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ABSTRACT 

Many current data mining tasks can be accomplished successfully only in a distributed setting. The field of 

distributed data mining has therefore gained increasing importance in the last decade. The Apriori algorithm by 

Rakesh Agarwal has emerged as one of the best Association Rule mining algorithms. Ii also serves as the base 

algorithm for most parallel algorithms. The enormity and high dimensionality of datasets typically available as 

input to problem of association rule discovery, makes it an ideal problem for solving on multiple processors in 

parallel. The primary reasons are the memory and CPU speed limitations faced by single processors. In this paper 

an Optimized Distributed Association Rule mining algorithm for geographically distributed data is used in parallel 

and distributed environment so that it reduces communication costs. The response time is calculated in this 

environment using XML data. 
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1. INTRODUCTION 

Association rule mining (ARM) has become one of the core data mining tasks and has attracted 

tremendous interest among data mining researchers. ARM is an undirected or unsupervised data mining 

technique which works on variable length data, and produces clear and understandable results. There are 

two dominant approaches for utilizing multiple processors that have emerged distributed memory in 

which each processor has a private memory; and shared memory in which all processors access common 

memory [4]. Shared memory architecture has many desirable properties. Each processor has direct and 

equal access to all memory in the system. Parallel programs are easy to implement on such a system. In 

distributed memory architecture each processor has its own local memory that can only be accessed 

directly by that processor [10]. For a processor to have access to data in the local memory of another 

processor a copy of the desired data element must be sent from one processor to the other through 

message passing. XML data are used with the Optimized Distributed Association Rule Mining Algorithm. 

A parallel application could be divided into number of tasks and executed concurrently on different 

processors in the system [9]. However the performance of a parallel application on a distributed system is 

mainly dependent on the allocation of the tasks comprising the application onto the available processors 

in the system.    
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Modern organizations are geographically distributed. Typically, each site locally stores its ever increasing 

amount of day-to-day data. Using centralized data mining to discover useful patterns in such 

organizations' data isn't always feasible because merging data sets from different sites into a centralized 

site incurs huge network communication costs. Data from these organizations are not only distributed 

over various locations but also vertically fragmented, making it difficult if not impossible to combine 

them in a central location. Distributed data mining has thus emerged as an active subarea of data mining 

research. In this paper an Optimized Association Rule Mining Algorithm is used for performing the 

mining process. 

2. RELATED WORK 
 

Three parallel algorithms for mining association rules [2], an important data mining problem is 

formulated in this paper. These algorithms have been designed to investigate and understand the 

performance implications of a spectrum of trade-offs between computation, communication, memory 

usage, synchronization, and the use of problem-specific information in parallel data mining [11]. Fast 

Distributed Mining of association rules, which generates a small number of candidate sets and 

substantially reduces the number of messages to be passed at mining association rules [3]. 

 

Algorithms for mining association rules from relational data have been well developed. Several query 

languages have been proposed, to assist association rule mining such as [18], 19]. The topic of mining 

XML data has received little attention, as the data mining community has focused on the development of 

techniques for extracting common structure from heterogeneous XML data. For instance, [20] has 

proposed an algorithm to construct a frequent tree by finding common subtrees embedded in the 

heterogeneous XML data. On the other hand, some researchers focus on developing a standard model to 

represent the knowledge extracted from the data using XML. JAM [21] has been developed to gather 

information from sparse data sources and induce a global classification model. The PADMA system [22] 

is a document analysis tool working on a distributed environment, based on cooperative agents. It works 

without any relational database underneath. Instead, there are PADMA agents that perform several 

relational operations with the information extracted from the documents. 
 

3. ASSOCIATION RULE MINING ALGORITHMS 

An association rule is a rule which implies certain association relationships among a set of objects (such as ``occur 

together'' or ``one implies the other'') in a database. Given a set of transactions, where each transaction is a set of 

literals (called items), an association rule is an expression of the form X Y , where X and Y are sets of items. The 

intuitive meaning of such a rule is that transactions of the database which contain X tend to contain Y  [1]. 

