A Probability Analysis of Tennis Scores

Have you ever wondered why tennis scores are so lopsided? Why a player who is slightly better than his or her opponent nearly always holds serve? A mathematically inclined AlmondWeb writer, who plays tennis, performed a probability analysis to find the answer.

The analysis assumes that when you play a particular opponent, on either your serve or your opponent's serve, you have a constant probability p (point) of winning each point. We then ask, what is your probability p (game) of winning the game? For example, suppose that on your serve, you have a 70% probability of winning each point ($p($ point $)=0.7$). What is the probability of holding your serve and winning the game? The analysis shows that you will win 90% of the games ($p(g a m e$) $=0.9$).

In a finer grained analysis, we ask, what is your probability of winning the game when your opponent has a particular final score? For example, what is the probability of a final score of "Game to 30" (which we symbolize as "G-30") or after going to deuce?

On this page, we summarize the analysis results. If you would like a copy of the probability equations, or if you would like to comment on the analysis, please contact AlmondWeb.

p(point)	$\left\lvert\, \begin{gathered} \text { p(game) a } \\ \text { G - Love } \end{gathered}\right.$	$\begin{aligned} & \text { a score } \\ & \text { G - } 15 \end{aligned}$	G-30	After deuce	Any score
0.0	0.00	0.00	0.00	0.00	0.00
0.1	0.00	0.00	0.00	0.00	0.00
0.2	0.00	0.01	0.01	0.00	0.02
0.3	0.01	0.02	0.04	0.03	0.10
0.4	0.03	0.06	0.09	0.09	0.26
0.5	0.06	0.13	0.16	0.16	0.50
0.6	0.13	0.21	0.21	0.19	0.74
0.7	0.24	0.29	0.22	0.16	$\bigcirc 0.90$
0.8	0.41	0.33	0.16	0.08	0.98
0.9	0.66	0.26			1.00
1.0	1.00	0.00	0.00	0.00	1.00
Q: If you win 70% of the poiths, how many of the games will you win? A: 90% of the games.					
Q. How many of the games will you win after going to deuce? A. 16% of the games.					

Technical Documentation • Web Development • Authoring Technology Web http://www.almondweb.com Tel. +972-2-5712246

Copyright © 2002 by AlmondWeb Ltd. All rights reserved.

