Servlets, JSP, Strutsand MVC
(Part I1)

Venkat Subramaniam
venkats@agiledeveloper.com
http://www.agiledeveloper.convdownload.aspx

Abst ract

In Part |, we discussed the Model | and Model 11 architecture. In this article, we show
how the example presented in Part | may be implemented, more effectively, using the
Struts framework. This article assume you have read Part |.

Installing Struts

| have downloaded and installed the file jakarta-struts-1.1-rc2.zip from the site
http://apache.mirrors.pair.convjakarta/struts/binaries. | have extracted the contents of the
above zip file and place it in c:\jakarta-struts-1.1-rc2 directory. Tomcat (4.1.24) has been
installed on my system in c:\jakarta-tomcat-4.1.24 directory.

Setting up the Application

If you go to the C:\jakarta-struts-1.1-rc2\webapps directory, you will find a file named
struts-blank.war. Simply make a copy of this file by right clicking on it and clicking on
copy and then paste. Modify the name “Copy of struts-blank.war” to guess.war. Move the
file guesswar to the following directory: C:\jakarta-tomcat-4.1.24\webapps. Now start
tomcat by running the startup.bat in C:\jakarta-tomcat-4.1.24\bin. You will see that a
directory named guess has been created under C:\jakarta-tomcat-4.1.24\webapps. This
directory is almost ready for usto use for developing our struts application.

JSPs and Java C asses

From Part |, you may remember how the requests went directly to the servlets and the
response came from the JSPs. The struts framework simply implements this pattern. Let’s
first start examining the files we need to create.

Replace the file index.jsp in C:\jakarta-tomcat-4.1.24\webapps\guess with the following
file:

<l-- index.jsp -->
<v@taglib uri="/WEB-INF/ struts-htm .tld" prefix="htm" %

<htm : htm >

<head>

<title>Quessing Ganme</title>
<ht m : base/ >

</ head>

<body bgcol or="white">

<htm :errors/>

<H1>G@uessi ng Gane<Hl>

Wel cone to CGuessi ng Gane</ B>

<@ i nclude fil e="@essRequest. htnl' %
</ body>

</htm :htnd >

Let’stake acloser look at acouple of things to note. First, we have taglib definition at the
top that prefixes to the libraries to be used. Second, we use the <html:...> tags to
generate HTML instead of directly writing the HTML tags. Notice also that the JSP page
includes the contents of the GuessRequest.htm, the content of which is shown below:

<I-- @uessRequest.htm-->
<htm : form acti on="Cuess. do" focus="guess">
Enter your guess:
<htm :text property="guess"/>
<htm : submit property="subnmit" val ue="Send"/>
</htm :fornmp

The GuessReguest.htm has a html:form tag that will generate the HTML tags for the
FORM. Notice the focus attribute is used to indicate that when the page is displayed, the
guess textbox should have focus. This is one of the several advantages of using the html
tags provided in struts. The relevant html content is generated for us, the state of the
controls is maintained and lesser code is needed to do that.

Note that the action attribute has a value “Guess.do.” The extension “do” is not set on
stone. It may be configured to what ever you would like it to be. There is a mapping
under the hood (as we will see in the next section) that will route the request to the proper
servlet. The rest of the details of the contents of this file are fairly obvious.

We have another jsp pages ContinueGuessing.jsp as shown below:

<-- ContinueCuessing.jsp -->
<U@taglib uri="/WEB-INF/ struts-htm .tld" prefix="htm" %

<j sp: useBean i d="Info" scope="session"
cl ass="com agi | edevel oper. I nfo" />

<htm : htm >

<head>

<title>Quessing Ganme</title>
<ht m : base/ >

</ head>

<body bgcol or="white">

<htm :errors/>

<H1>G@uessi ng Gane<Hl>

Nunber of Attenpts

<j sp: get Property name="Info" property="attenpts" />

<j sp: get Property nanme="Info" property="nessage" />

<%@include fil e="@essRequest. htni' %

</ body>

</htm :htnd >

This page accesses a bean named I nfo (of type com.agiledeveloper.Info) and displays the
attempts property and the message property of this bean. It then includes the contents of
the GuessRequest.html which we discussed above.

