Multi-Value Classification of Very Short Texts

Andreas Hef}, Philipp Dopichaj and Christian Maaf

Lycos Europe GmbH, Giitersloh, Germany
{andreas.hess,philipp.dopichaj,christian.maass } Qlycos-europe.com

Abstract. We introduce a new stacking-like approach for multi-value
classification. We apply this classification scheme using Naive Bayes,
Rocchio and kNN classifiers on the well-known Reuters dataset. We use
part-of-speech tagging for stopword removal. We show that our setup
performs almost as well as other approaches that use the full article
text even though we only classify headlines. Finally, we apply a Rocchio
classifier on a dataset from a Web 2.0 site and show that it is suitable
for semi-automated labelling (often called tagging) of short texts and is
faster than other approaches.

1 Introduction

Multi-value text classification is an interesting and very practical topic. In many
applications, a single label only is not enough to appropriately classify docu-
ments. This is especially true in many applications on the web. As opposed to
traditional documents, some texts on the web, especially on Web 2.0 sites, are
very short, for example pin-board entries, comments to blog posts or captions of
pictures or videos. Sometimes these texts are mere snippets, being at most one
or two sentences long. Yet, in some Web 2.0 applications, labelling or tagging
such short snippets does not only make sense but could be the key to success.
Therefore we believe it is important to investigate how multi-value text clas-
sification algorithms perform when very short texts are classified. To test this,
we classified news articles from the well-known Reuters data-set based only on
the headlines and compared the results to older approaches in literature that
used the full text. We applied the same algorithm to a dataset from Web 2.0
site Lycos iQ. An empirical evaluation shows that text classification algorithms
perform well in both setups.

The remainder of this paper is organised as follows: first, we present a new
stacking approach for multi-value classification. By comparing the performance
of classifiers trained only on the short headlines of the well-known Reuters news
articles benchmark to results achieved with similar classifiers using the full article
text we show that classification of very short texts is possible and the loss in
accuracy is acceptable. Second, we present an application of text classification
for tagging short texts from a Web 2.0-site. We demonstrate that presenting
suggestions to the user can greatly improve the quality of tagging.

2 Stacking for Multi-Value Classification

In contrast to a standard single-value classification where each instance is as-
signed exactly one class label, multi-value (also called multi-label) classification
allows for assigning an arbitrary number of labels to instances. A classical ex-
ample where multi-value classification makes sense is the labelling of texts that
have more than one topic. Class labels for such texts could be either of different
granularity or they could even be orthogonal. For example, a news article about
the presidential elections in the United States could be labelled as ‘politics’,
‘election’ and ‘USA’. The labels ‘politics’ and ‘election’ are based on a topic, but
‘election’ is a more detailed description of the content. As opposed to the other
labels, ‘USA’ refers to location.

Although multi-value classification is a natural solution for many machine-
learning problems, most algorithms can only handle single-value classification.
Therefore it is common practise in multi-value classification that single-value
classification algorithms are adapted by means of some combination method; see
[6] for a recent survey. The most common approach is ‘one-vs-all’ classification:
for each class label, a binary classifier that decides whether an instance is a
member of this specific class is trained. This approach has a strong disadvantage:
the datasets the binary classifiers are trained on are imbalanced. Consider e. g.
a kNN-classifier with k£ = 3. If an instance that is to be classified is equidistant
to three instances that have a single class label each and are of three different
classes, all three binary classifiers would classify the new instance as a negative
example. Therefore, no prediction is made, although this is most probably not
correct, and a more intuitive classification would be to assign all three class
labels. This argument against the one-vs-all scheme holds for other classifiers as
well. Support Vector Machines are known to be sensitive towards imbalanced
datasets. Godbole and Sarawagi [3] exploit the relations between classes that
exist if class labels are not independent from each other by using a stacking
approach to add the predictions of other binary classifiers to train another set of
classifiers in a second pass. Many classification algorithms output a ranked list
of predicted class labels with confidence values. Well-known algorithms in this
group are the Naive Bayes, Rocchio and kNN classifiers. When using such an
algorithm, another scheme for multi-value classification is thresholding: selecting
class labels that are within the top n predictions or have a confidence score higher
than a certain threshold. Different methods of thresholding have been discussed
by Yang [9]. The SCut-method applies a different threshold for each class. In the
RTCut-method, rank and confidence score are combined to a single value before
thresholding is applied.