3.1 Apriori Algorithm  

An association rule mining algorithm, Apriori has been developed for rule mining in large transaction 

databases by IBM's Quest project team [3]. An itemset is a non-empty set of items.  

They have decomposed the problem of mining association rules into two parts  

• Find all combinations of items that have transaction support above minimum support. Call those 

combinations frequent itemsets.  

• Use the frequent itemsets to generate the desired rules. The general idea is that if, say, ABCD and 

AB are frequent itemsets, then we can determine if the rule AB CD holds by computing the ratio r 

= support(ABCD)/support(AB). The rule holds only if r >= minimum confidence. Note that the 
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rule will have minimum support because ABCD is frequent. The algorithm is highly scalable [7].  

The Apriori algorithm used in Quest for finding all frequent itemsets is given below. 

procedure AprioriAlg()  

begin  

L1 := {frequent 1-itemsets};  

for ( k := 2; Lk-1 0; k++ ) do {  

    Ck= apriori-gen(Lk-1) ; // new candidates  

for all transactions t in the dataset do {  

   for all candidates c Ck contained in t do  

             c:count++  

   }  

   Lk = { c Ck | c:count >= min-support}  

}  

Answer := k Lk 

end  

It makes multiple passes over the database. In the first pass, the algorithm simply counts item occurrences 

to determine the frequent 1-itemsets (itemsets with 1 item). A subsequent pass, say pass k, consists of two 

phases. First, the frequent itemsets Lk-1 (the set of all frequent (k-1)-itemsets) found in the (k-1)th pass are 

used to generate the candidate itemsets Ck, using the apriori-gen() function. This function first joins Lk-1 

with Lk-1, the joining condition being that the lexicographically ordered first k-2 items are the same. Next, 

it deletes all those itemsets from the join result that have some (k-1)-subset that is not in Lk-1 yielding Ck. 

The algorithm now scans the database. For each transaction, it determines which of the candidates in Ck 

are contained in the transaction using a hash-tree data structure and increments the count of those 

candidates [8], [14]. At the end of the pass, Ck is examined to determine which of the candidates are 

frequent, yielding Lk. The algorithm terminates when Lk becomes empty.  

3.2 Distributed/parallel algorithms  
 

Databases or data warehouses may store a huge amount of data to be mined. Mining association rules in 

such databases may require substantial processing power [6]. A possible solution to this problem can be a 

distributed system.[5] . Moreover, many large databases are distributed in nature which may make it more 

feasible to use distributed algorithms.  

Major cost of mining association rules is the computation of the set of large itemsets in the database. 

Distributed computing of large itemsets encounters some new problems. One may compute locally large 

itemsets easily, but a locally large itemset may not be globally large. Since it is very expensive to 

broadcast the whole data set to other sites, one option is to broadcast all the counts of all the itemsets, no 

matter locally large or small, to other sites. However, a database may contain enormous combinations of 

itemsets, and it will involve passing a huge number of messages.  

A distributed data mining algorithm FDM (Fast Distributed Mining of association rules) has been 

proposed by [5], which has the following distinct features.  

1. The generation of candidate sets is in the same spirit of Apriori. However, some relationships 

between locally large sets and globally large ones are explored to generate a smaller set of 

candidate sets at each iteration and thus reduce the number of messages to be passed.  
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2. After the candidate sets have been generated, two pruning techniques, local pruning and global 

pruning, are developed to prune away some candidate sets at each individual sites.  

3. In order to determine whether a candidate set is large, this algorithm requires only O(n) messages 

for support count exchange, where n is the number of sites in the network. This is much less than 

a straight adaptation of Apriori, which requires O(n
2
 ) messages. [3] 

Distributed data mining refers to the mining of distributed data sets. The data sets are stored in 

local databases hosted by local computers which are connected through a computer network [15], [16].  

Data mining takes place at a local level and at a global level where local data mining results are combined 

to gain global findings. Distributed data mining is often mentioned with parallel data mining in literature. 

While both attempt to improve the performance of traditional data mining systems they assume different 

system architectures and take different approaches. In distributed data mining computers are distributed 

and communicate through message passing. In parallel data mining a parallel computer is assumed with 

processors sharing memory and or disk. Computers in a distributed data mining system may be viewed as 

processors sharing nothing. This difference in architecture greatly influences algorithm design, cost 

model, and performance measure in distributed and parallel data mining. 

