

Introducing Scala

Developing a new Scala DSL
for Apache Camel

Goals

● Goals

– Introduce a few basic concepts/syntax of Scala

– How to use these Scala techniques for building a
Scala DSL (using Apache Camel as an example)

Planning

● Introduction
● Scala for DSL building

– Implicit conversion

– Passing functions as parameters

– By-name parameters and currying

– Caveats
● Scala tooling

– Maven plugin

– Eclipse plugin

Planning

● Introduction
● Scala for DSL building

– Implicit conversion

– Passing functions as parameters

– By-name parameters and currying

– Caveats
● Scala tooling

– Maven plugin

– Eclipse plugin

Introduction

● Who am I?

– Gert Vanthienen (gert@anova.be)

– Independent consultant
● Open-source (Java/J2EE) technology
● Legacy integration (System i aka AS/400)

– Open-source
● Apache ServiceMix committer / PMC member
● Contributor to Apache Camel

mailto:gert@anova.be

Introduction

● What is Apache Camel?

– Spring-based Integration Framework

– Implements enterprise integration patterns

– Configured through
● Java DSL (fluent API)
● Spring XML configuration file

– URIs to work with other transports/protocols

– Routing/mediation for ServiceMix, ActiveMQ, CXF, ...

– Check out Bruce Snyder's presentation on Friday!!

Introduction

public class FleetRouteBuilder extends RouteBuilder {

 public void configure() throws Exception {
 from("ftp://server.local:10021/traces/out")
 .to("ftp://server.remote/folder/to/upload")
 .splitter(xpath("/traces/trace"))
 .to("activemq:MY.TRACE.QUEUE")
 .filter(xpath("/trace/@type == 'XYZ'"))
 .to("wmq:QLIN.TRACE.QUEUE");
 }

}

● Just a small example of the Java DSL

ftp://server.remote/folder/to/upload

Introduction

● What is Scala?

– Sca(lable) la(nguage)

– Multi-paradigm:
● Object-oriented: classes, polymorphism, inheritance, ..
● Functional: function = value, pattern matching, ...

– Static typing, using type inference

– Interoperates with JRE (and .NET CLR)
● Scala code compiles into Java bytecode
● You can call Java code from Scala (and vica versa)

Introduction

● A simple Scala class example

class Person(name: String, age: Int) {

 def eat(food: String) {
 println("Eating " + food + " now")
 }

 def isToddler = age > 0 && age < 3

 override def toString() = "Person[" + name + "]"

}

Planning

● Introduction
● Scala language

– Implicit conversion

– Passing functions as parameters

– By-name parameters and currying

– Caveats
● Scala tooling

– Maven plugin

– Eclipse plugin

Simple route example

● Example of the simplest route possible in Java
Just receive a message and forward it

public class MyRouteBuilder extends RouteBuilder {

 public void configure() throws Exception {
 from("direct:a").to("mock:a");
 from("direct:b").to("mock:b");
 }

}

Simple route example

● In the Scala DSL it looks like this...

● ... using these language features

– constructor statements go in the class body

– no need for parentheses, dots and semicolons

– an operator is implemented like any other method

– implicit conversion

class MyRouteBuilder extends RouteBuilder {

 "direct:a" to "mock:a"
 "direct:b" --> "mock:b"

}

Implicit conversion

● Strings like “direct:a” and “direct:b” don't have the
necessary methods (and to)→

● String is final so it can't be subclassed
● Using implicit conversion to 'add' the missing

methods

class RouteBuilder {

 implicit def stringToUri(uri:String) =
 new RichUriString(uri, this)

}

Implicit conversion

class RichUriString(uri:String, builder:RouteBuilder) {

 def to(target: String) = builder.from(uri).to(target)
 def -->(target: String) = to(target)

}

● Let's look at the RichUriString

– Primary constructor is in class declaration

– Defines two methods (return type inference)

Implicit conversion

● The full Scala RouteBuilder class

package org.apache.camel.scala.dsl

class RouteBuilder {

 val builder = new org.apache.camel.builder.RouteBuilder() {
 override def configure() = {}
 }

 def from(uri: String) = builder.from(uri)

 implicit def stringToUri(uri:String) =
 new RichUriString(uri, this)

}

Implicit conversion

● There are a few subtle rules that can bite you when
using implicit conversion

– marking rule

– scope rule

– explicits-first rule

– one-at-a-time rule

– non-ambiguity rule
Example: filter method on ProcessorType/RichString

Filter route example

● Java DSL filter looks like this

public class MyRouteBuilder extends RouteBuilder {

 public void configure() throws Exception {
 from("direct:a").
 filter(body().isEqualTo("<hello/>")).to("mock:a");
 }

}

Filter route example

● In the Scala DSL

● Scala language features

– passing functions as parameters

– equals() in Java becomes == in Scala

class FilterRouteBuilder extends RouteBuilder {

 "direct:a" when(_.in == "<hello/>") to "mock:a"

}

Passing functions as parameters

● Scala is a functional language

– functions are variables

– you can pass functions as method parameters
● Let's pass a function to the when() method

class RichUriString(uri: String, builder: RouteBuilder) {

 def when(test: Exchange => Boolean) =
 builder.from(uri).filter(new WhenPredicate(test))

}

Passing functions as parameters

● Predicate<E> is an interface in the Camel API

– WhenPredicate is a Scala class that implements it

– Use the function with an Exchange to evaluate

package org.apache.camel.scala.dsl

class WhenPredicate(function: Exchange => Boolean)
 extends Predicate[Exchange]{

 override def matches(exchange: Exchange) = function(exchange)

 //assertMatches is also here

}

Passing functions as parameters

● Passing a function literal in the RouteBuilder

● Shorthand notation

– with parameter type inference...