2.1 Description of our Algorithm
We propose a multi-value classification scheme which we call MVS (multi-value

classification stacking) that is similar to RTCut: we use a classifier with con-
fidence scores and rank, but instead of creating an artificial score, we train a

binary meta-classifier for each class on the confidence score and rank as com-
puted by the base classifier. The meta-classifiers decide whether a specific class
label predicted by the base classifier should be included in the final set of pre-
dictions. In our implementation, we used JRip as implemented in WEKA [7]
as meta-classifier. To train our algorithm, we first train the base classifier. Sec-
ond, we train one binary meta-classifier per class label. The training examples
for the meta-classifiers are created as follows: We classify each instance in the
training set with the base classifier and iterate over the top n predictions. For
each prediction, we check whether the predicted class label ¢ is a true class la-
bel of the instance. If this is the case, we add the rank and confidence score of
the prediction as a positive example to the training set for the meta-classifier
for class g. Otherwise, we add it as a negative example. Finally, we train the
meta-classifiers for each class on their respective training sets. Algorithm 2.1
illustrates the training phase of our classification scheme.

Algorithm 1 MVS: Training Phase
Require: T} ., training instances
Require: B, base classifier
Require: M. ;, meta-classifiers (one per class label)
Train Bon T
Ni..: < set of instances for meta-classifiers (initially empty)
for j=1tot do
C < true class labels of Tj
P <= top n predictions of B for Tj
for [=1 ton do
q < class label of P,
if ¢ € C then
add P, as positive example to Ny
else
add P, as negative example to IV,
end if
end for
end for
for m=1to !l do
Train M,, on N,,
end for

The classification phase of our scheme is straightforward: first, we classify
the instance using the base classifier and iterate over the top m predictions.
For each prediction, we use the respective meta-classifier to determine whether
the prediction is true or false. It should be noted that for some classification
algorithms our MVS scheme reduces the overall complexity compared to one-
vs-all. Consider for example a Rocchio classifier: When trained as a multi-class
classifier, we need to compute the centroid for each class. When Rocchio is
used in a one-vs-all setup, we need to compute the centroid for each negative

class as well. Another advantage of our scheme is that it can be combined with
ensemble learning. In a variety of tasks, ensembles of several classifiers have
been shown to be more effective (e.g., [1]). The intention is that two or more
diverse classifiers (that are assumed to have independent classification errors) are
combined so that classification errors by one classifier will be compensated for
by the correct predictions of another classifier. One classical ensemble learning
scheme is stacking [8]: a meta-learner is trained on the output of two or more
base classifiers. The basic version of our scheme can be regarded as stacking with
only one base classifier. It is straightforward to extend our scheme to use more
than one base classifier: the meta-classifiers simply use the output of more than
one base classifier as features.

2.2 Empirical Evaluation

We decided to implement the MVS scheme with the widely used Naive Bayes,
Rocchio and kNN classifiers. The Rocchio algorithm has the known disadvantage
of becoming inaccurate when classes are not spheres of similar size in vector
space, and it does not handle non-spherical classes (e.g. multi-modal classes
that consist of more than one cluster) very well. However, Rocchio classification
has been shown to work well for text classification when the texts are short
and of similar length. Since a human reader is usually able to recognise the
topic of a newspaper article just by looking at the headline, we experimented
with the categorisation of very short texts. For stopword removal and further
dimensionality reduction we used a part-of-speech tagger and selected only verbs,
nouns and proper nouns for inclusion in the feature set.