 3.3 Distributed Algorithms [23] 

• Distributed association rule learning 

• Collective decision tree learning 

• Collective PCA and PCA-based clustering 

• Distributed hierarchical clustering 

• Other distributed clustering algorithms 

• Collective Bayesian network learning 

• Collective multi-variate regression 

3.4 Parallel Algorithms 

The main challenges associated with parallel data mining include 

  - minimizing I/O 

  - minimizing synchronization and communication 

  - effective load balancing [12] 

  - effective data layout  

  - deciding on the best search procedure to use 

  - good data decomposition 

  - minimizing/avoiding duplication of work[2] 

 The Four Parallel Algorithms are 

1. Count Distribution – parallelizing the task of measuring the frequency of a pattern inside a 

database 

2. Candidate Distribution – parallelizing the task of generating longer patterns 

3. Hybrid Count and Candidate Distribution – a hybrid algorithm that tries to combine the strengths 

of the above algorithms 

4. Sampling with Hybrid Count and Candidate Distribution – an algorithm that tries to only use a 

sample of the database. 
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The speed and the efficiency of parallel formulations are discussed below.In a parallel data mining the 

main issues taken into account are  

 

• Load balancing 

• Minimizing communication 

• Overlapping communication and computation 

 
Speed Up 

Serial fraction : 

Parallel fraction :   

Speedup  :  

 

 

For a maximum speed up there are limits to the scalability of parallelism.  For example, at fp = 0.50, 0.90 

and 0.99,  50%, 90% and 99% of the code is parallelizable. However, certain problems demonstrate 

increased performance by increasing the problem size. Problems which increase the percentage of parallel 

time with their size are more "scalable" than problems with a fixed percentage of parallel time.   

Efficiency 

Given the parallel cost:    

Efficiency  E:         

 

In general, the total overhead is an increasing function of p, at least linearly when fs > 0: 

• communication,  

• extra computation, 

• idle periods due to sequential components, 

• idle periods due to load imbalance. 
 

4. OPTIMIZED DISTRIBUTED ASSOCIATION RULE MINING 

ALGORITHM 

The performance of Apriori ARM algorithms degrades for various reasons. It requires n number of 

database scans to generate a frequent n-itemset. Furthermore, it doesn't recognize transactions in the data 

set with identical itemsets if that data set is not loaded into the main memory. Therefore, it unnecessarily 

occupies resources for repeatedly generating itemsets from such identical transactions. For example, if a 

data set has 10 identical transactions, the Apriori algorithm not only enumerates the same candidate 

itemsets 10 times but also updates the support counts for those candidate itemsets 10 times for each 

iteration. Moreover, directly loading a raw data set into the main memory won't find a significant number 

of identical transactions because each transaction of a raw data set contains both frequent and infrequent 

items. To overcome these problems, we don't generate candidate support counts from the raw data set 

after the first pass. This technique not only reduces the average transaction length but also reduces the 
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data set size significantly, so we can accumulate more transactions in the main memory. The number of 

items in the data set might be large, but only a few will satisfy the support threshold.. 

Consider the sample data set in Figure 1a. If we load the data set into the main memory, then we only find 

one identical transaction (ABCD), as Figure 1b shows. However, if we load the data set into the main 

memory after eliminating infrequent items from every transaction (that is, items that don't have 50 percent 

of support and thus don't occur once in every second transaction in this case, itemset E), we find more 

identical transactions (see Figure 1c). This technique not only reduces average transaction size but also 

finds more identical transactions.  The following gives the pseudocode of ODAM algorithm [17]. 