– and placeholders

exchange => exchange.in == "<hello/>"

_.in == "<hello/>"

class FilterRouteBuilder extends RouteBuilder {

 "direct:a" when(
 (exchange:Exchange) => exchange.in == "<hello/>"
) to "mock:a"

}

CBR example

● Java DSL for a simple content-based router

public class MyRouteBuilder extends RouteBuilder {

 public void configure() throws Exception {
 from("direct:a")
 .to("mock:polyglot")
 .choice()
 .when(body().isEqualTo("<hallo/>"))
 .to("mock:dutch")
 .to("mock:german");
 .when(body().isEqualTo("<hello/>")).to("mock:english")
 .otherwise().to("mock:french");

 }

}

CBR example

● Scala DSL adds code blocks for supporting more
advanced route definitions

class CBRRouteBuilder extends RouteBuilder {

 "direct:a" ==> {
 to ("mock:polyglot")
 choice {
 when (_.in == "<hello/>") to ("mock:english")
 when (_.in == "<hallo/>") {
 to ("mock:dutch")
 to ("mock:german")
 }
 otherwise to ("mock:french")
 }
 }

}

By-name parameters and currying

● By-name parameters allow you to just pass a block
 of code that takes no parameters

class RouteBuilder {

 //instead of : def choice(block: () => Unit)
 def choice(block: => Unit) = {
 //just execute the block (no parentheses)
 block
 }

}

By-name parameters and currying

● Currying allows you to use a method that takes
multiple arguments lists

class RouteBuilder {

 //snip

 def when(test: Exchange => Boolean)(block: => Unit) = {
 val when = choice.when(new WhenPredicate(test))
 build(when, block)
 }

}

Caveats

● Interaction between Java and Scala generics
● Java varargs versus Scala repeated parameters
● Operator precedence

Operator precedence

● Scala allows you to override operators or declare
symbol named methods

– precedence is determined on the first character

class SimpleRouteBuilder extends RouteBuilder {

 //these are all the same
 "direct:a" to "mock:a1" to "mock:a2"
 "direct:b" --> "mock:b1" --> "mock:b2"
 "direct:c" --> "mock:c1" to "mock:c2"

 //but this is something entirely different
 "direct:d" to "mock:d1" --> "mock:d2"

}

Java/Scala generics

● Most of the times, you can simply replace <> by []
● A Java type defined as...

● In Java, you can also declare the raw type ...
(you'll only get compiler warnings)

● ... but in Scala this doesn't work. The solution is
this (ugly-looking) syntax (existential type).

public class ProcessorType<Type extends ProcessorType> {}

implicit def processorWrapper(
 processor: ProcessorType[T] forSome {type T}) =
 new RichProcessor(processor)

Varargs/repeated parameters

● Java varargs...

● ... are like Scala repeated parameters

● Caveats:

public Type to(String... uri) {
 //does some work
}

def to(uris: String*) = //implementation goes here

def to(uris: String*) = {
 val processor = builder.from(uri)
 processor.to(uris.toArray[String])
}

def -->(uris: String*) = to(uris:_*)

Other language features

● What else is there?

– traits and mixins

– pattern matching

– partially applied functions

– apply() and unapply()

– language support for XML
XML literals, pattern matching for XML, ...

– actors

– annotation support

– ...

Planning

● Introduction
● Scala for DSL building

– Implicit conversion

– Passing functions as parameters

– By-name parameters and currying

– Caveats
● Scala tooling

– Maven plugin

– Eclipse plugin

Scala Maven plugin

● Integrate Scala in your current Maven build

– http://scala-tools.org/mvnsites/maven-scala-plugin/

– specify repository and plugin

– also need to specify source/test folders
● Other features

– continuous compilation (scala:cc)

– scaladoc generation (scala:doc)

– scala interactive console (scala:console)

http://scala-tools.org/mvnsites/maven-scala-plugin/

Scala Eclipse plugin

● Scala plugin for Eclipse
http://www.scala-lang.org/tools/eclipse/

– Scala development perspective

– Syntax highlighting and formatting

– Wizards for classes, traits, objects, ...
● But...

– If you have problems, resort to manual building
(Ctrl-B)

– Occasionally, you may have to clean your project to
get up-to-date compile messages

http://www.scala-lang.org/tools/eclipse/

Scala Eclipse plugin

● Configuring Maven Eclipse plugin to generate Scala
project descriptors

– add a nature:
ch.epfl.lamp.sdt.core.scalanature

– add a builder:
ch.epfl.lamp.sdt.core.scalabuilder

– add a build classpath container:
ch.epfl.lamp.sdt.launching.SCALA_CONTAINER

Thanks for attending...

Questions? Remarks?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

