
  

Introducing Scala

Developing a new Scala DSL
for Apache Camel



  

Goals

● Goals

– Introduce a few basic concepts/syntax of Scala

– How to use these Scala techniques for building a 
Scala DSL (using Apache Camel as an example)



  

Planning

● Introduction
● Scala for DSL building

– Implicit conversion

– Passing functions as parameters

– By-name parameters and currying

– Caveats
● Scala tooling

– Maven plugin

– Eclipse plugin
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Introduction

● Who am I?

– Gert Vanthienen (gert@anova.be)

– Independent consultant
● Open-source (Java/J2EE) technology
● Legacy integration (System i aka AS/400)

– Open-source
● Apache ServiceMix committer / PMC member
● Contributor to Apache Camel

mailto:gert@anova.be


  

Introduction

● What is Apache Camel?

– Spring-based Integration Framework

– Implements enterprise integration patterns

– Configured through
● Java DSL (fluent API)
● Spring XML configuration file

– URIs to work with other transports/protocols

– Routing/mediation for ServiceMix, ActiveMQ, CXF, ...

– Check out Bruce Snyder's presentation on Friday!!



  

Introduction

public class FleetRouteBuilder extends RouteBuilder {

  public void configure() throws Exception {
    from("ftp://server.local:10021/traces/out")
      .to("ftp://server.remote/folder/to/upload")
      .splitter(xpath("/traces/trace"))  
      .to("activemq:MY.TRACE.QUEUE")
      .filter(xpath("/trace/@type == 'XYZ'"))
        .to("wmq:QLIN.TRACE.QUEUE");
  }

}

● Just a small example of the Java DSL

ftp://server.remote/folder/to/upload


  

Introduction

● What is Scala?

– Sca(lable) la(nguage)

– Multi-paradigm:
● Object-oriented: classes, polymorphism, inheritance, ..
● Functional: function = value, pattern matching, ...

– Static typing, using type inference 

– Interoperates with JRE (and .NET CLR)
● Scala code compiles into Java bytecode
● You can call Java code from Scala (and vica versa)



  

Introduction

● A simple Scala class example

class Person(name: String, age: Int) {
  
  def eat(food: String) {
    println("Eating " + food + " now")
  }
  
  def isToddler = age > 0 && age < 3
  
  override def toString() = "Person[" + name + "]"

}



  

Planning

● Introduction
● Scala language

– Implicit conversion

– Passing functions as parameters

– By-name parameters and currying

– Caveats
● Scala tooling

– Maven plugin

– Eclipse plugin



  

Simple route example

● Example of the simplest route possible in Java
Just receive a message and forward it

public class MyRouteBuilder extends RouteBuilder {

  public void configure() throws Exception {
    from("direct:a").to("mock:a");
    from("direct:b").to("mock:b");
  }

}



  

Simple route example

● In the Scala DSL it looks like this...

● ... using these language features

– constructor statements go in the class body

– no need for parentheses, dots and semicolons

– an operator is implemented like any other method

– implicit conversion

class MyRouteBuilder extends RouteBuilder {
  
  "direct:a" to "mock:a"
  "direct:b" --> "mock:b"
  
}



  

Implicit conversion

● Strings like “direct:a” and “direct:b” don't have the 
necessary methods (  and to)→

● String is final so it can't be subclassed
● Using implicit conversion to 'add' the missing 

methods

class RouteBuilder {
  
  implicit def stringToUri(uri:String) = 
                                  new RichUriString(uri, this)

}



  

Implicit conversion

class RichUriString(uri:String, builder:RouteBuilder) {
  
  def to(target: String) = builder.from(uri).to(target)
  def -->(target: String) = to(target)
  
}

● Let's look at the RichUriString

– Primary constructor is in class declaration

– Defines two methods (return type inference)



  

Implicit conversion

● The full Scala RouteBuilder class

package org.apache.camel.scala.dsl

class RouteBuilder {
  
  val builder = new org.apache.camel.builder.RouteBuilder() {
    override def configure() = {} 
  }
  
  def from(uri: String) = builder.from(uri)
  
  implicit def stringToUri(uri:String) = 
                                  new RichUriString(uri, this)

}



  

Implicit conversion

● There are a few subtle rules that can bite you when 
using implicit conversion

– marking rule

– scope rule

– explicits-first rule

– one-at-a-time rule

– non-ambiguity rule
Example: filter method on ProcessorType/RichString



  

Filter route example

● Java DSL filter looks like this

public class MyRouteBuilder extends RouteBuilder {

  public void configure() throws Exception {
    from("direct:a").
      filter(body().isEqualTo("<hello/>")).to("mock:a");
  }

}



  

Filter route example

● In the Scala DSL

● Scala language features

– passing functions as parameters

– equals() in Java becomes == in Scala

class FilterRouteBuilder extends RouteBuilder {

  "direct:a" when(_.in == "<hello/>") to "mock:a"
  
}



  

Passing functions as parameters

● Scala is a functional language

– functions are variables

– you can pass functions as method parameters
● Let's pass a function to the when() method

class RichUriString(uri: String, builder: RouteBuilder) {
  
  def when(test: Exchange => Boolean) = 
    builder.from(uri).filter(new WhenPredicate(test)) 
      

}



  

Passing functions as parameters

● Predicate<E> is an interface in the Camel API

– WhenPredicate is a Scala class that implements it

– Use the function with an Exchange to evaluate

package org.apache.camel.scala.dsl

class WhenPredicate(function: Exchange => Boolean) 
                                   extends Predicate[Exchange]{
  
  override def matches(exchange: Exchange) = function(exchange)
  
  //assertMatches is also here

}



  

Passing functions as parameters

● Passing a function literal in the RouteBuilder

● Shorthand notation

– with parameter type inference...

