

create ipc threads;

create scheduler thread, reaper thread and idle thread;

jump to idle thread;

The Load thread then hand creates the System Servers (NS, PM, PS and MKFS) by communicating
with the SLD through a well-known port.

5.12 Exception Handling

Tasks and threads can have an exception port associated with them. The thread’s exception port is the
port to which the kernel sends messages signaling an exception in the thread. “Exceptions” are syn-
chronous interruptions to the normal flow of program control caused by the program itself. They
include illegal memory accesses, protection violations, arithmetic exceptions, etc.

The kernel sends exception messages to the task’s exception port if the thread causing the exception
has no exception port registered. If neither the task nor the thread have exception ports registered, the
thread encountering the exception is terminated.

The occurrence of an exception invokes a four step process involving the thread that caused the
exception (the ‘victim’) and the process that handles the exception (the ‘handler’).
1. The kernel notifies the handler with an exception message.
2. The kernel suspends the victim, until the reply message from the
handler is received.
3. The handler receives the notification.
4. The handler may either

- Handle exception and cause the thread to resume execution.
- Cause termination of the exception causing thread.

Thus, the exception rpc consists of two messages; an initial message to invoke the rpc (sent from
the kernel to the handler), and a reply message to complete the rpc (received from the handler by the
kernel). The initial message consists of the following fields :

+ Reply port for the rpc.
« The identities of the thread that caused the exception and the corresponding task.
« Exception class.

The reply message contains the return code from the handler that handled the exception. The exception
causing thread is resumed or terminated depending on the return code (‘SUCCESS’ or ‘FAILURE?’). The
format of these messages are defined in ‘<exception.h>’

The Microkernel provides IEEE 754 Exception handling support for the following types of excep-
tions.
divide by zero
underflow

16 The Design of the PARAS Microkernel

overflow
invalid operation

On any of these floating-point exceptions, the IEEE 754 exception handler gains control once the trap
handler discovers the type of the exception. The handlers then inspect the appropriate floating point
source and destination registers (as could be figured out from the faulting instruction), sets the result
registers with correct results (as defined by the IEEE 754 standard) and returns.

fp_exception_handler:

if(ieee 754 exception)
read floating-point queue and get faulting instruction and fault address;
determine kind of operation performed;
determine source and destination registers;
compute correct ieee754 result as defined by the standard;
set destination registers with correct results;

return to trap handler;

5.13 OBP Services

The Microkernel utilizes the standard OBP driver handles for display/serial port I/O. Since the drivers
for these devices are complex and would make the Microkernel “huge”, they are directly being used
from OBP. For this reason, the Microkernel cannot use the top 16MB of the address space (which is
where OBP is mapped)

The Microkernel uses the OBP handles “putchar” and “getchar” to read and write from/to the serial
port (in the absence of a display). The Microkernel uses other OBP services to search and locate anode
and get OBP properties (free physical memory, etc.)

5.14 Machine Dependent Interface

The PARAS microkernel has a few machine dependent internal routines. They are

save_context: Saves the context of a thread.
load_context: Loads the context of a thread.
pcb_init: Initialize a thread's PCB.
thread_start: Initialize a thread's PC.

thread setstatus: Set thread's hardware state.
thread_getstatus: Get thread's hardware state.
initial _context: Initialize context of first thread.

thread dup: Hack for UNIX compatibility to implement fork easily.

5.14 Support Functions

The Microkernel contains a number of support functions. In particular, the following are of high
importance.

a. queue management functions to manage run queues, wait queues, timer queues, etc.
b. fast string management functions

c. special block copy support for fast intra-kernel copies used specifically by the IPC
d. debug print routines

Chapter 1: Process Management - Tasks and Threads 17

5.3 PARAS Tasks and Threads Interface

The process and task management operations that can be accessed by the microkernel user are
discussed below. More detailed discussion can be found in the PARAS Microkernel Interface Manual.

TaskCreate - Create a User Task

[EEEEEE]

[ITITITITITINOIIIIIaTi

(OO (OO g
[EEEEEEE] (O] i

Description

[ITITTTITIT Edeates a new task. The resulting task (‘child_task’) initially contains no threads, has no
special ports associated with it, and has no ports registered.

TaskDelete - Delete a User Task

I

[ITITITITITINOIIIIIaTi

OO OO il
(I [EEEEEEENE NN

Description

[ITTTTITTTTIdkstroys the task specified by target task and all its threads. All resources that are
used by the task are freed.

TaskSuspend - Suspend a Specified Task
[ENE N NN

[ITTTTITTIMOTTITTIIT 11

OO0 OO I
[EN RN NN (EE NN

Description

Increments the task’s suspend count and stops all the threads in the task. This call does not return until
all the threads in target _task are suspended. The suspend count may become greater than one, with the
effect that it will take more than one resume call to restart the task.