NF={Non-frequent global 1-itemset} 

for all transaction t £ D { 

    for all 2-subsets s of t 

 if (s £ C2) s.sup++: 

 t
/
=delete_nonfrequent_items(t); 

      Table.add(t
/
); 

} 

Send_to_receiver (C2); 

/* Global Frequent support counts from receiver*/ 

F2=receive_from_receiver(Fα); 

C3=(Candidate itemset); 

T=Table.getTransactions(); k=3; 

While (Ck ≠{}) { 

  For all transaction t £ T 

 For all k-subsets s of t 

  If (s £ Ck) s.sup++; 

k++; 

send_to_receiver(Ck); 

/* Generating candidate itemset of k+1 pass*/ 

Ck+1={Candidate itemset); 

} 
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 Figure 1. (b) Identical transactions 

 

 

 

            Figure 1.(a) An Example Dataset 

 

 

 

  

 

 Figure 1. (c) Transactions after pruning infrequent items. 

 

 

 

Transactions 

No. Items 

1. ABCD 

2. BC 

3. AB 

4. ABCDE 

5. ACD 

6. ABE 

7. CDE 

8. AD 

9. BCE 

10. ABCD 

Transactions 

No. Items 

1,10 ABCD 

2. BC 

3. AB 

4. ABCDE 

5. ACD 

6. ABE 

7. CDE 

8. AD 

9. BCE 

Transactions 

No. Items 

1,4,10 ABCD 

2.9 BC 

3,6 AB 

5 ACD 

7 CDE 

8 AD 
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ODAM eliminates all globally infrequent 1-itemsets from every transaction and inserts them into the main 

memory; it reduces the transaction size (the number of items) and finds more identical transactions. This 

is because the data set initially contains both frequent and infrequent items. However, total transactions 

could exceed the main memory limit. 

ODAM removes infrequent items and inserts each transaction into the main memory. While inserting the 

transactions, it checks whether they are already in memory. If yes, it increases that transaction's counter 

by one. Otherwise, it inserts that transaction into the main memory with a count equal to one. Finally, it 

writes all main-memory entries for this partition into a temp file. This process continues for all other 

partitions. 

 

5. PARALLEL AND DISTRIBUTED ASSOCIATION RULE WITH XML 

DATA 

Parallelism is expected to relieve current ARM methods from sequential bottlenecks, providing the ability 

to scale to massive datasets and improving the response time [13]. The parallel design space spans 3 main 

components including the hardware platform, the kind of parallelism exploited and the load balancing 

strategy used. 

 Hardware Platform 

Shared memory architecture has all the processors access common memory. Each processor has direct 

and equal access to all the memory in the system. Parallel programs are easy to implement on such a 

system. 

 Data Parallelism 

The data warehouse is partitioned among P processors logically partitioned for SMP. Each processor 

works on its local partition of the database but performs the same computation of counting support. 

 Load Balancing 

Dynamic load balancing seeks to address this issue by balancing the load and reassigning the loads to the 

lighter ones. The development of distributed rule mining is a challenging and critical task, since it 

requires knowledge of all the data stored at different locations and the ability to combine partial results 

from individual databases into a single result.  

The association rule from XML data with a sample XML document is considered. We refer to the sample 

XML document, depicted in Figure 2 where information about the items purchased in each transaction are 

represented. For example, the set of transactions are identified by the tag <transactions> and each 

transaction in the transactions set is identified by the tag <transaction>. The set of items in each 

transaction Figure 2: Transaction document (transactions.xml) are identified by the tag <items> and an 

item is identified by the tag <item>. Consider the problem of mining all association rules among items 

that appear in the transactions document as shown in Figure 2. With the understanding of traditional 

association rule mining we expect to obtain the large itemsets document and association rules document 

from the source document. 

Let the minimum support (minsup) = 30% 

and minimum confidence (minconf) = 100%. 
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<transactions> 

 <transaction id=1> 

  <items> 

   <item> i1</item> 

   <item> i4</item> 

   <item> i7</item> 

  </items> 

 </transaction> 

  

 

<transaction id=2> 

  <items> 

   <item> i2</item> 

   <item> i3</item> 

   <item> i5</item> 

  </items> 

 </transaction> 

 <transaction id=3> 

  <items> 

   <item> i1</item> 

   <item> i3</item> 

   <item> i7</item> 

  </items> 

 </transaction> 

 <transaction id=4> 

  <items> 

   <item> i2</item> 

   <item> i5</item> 

  </items> 

 </transaction> 

 <transaction id=5> 

  <items> 

   <item> i1</item> 

   <item> i5</item> 

  </items> 

 </transaction> 

 