Finally, the last jsp page involved is the GameOver.jsp as shown below:

<-- @GneQver.jsp -->

<v@taglib uri="/tags/struts-logic" prefix="logic" %
<v@taglib uri="/WEB-INF/ struts-bean.tld" prefix="bean" %
<v@taglib uri="/WEB-INF/ struts-htm .tld" prefix="htm" %

<j sp: useBean i d="Info" scope="session"
cl ass="com agi | edevel oper. I nfo" />

<htm : htm >

<head>

<title>Quessing Ganme</title>
<ht m : base/ >

</ head>

<body bgcol or="white">

<htm :errors/>

<H1>G@uessi ng Gane<Hl>

Nunber of Attenpts

<j sp: get Property name="Info" property="attenpts"” />

<j sp: get Property nanme="Info" property="nessage" />

Wuld you like to start a new gane?

<form acti on="i ndex. j sp">
<htm : submit property="subnmit" val ue="Yes"/>
<htm : submt property="submit" val ue="No"
oncl i ck="wi ndow. cl ose();" />
</ fornmp
</ body>
</htm :htm >

| think you will find the purpose of this file and the details of its contents obvious.

The above JSP files are located in the C:\programs\jakarta-tomcat-4.1.24\webapps\guess
directory.

Now, let us examine the Java classes we have. Under the C:\programs\jakarta-tomcat-
4.1.24\webapps\guess\WEB-INRsrc directory, we create a directory named com and
under that we create a directory named agiledeveloper. In this directory we place three
files GuessAction.java, GuessForm.java and Info.java.

Let’s first examine the Info.java.

//1nfo.java
package com agi | edevel oper

public class Info

{
private int attenpts;
private String nessage;
public void setAttenpts(int val ue)
{
attenpts = val ue;
}
public int getAttenpts() { return attenpts; }
public void set Message(String val ue)
{
nmessage = val ue;
}
public String get Message() { return nessage; }
}

Info is simply a JavaBean with two properties. attempts and message. It has getters and
setters for these two properties.

Let’s now look at the GuessForm.java

/| GuessForm j ava

package com agi | edevel oper

i nport org.apache.struts. action.*;

public class GuessForm extends Acti onForm

{
private int guess;
public void setGuess(int val ue)
{
guess = val ue;
}
public int get@uess()
{
return guess;
}
}

GuessForm is a JavaBean which has one property guess. It is used to hold the content of
the form that the user will fill in from the GuessRequest.htm (included in the two jsp
pages as discussed above). The struts framework will take the data from the HTML form
and put the information into a Form bean and send it to the action class for processing.

Finally, let’s examine the GuessAction.java:

/] GuessAction. java
package com agi | edevel oper

i nport javax.servlet.http.*;
i nport org.apache.struts. action.*;

public class @QuessAction extends Action

{

public ActionForward execute(ActionMappi ng mappi ng,
Acti onForm form

Ht t pSer vl et Request request,
Ht t pSer vl et Response response)
{

ActionForward forward = null;

if (forminstanceof GuessFormn

{
Ht t pSessi on session = request. get Sessi on();
/1 1f this is new request, target will not be present
int target = 0;
try
{
target =

I nt eger . parsel nt (
session.getAttribute("target").
toString());

cat ch(Exception ex)

{
int newTarget = (int)(Mth.randon{) * 100);
session.setAttribute("target”, "" + newTarget);
session.setAttribute("attenpts”, "1");

}

int attenpts = 1;

int guess = -1;

String forwardPage = "Continue";
String nessage = "Ai m higher";

target =
I nt eger . parsel nt (
session.getAttribute("target").
toString());
attenpts =
I nt eger . parsel nt (
session.getAttribute("attenpts").
toString());
attenpt s++;
session.setAttribute("attenpts”,

+ attenpts);

@QuessFor m guessForm = (GuessForn) form
guess = guessForm get Guess();

if (guess == target)

{
forwardPage = "ltsCQver";
nmessage = "Congratul ations!";

session.invalidate();
sessi on = request. get Session();

}
el se
{ _
if (guess < target)
nmessage = "Aim hi gher!";
el se
nmessage = "Aim|lower!";
}

Info info = new Info();

i nfo.setAttenpts(attenpts);

i nf o. set Message(nmessage) ;
session.setAttribute("Info", info);

forward = mappi ng. fi ndForwar d(f or war dPage) ;

}

return forward;
}

Note that this class inherits from org.apache.struts.action.Action class. It overrides the
execute method. The execute method does two main things. First, it processes the request
received. Second, it directs the framework to forward the control to one of the jsp pages
depending on the condition. This page, to forward control to, is specified as part of the
returned object of type ActionForward. Note that we do not actually have the names of
the jsp pages in this file. Instead, the forwardPage variable is set to either “Continue” or
“ItsOver.”