TaskResume - Resume a Specified Task to Execution State
[ENE N NN

[ITTTTITTIMOTTITTIIT 11

OO OO O I

[EN RN NN (EE NN

Description

Decrements the task’s suspend count. If it becomes zero, all threads with zero suspend count in the task
are resumed. The suspend count may not become negative.

ThreadCreate - Create a Thread from a Specified Task
[ENE N NN

EEEENEEE NN

[IITTTTTTITITTIITT] [EEEEEEEEEEEEEEEEEEEEEENININEEEEEEEEEEE
[EN RN NN (EE NN

18 The Design of the PARAS Microkernel

[TITTTTTT] [CIOITITTTTTTTTT] (I
Description

[ITTTITITTITT Edeates a new thread within the task specified by parent task. The new thread has a
suspend count of one and has no associated processor state. To get the new thread to run,
ThreadSetRegisters is called to set the processor state, and then ThreadResume is called to get the
thread scheduled to execute. The new thread has no exception port set and starts execution with a
priority of 16.

ThreadDelete - Remove a Thread from a Specified Task

(IR NN N

(EREEENE NN (IR RN RN

MO OO
(EEEEENE NN (IR REERR N AN

Description

[ITTTITTTTTTdkstroys the thread specified by target thread.

ThreadSuspend - Suspend a Currently Executing Thread

[Tl

[TITTTTITT] [TITTTTTITTT]

COTTTTTITTTIT] (OO T o oo
[TITTTTTT] [CIITITTITTTTITT]

Description

Increments the thread’s suspend count and prevents the thread from executing any more user level
instructions. The suspend count may become greater than one with the effect that it will take more than
one resume call to restart the thread.

ThreadResume - Resume a Specified Thread to Execution State
[ENE N NN

EEEENEEE NN

OO0 OO OO O O I

0 OO

Description

Decrements the thread’s suspend count. If the count becomes zero, the thread is resumed. If it is still
positive, the thread is left suspended. The suspend count may not become negative.

[IITTT1T11

OO I 1]

[TTTTITTTIITT 7] COTTIITTIraTTIaTT T

[IT1T1T] [CITTITITTITITITIIoT]

Description
[TTTTTTT kdturns the identifier of the calling task in task _id.

ThreadSelf - Get Thread-ld of a Current Thread

Chapter 1: Process Management - Tasks and Threads 19

Description
[ITTTTTITTIT Fdturns the identifier of the calling thread in thread id.

ThreadSetExceptionPort - Set exception port for thread
Syntax

Description

CITTTITITTITITTITTTITITT kdts the specified port as the exception port of the thread specified by
thread. The thread’s exception port is the port to which messages are sent by the kernel when an
exception occurs. If the thread has no exception port set, these messages are sent to the task’s excep-
tion port.

TaskSetExceptionPort - Set exception port for task

[Tl

ENEENEEENNIN NN

ENEEENENNENEEE MO OO O O O O O O I
[II11TT] [HE NN

[TIITTT1 [CIITTTTTTITTITTT]

Description

CITTTITITTITITTITTTITT Rdts the specified port as the exception port of the task specified by fask.
The task’s exception port is the port to which messages are sent by the kernel when an exception occurs
and the thread causing the exception has no exception port set. If neither the task nor the thread have
exception ports registered, the thread encountering the exception is terminated.

ThreadGetExceptionPort - Read exception port of thread
(ER NN NN

[TITTIIIIITITIIT]
[Tl
[T

Description

CITTTITITTITITTTITTITTITT I Fdturns the port identifier of the exception port of the thread speci-
fied by fask in ‘exception_port’.

TaskGetExceptionPort - Read exception port of task

[Tl

ENEENEEENNIN NN

ENEEENENNENEEE MO OO O O O O O O I
[II11TT] [HE NN

[T (NEEENNNNNNNENEENENENENENEE

Description

CITTTITITTITITTITTTITT Fdturns the port identifier of the exception port of the task specified by
task in exception_port.

20 The Design of the PARAS Microkernel

TaskListThreads - Read all threads belong to task

[Tl

ENEENEEENNIN NN

MO0 OO OO OO O O O O O OO O O O O O I
[Tl [CIITTTTITITTT]

[ITTTTITTTIITT 7] COTTTITTT T (O oo

11Tl [CIITITTTITITT] O

Description

[TITTTTITTITTITTIgkts the thread identifiers of all the threads contained in target task. The
microkernel creates an array in the calling thread’s address space and returns the address in thread list.
The caller may deallocate the array using RegionDeallocate, when the data is no longer needed.