We tested our algorithm on the well known Reuters-21578 collection. We used
the well-known ModApte-split to separate training and test data. Unlabelled in-
stances were kept. Table 1 shows the results. In preliminary experiments, we
used a thresholding approach similar to SCut instead of MVS. These settings
performed consistently worse and are not presented here. With all classifiers
tested, the MVS scheme clearly outperforms the traditional one-vs-all-setup.
When comparing the performance of our setup to the results presented in [2],
we can conclude that classification of news articles based only on headlines is
possible with only a small, acceptable loss in accuracy compared to similar clas-
sifiers trained on the full article text. The Rocchio algorithm in the MVS setting
trained on the headlines even outperformed the Findsim classifier (a variation of
Rocchio) trained on the full text. In general, we observe that Rocchio performs
surprisingly well, which we assume is due to the fact that the text are very short
and equally long, a situation were Rocchio has been shown to perform well. A
stacking-approach as described above where kNN, Naive Bayes and Rocchio have
been combined performs best for most classes, however, on some classes, the in-
dividual classifiers performed better, strongly affecting macro-averaged F1. We
conclude that apparently the meta-classifier tended to overfit and the rules it
produced are not optimal. This problem could probably be solved by validating
the rules on a hold-out set.

Table 1. Performance results (F1 in percent) of different setups on the top 10 classes of
the Reuters-21578 dataset. The first six classifiers were trained on the headlines only;
the last three classifiers were trained on the full text and are listed for comparison,
these results were reported in [2] (Naive Bayes and Rocchio) and [4] (kNN). Classifiers
were (from left to right) N-1/N-2: Naive Bayes, one-vs-all/MVS; R-1/R-2: Rocchio,
one-vs-all/MVS; K-1/K-2: kNN, one-vs-all/MVS; S-3: MVS with kNN, Naive Bayes
and Rocchio combined; N-x: Naive Bayes, full text, one-vs-all; F-x: Findsim (similar
to Rocchio), full text, one-vs-all; K-x: kNN, full text, one-vs-all.

Headlines Full text

N-1 N-2 R-1 R-2 K-1 K-2 S-3 Nx Fx Kx
earn 93 94 73 91 8 8 95 96 93 97
acq 81 8 72 60 65 63 71 88 65 92
money-fx 51 45 46 60 51 59 61 57 47 78
grain 50 61 57 74 68 68 76 79 68 82
crude 5 70 43 73 54 63 73 80 70 86
trade 45 60 25 69 47 56 64 64 65 77
interest 50 56 31 68 60 61 63 65 63 T4
ship 38 53 31 52 34 47 57 8 49 79
wheat 37 57 46 63 40 55 58 70 69 77
corn 32 55 13 61 38 47 61 65 48 T8

Mavg(10) 53 64 44 67 54 60 68 75 64 82

3 Semi-Automated Tagging

Although text classification is an old and well-researched topic in information
retrieval and machine learning it has not been widely used for automatic tagging
in Web-2.0 applications yet. An exception is AutoTag [5], a system that uses a
k-nearest-neighbour classifier for automated tagging of blog posts. AutoTag [5]
uses a search engine to locate similar blog posts. The search query is derived from
the text that is to be classified using statistical query rewriting techniques. In
the next step, tags from the search results are aggregated and re-ranked using
information about the user. Yet, this method of predicting tags for posts has
a disadvantage: re-writing the query at classification time is computationally
costly. Given that many annotations are plausible and the user is involved in the
classification process, it is not necessary that the algorithm predicts the exact
set of true annotations. Opposed to the labelling in the Reuters benchmark, it is
therefore acceptable that a classifier outputs a ranked list with suggested tags.
Considering the high number of classes and the need for an incremental learning
algorithm, using vector space classification algorithms such as kNN or Rocchio
is a logical choice.