6. MINE GENERAL ASSOCIATION RULES FROM XML DATA 

In XML data, multiple nesting is a problem that needs to be handled properly. Consider a file of sales 

receipts from a grocery chain. The grocery chain may want to group by the following information: Date, 

StoreId, Register, and Individual Sale. Any permutation of these attributes would be a logical construction 

of a file in XML [24]. With the individual sale as the attribute of most interest, consider the various 

nesting depths at which it may be located. At any node in an XML ‘tree’ the sub tree can be viewed as a 

record, relative to other records at that depth, or other records with similar record tags. This provides 

assurance that mining will be done on the correct nesting depth (along with other nesting depths also). 

However there is a potential for redundancy. It becomes more evident in highly nested files. In a highly 

nested XML file, the same set of leaf nodes may be involved in as many different records as there are 

nestings. The below Algorithm is used to derive General Association Rules from XML Data 
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Input: min-conf, min-sup, XML file(s) 

Output: Association Rules 

error check input 

D <- new DOM from XML files 

assign record IDs to non leaf node in D, by record type 

L <- new linked list 

construct set S, of all unique record types, with       elements as sets of size 1 

L[1] <- S 

i <- 1 

do until BasketSetCollection generated from merge operation is empty 

prune elements in L[i-1] not meeting min-sup 

L[i] <- collection of all unique record types, with elements as sets of size i, constructed from L[i-1] 

increment i 

generate all possible rule combinations in L 

O <- empty output set 

for all rules R in L, if R meets min-conf add to O 

output O 

The basic idea is as follows. First the record ids are assigned per record type. A basketSet is constructed 

for each type of record encountered. An empty recordTypeList and an empty RIDList is taken first to 

start. These lists are parallel, in that the recordType at position n of the recordTypeList is associated with 

the RID at position n of the RIDList. A single path from root to leaf is considered. As the algorithm 

progresses along this path, it examines each node. If the node is not a leaf, it looks at the node type 

(recordType) and asks the basketSet associated with this recordType for a new RID. It then adds the 

recordType to the end of the recordType list and the RID to the end of the RIDList. If the node is a leaf 

(consider a leaf to be of the form <purchase>pen</purchase>) loop through the RIDList and recordType 

list to build Baskets. 

7. PERFORMANCE EVALUATION 
 

The number of messages that ODAM exchanges among various sites to generate the globally frequent 

itemsets in a distributed environment, we partition the original data set into five partitions. To reduce the 

dependency among different partitions, each one contains only 20 percent of the original data set's 

transactions. So, the number of identical transactions among different partitions is very low. ODAM 
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provides an efficient method for generating association rules from different datasets, distributed among 

various sites. 

 

 

Figure 2: Total message size that ODAM transmits to generate the globally frequent itemsets 
 

The datasets are generated randomly depending on the number of distinct items, the maximum number of 

items in each transaction and the number of transactions. The performance of the XQuery 

implementation is dependent on the number of large itemsets found and the size of the dataset. 
 

 

Figure 3. Time with Minimum support 

 

The running time for dataset-1 with minimum support 20% is much higher than the running time of 

dataset-2 and dataset-3, since the number of large itemsets found for dataset-1 is about 2 times more than 

the other datasets. 

The Response time of the parallel and distributed data mining task on XML data is carried out by the time 

taken for communication, computation cost involved. Communication time is largely dependent on the 
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perform the mining process on the distributed dat

Figure 4. 

 

A perfect scale up is found when the 

time is achieved for the taken XML data.

8. CONCLUSIONS 

Association rule mining is an important 

perform association rule mining on XML data due to the

multiple nesting problems in XML data is handled appropriately to assure

The Optimized Distributed Association Mining Algorithm is used for the mining process

distributed environment. The response time with the communication and computation factors are 

considered to achieve an improved response time.

number of processors in a distributed environment. As the mining process is done in parallel an optimal 

solution is obtained. The Future enhancement of this is to cluster the same XML dataset and find out the 

knowledge extracted out of that. A visual analysis can also be made for the same.
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