TaskRegisterPorts - Register a port to a specified task

[Tl

ENEENEEENNIN NN

MO OO O O O O O O OO O O O O O I
[Tl [CIITTTTITITTT]

[IITTTITITTIT] [ITTTITITTITINT IO NTTITTINNT]

[TITTTTITT] [CIITTTTTITT]

Description

[ITTTTITTTTITIT T T I Tregisters a list of ports with the kernel on behalf of a specific task. Some of
the slots in this list are reserved. The number of reserved slots is given by the constant
N _RESERVED SLOTS. Currently, the process server, the Unix server and the debugger reserve one
slot each.

These slot numbers are given by the constants PROC SERVER SLOT, UNIX SERVER SLOT and
DEBUGGER_SLOT respectively. These ports can be retrieved by TaskListRegisteredPorts. The num-
ber of ports which may be registered is fixed and given by the constant MAX SLOTS defined.

This call is intended to be used by runtime support modules.

TaskListRegisteredPorts - Read list of ports registered to a task

(ER NN NN

[ITTTTITTIMOTTITTIIT 11

(EEEEEEEEEEEEEEE NN NN NN EEEEEEEEEEEEEEEEEEEEEEENI N INEEEEEENININNEEEENE NN
(ER NN (NN NN NN NN NN

(ENENNENE NN NN (ENENNENE NN NN OO T

MM OO O

Description

TaskLi st Regi st er edPor t s returns the list of ports registered with the kernel for ‘target task’.

ThreadGetRegisters - Read thread’s register status

(IR NN N

OO I

Ol

M OO O O O O il
(EEEEENE NN (IR REERR N AN

(NN R NN EEERNENE EEREERENEN

Chapter 1: Process Management - Tasks and Threads 21

Description

Thr eadGet Regi st er s returns the register information for ‘target thread’. The ‘target thread’
may not be the currently executing thread. The definition of the state structures can be found in
[TTTTTTTThéader file.

ThreadSetRegisters - Set thread’s register status

[ENE N NN

EEEENEEE NN

(EEEEEEEEN NN NN

OO O OO O O OO O O O O O
0 OO

ENEEENE NN NEE] 111

Description

CITTTITITTITITTTITTT kéts the register state of target thread to the state specified by the con-
tents of state. target thread may not be the currently executing thread.

The definition of the state structures can be found in <machine.h>.

ThreadSleep - Place thread in sleep state for a specified milliseconds
[ENE N NN

EEEENEEE NN

11 EEEE NN NN NN NN

OO I

Description

Thr eadSl eep forces the current thread to sleep for a duration of delay milliseconds. Since the
granularity of the system timer is limited to the internal clock frequency (10 ms on PARAM 9000), the
actual elapsed time will be rounded to the next higher clock interval.

ThreadiInfo - Read thread’s state information

I

[EEEEEEEENN NN

[EEEEEEEEN NN EEENN NN NN

OO T OO O O I il
(I OO

OO OOl Ol

[TIMMT I I I T I T I I T I OmI I T IT T ITTTMmMAT TIMaI I TITITITTTTTITTIMT
[TITTTTIMI I T I I I I I T TITITITIImI]
(ENEEEEEEEEEEEEN NN NN EEEENNNNNNNNNEENENEEENEEEEEEE

[T T T T T I T I T T I T T T T I T T TR I A T I T T T I T I rImeaoi

22 The Design of the PARAS Microkernel

The possible values of the run_state field are the following:
[ICITTTTITTTTITITT Fthread is running normally.
I TIITIT I L Jthread is suspended

[IITTTITTTTTTTTIT Ithread is waiting normally
[ITTTTTTITITITTTITITTITTIT Ithread is in an uninterruptible wait
[ITTTTTITITTITTIT Ithread is halted at a clean point

[CIITTTTITITT]

Thr eadl nf o returns information of the specified thread. The thread info data structure is supplied
by the caller and is returned filled with information.

ThreadGetPriority - Read priority of a thread

[Tl

[ITTITITT] CIITTTITITT]

[N] MO OO OO O O O O O O O O O I
[CIIITTTT] OOTTTTTTTTd

1111 [CITTTITITINTTIOTTNNT]

Description

[TITTTTTTTTTTT T T Tréturns the priority of farget thread in ‘priority’.

ThreadSetPriority - Set priority of a thread

[Tl

[ITTITITT] CIITTTITITT]

[N] MO OO OO O O O O O O O O O I
[CIIITTTT] OOTTTTTTTTd

11Tl [TITTTTTTT]

Description

ThreadSet Pri ority sets the priority of target thread to priority. The value of priority is re-
stricted to the legal priority range (16-31)