3.1 Experimental Setup

To evaluate our approach, we used a corpus of 116417 questions from the question-
and-answer-community web site Lycos iQ that were tagged with 49836 distinct

tags. We used the same setup of the Rocchio classifier as described above in
section 2. Preliminary experiments showed that using Naive Bayes classification
is not viable due to the high number of classes. Also, the Rocchio classifier per-
formed faster that Naive Bayes. For comparison, we included a kNN classifier
with k& = 10 that queries the index for the ten nearest questions (postings) in
the database and aggregates the tags from the results. This approach is close
to AutoTag [5], but because we perform stopword removal it is not needed to
rewrite the query on classification time.

3.2 Empirical Evaluation

Given the nature of the two algorithms, we expect that Rocchio classification will
be faster; a factor that is very important in an interactive setting, when users are
not willing to accept long response times. We measured the classification time
per instance for both approaches on an Intel Core 2 machine with 1.86 GHz and
1 GB RAM. As expected, Rocchio classification was much faster then kNN. The
classification time for each instance was 155 ms for kNN and 57 ms for Rocchio.

It is important to note that the tags assigned by users should not be regarded
as a gold standard. Tags are not drawn from an ontology, taxonomy or controlled
vocabulary, but are free text entered by users and thus prone to spelling mistakes.
Also, inexperienced users tend to assign either no tags at all, only very few tags or
they tag inconsistently. Given the large number of users, we also expect that users
use different synonyms to denote the same concept. Due to these ambiguities
and inconsistencies we expect that the accuracy of any automated approach is
considerably lower than its true usefulness. In tests kNN only achieved a 26%
precision for its top prediction, Rocchio reached 32% precision.

In order to circumvent the problem of noise in the test set, we distributed
questionnaires and had test persons check the plausibility of tags suggested by
our semi-automated approach. To reduce the workload for the test persons and
because it outperformed the kNN-classifier in the automated tests, we decided
to test only the Rocchio-style approach. For comparison, we also had the test
persons check the precision of the user-assigned tags, since we assumed many
nonsensical or inconsistent tags among them. Every test person was given one
or two chunks of 100 out of a random sample of 200 questions that were either
machine-tagged or hand-tagged. Every question was checked by four persons to
average out disagreement about the sensibility of tags.

As expected, we could observe that there was a big disagreement among the
test persons and the users who originally tagged the questions as well as between
the test persons themselves. As explained above, the total 200 questions that
were evaluated were split in two sets of 100 questions, yielding four different
questionnaires (two for the original user-assigned tags and two for machine-
annotated tags) and each chunk of 100 questions was checked by four persouns.
Each test person was checking at most two sets of questions. To highlight the
huge difference of the several test persons, we report the individual results in
the table below. For the human-annotated tags, we evaluated precision, defined
as the number of useful tags divided by the total number of assigned tags. For

the machine-assigned tags, we also report the fraction of questions with at least
one correctly predicted tag.

For all manual tests, we evaluated the algorithms with five suggested tags
only. We believe that in a real-world semi-automated setting, we cannot assume
that an inexperienced user is willing to look at more than five tags. The questions
that were manually tagged had mostly three tags each, some of them only two
and very few questions had more than three tags.

Table 2. Evaluation on Lycos iQ dataset. Results are shown for tags assigned by the
users and for the tags suggested by our system.

Test TP TP+FP avg. Prec.

assigned tags 1535 1856 0.83

suggested tags 1866 3360 0.56
Test Person 1 Person 2 Person 3 Person 4
Set 1, assigned tags, prec. 0.89 0.89 0.93 0.96
Set 2, assigned tags, prec. 0.52 0.73 0.73 0.87
Set 1, suggested tags, prec. 0.41 0.52 0.53 0.71
Set 2, suggested tags, prec. 0.51 0.54 0.59 0.65
Set 1, at least one correct 0.84 0.84 0.86 0.87
Set 2, at least one correct 0.87 0.87 0.91 0.91

As expected, different persons disagreed significantly on both the human-
annotated and the machine-annotated tags (see table 2). It is interesting to note
when looking at the second set of questions, that, although the human annota-
tions on this set were rated worse than those from the first set, the tags suggested
by our algorithm were on average rated slightly better. Since we envision a semi-
automated scenario with human intervention, we see this as a confirmation that
automatically suggested tags can help to improve the quality of tagging.