– and placeholders 

exchange => exchange.in == "<hello/>"

_.in == "<hello/>"

class FilterRouteBuilder extends RouteBuilder {
    
  "direct:a" when(
    (exchange:Exchange) => exchange.in == "<hello/>"
                                         ) to "mock:a"
  
}



  

CBR example

● Java DSL for a simple content-based router

public class MyRouteBuilder extends RouteBuilder {

  public void configure() throws Exception {
    from("direct:a")
      .to("mock:polyglot")
      .choice()
        .when(body().isEqualTo("<hallo/>"))
          .to("mock:dutch")
          .to("mock:german");
        .when(body().isEqualTo("<hello/>")).to("mock:english")
        .otherwise().to("mock:french");

  }

}



  

CBR example

● Scala DSL adds code blocks for supporting more 
advanced route definitions

class CBRRouteBuilder extends RouteBuilder {
    
  "direct:a" ==> {
    to ("mock:polyglot")
    choice {
      when (_.in == "<hello/>") to ("mock:english")
      when (_.in == "<hallo/>") {
        to ("mock:dutch")
        to ("mock:german")
      }
      otherwise to ("mock:french")
    }
  }
  
}



  

By-name parameters and currying

● By-name parameters allow you to just pass a block 
 of code that takes no parameters

class RouteBuilder {
  
  //instead of : def choice(block: () => Unit)
  def choice(block: => Unit) = {
    //just execute the block (no parentheses)
    block
  }
    
}



  

By-name parameters and currying

● Currying allows you to use a method that takes 
multiple arguments lists

class RouteBuilder {
  
  //snip
  
  def when(test: Exchange => Boolean)(block: => Unit) = {
    val when = choice.when(new WhenPredicate(test))
    build(when, block)
  }
    
}



  

Caveats

● Interaction between Java and Scala generics
● Java varargs versus Scala repeated parameters
● Operator precedence



  

Operator precedence

● Scala allows you to override operators or declare 
symbol named methods

– precedence is determined on the first character

class SimpleRouteBuilder extends RouteBuilder {
  
  //these are all the same
  "direct:a" to "mock:a1" to "mock:a2"
  "direct:b" --> "mock:b1" --> "mock:b2"
  "direct:c" --> "mock:c1" to "mock:c2"
  
  //but this is something entirely different
  "direct:d" to "mock:d1" --> "mock:d2"
    
}



  

Java/Scala generics

● Most of the times, you can simply replace <> by []
● A Java type defined as...

● In Java, you can also declare the raw type ...
(you'll only get compiler warnings)

● ... but in Scala this doesn't work.  The solution is 
this (ugly-looking) syntax (existential type).

public class ProcessorType<Type extends ProcessorType> {}

implicit def processorWrapper(
             processor: ProcessorType[T] forSome {type T}) =   
                                  new RichProcessor(processor)



  

Varargs/repeated parameters

● Java varargs...

● ... are like Scala repeated parameters

● Caveats:

public Type to(String... uri) {
   //does some work
}

def to(uris: String*) = //implementation goes here

def to(uris: String*) = {
  val processor = builder.from(uri)
  processor.to(uris.toArray[String])
}
  
def -->(uris: String*) = to(uris:_*)



  

Other language features

● What else is there?

– traits and mixins

– pattern matching

– partially applied functions

– apply() and unapply()

– language support for XML
XML literals, pattern matching for XML, ...

– actors

– annotation support

– ...



  

Planning

● Introduction
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Scala Maven plugin

● Integrate Scala in your current Maven build

– http://scala-tools.org/mvnsites/maven-scala-plugin/

– specify repository and plugin

– also need to specify source/test folders
● Other features

– continuous compilation (scala:cc)

– scaladoc generation (scala:doc)

– scala interactive console (scala:console)

http://scala-tools.org/mvnsites/maven-scala-plugin/


  

Scala Eclipse plugin

● Scala plugin for Eclipse
http://www.scala-lang.org/tools/eclipse/

– Scala development perspective

– Syntax highlighting and formatting

– Wizards for classes, traits, objects, ...
● But...

– If you have problems, resort to manual building 
(Ctrl-B)

– Occasionally, you may have to clean your project to 
get up-to-date compile messages

http://www.scala-lang.org/tools/eclipse/


  

Scala Eclipse plugin

● Configuring Maven Eclipse plugin to generate Scala 
project descriptors

– add a nature: 
ch.epfl.lamp.sdt.core.scalanature

– add a builder: 
ch.epfl.lamp.sdt.core.scalabuilder

– add a build classpath container:
ch.epfl.lamp.sdt.launching.SCALA_CONTAINER



  

Thanks for attending...

Questions? Remarks?
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