When looking at macro-averaged precision, it is obvious that a classifica-
tion system is still not good enough for fully automated tagging. However, it
is important to note that even the human-annotated questions were rated far
below 100% correct by the test persons. More than half of the suggested tags
were rated as useful by the test persons. We believe that this is certainly good
enough for a semi-automated scenario, were users are presented a small number
of tags to choose from. In absolute numbers, interestingly, the automatic clas-
sifier produced more helpful tags than were assigned by users, even compared
to the number of all user-assigned tags, not just the ones perceived as helpful
by the test persons. We believe that this confirms our hypothesis that users will
assign more tags when they are supported by a suggestion system. However, this
can only be finally answered with a user study done with a live system.

Finally, the high number of questions where at least one of the predictions by
the algorithm was correct underlines our conclusion that semi-automated tagging

is good enough to be implemented in a production environment. In almost nine
out of ten cases there was at least one helpful tag among the suggestions.

4 Conclusion

In this paper, we have made two contributions: first, we introduced a new mode
for adapting single-label classifiers to multi-label classification we called MVS.
This scheme has the advantage of being more accurate and at the same time
faster than the traditional one-vs-all classification and is easily extensible to us-
ing multiple base classifiers in an ensemble. Second, we introduced part-of-speech
tagging as a method for stopword removal and showed that multi-value text clas-
sification is possible at acceptable accuracy even if the texts are very short. We
applied this on the real-world task of tagging for Web 2.0 and have shown that
it performs well enough to be used in a semi-automatic setting. In future work,
we want to extend our research in various directions. Our experiments with the
Reuters dataset left some important questions open. For example, we are cur-
rently ignoring relations between classes, an approach that proved successful [3].
Also, more experiments on different datasets and classifiers are needed.

Acknowledgements. The research presented in this paper was partially funded by the
German Federal Ministry of Economy and Technology (BMWi) under grant number
01MQO07008. The authors are solely responsible for the contents of this work. We thank
our colleagues at Lycos Europe who gave valuable feedback.

References

1. T. G. Dietterich. Ensemble methods in machine learning. In Proc. of the First Int.
Workshop on Multiple Classifier Systems, 2000.

2. Susan Dumais, John Platt, David Heckerman, and Mehran Sahami. Inductive learn-
ing algorithms and representations for text categorization. In CIKM ’98: Proceedings
of the seventh international conference on Information and knowledge management,
New York, NY, USA, 1998. ACM.

3. Shantanu Godbole and Sunita Sarawagi. Discriminative methods for multi-labeled
classification. In Proc. of the 8th Pacific-Asia Conf. on Knowledge Discovery and
Data Mining (PAKDD), 2004.

4. Thorsten Joachims. Text categorization with support vector machines: Learn-
ing with many relevant features. In Proc. European Conf. on Machine Learning
(ECML). Springer, 1998.

5. Gilad Mishne. Autotag: a collaborative approach to automated tag assignment for
weblog posts. In Proc. of the 15th Int. World Wide Web Conference, New York,
NY, USA, 2006. ACM Press.

6. Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An overview.
International Journal of Data Warehousing and Mining, 3(3):1-13, 2007.

7. 1. H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools with
Java Implementations. Morgan Kaufmann, San Francisco, 1999.

8. David H. Wolpert. Stacked generalization. Neural Netw., 5(2), 1992.

9. Yiming Yang. A study of thresholding strategies for text categorization. In Proc.
of the 24th Int. ACM SIGIR Conf., 2001.