Looking at this code you may have a couple of questions.
1. How in the world does Struts know that Guess.do should map over to
GuessAction.java?
2. How doesit know that if forwardPage is “Continue,” it should transfer control to
ContinueGuessing.jsp and if it is “ltsOver,” it should transfer control to
GameOver.jsp.

The answer is simple. It does not know at this point. There is no magic. We need to
provide this information to the struts framework in a configuration files!

Configuring the Forns and Forwards
We will be making two changes to the file struts-config.xml that you can find under the
directory C:\jakarta-tomcat-4.1.24\webapps\guess\WEB-INF.

First look for the element <form-bean> and add the following as the child of that

element:
<f or m bean nane="CuessForni type="com agi | edevel oper. GuessForn' />

After you add this line, the partial content of the file would look as shown below:

<l-- =Z=====—==—o—oo——o————-——-——-o—-—————=——=—===== Form Bean Definitions -->

<f or m beans>
<f orm bean nanme="CGuessForni type="com agi | edevel oper. GuessFornm' />
<I-- sanple form bean descriptor for an ActionForm
<f or m bean
name="1i nput For n{
type="app. | nput For ni'/ >

end sanmple -->

<I-- sanple form bean descriptor for a DynaActi onForm

Analyze the line we just added. We are telling the framework that the bean named
GuessForm is an object of type com.agiledeveloper.GuessForm. This is simply
introducing the form bean to the framework.

The second change is to look for the element <action-mapping> element and add the
following as the child of that element:

<action path="/Guess" type="com agil edevel oper. GuessActi on"
nanme="CuessForn' i nput="index.jsp">
<forward nanme="Conti nue" path="/Conti nueCGuessing.jsp" />
<forward nane="ItsOver" path="/GaneQver.jsp" />
</ action>

After you add this line, the partial content of the file would look as shown below:

<l-- =Z=======—-=—oo—oo—————————-—-—-—=—=—==== Acti On |\/app| ng Definitions -->

<acti on- mappi ngs>
<action path="/Guess" type="com agil edevel oper. GuessActi on"
nanme="CuessForn' input="index.jsp">
<forward nanme="Conti nue" path="/Conti nueCGuessing.jsp" />
<forward nane="ItsOver" path="/GaneQver.jsp" />
</ action>

<l-- Default "Welcone" action -->

<l-- Forwards to Welcone.jsp -->

<action
pat h="/ Wl cone"
t ype="org. apache. struts. acti ons. Forwar dActi on"

par anet er ="/ pages/ Wl cone. j sp"/ >

<!-- sanple input and input subnmit actions

Let’s analyze this element we just added. Look only at the action element tag along with
the attributes in it. The path attribute says that Guess (by which we mean Guess.do)
should map over to com.agiledeveloper.GuessAction serviet (the one that inherits from
the Action class). The form bean that should be sent to the Action’s execute method is
GuessForm. The input attribute (with value of “index.jsp”) represents the form to which
the control should be transferred should an error occur in validating the input (i.e., before
the request could be processed). Now look at the children of the action element. Thisis
where the conditions are mapped to the pages to which the controls need to be transferred
to. Note that “Continue” is mapped to the ContinueGuessing.jsp and “1tsOver” is mapped

to the GameOver.jsp. The napping. findForward(forwardPage); wthin the
execute nethod of the GuessAction uses this information to deci de which
page it should route the flow of control to.

Getting the App running

Now cd to the directory where the source code for the three classes discussed above are
located, i.e., C:\jakartartomcat-4.1.24\webapps\guess\WEB-INFR\src\com\agiledeveloper.
Y ou may use Ant to build your code or smply compile it using the following commands:

set cp = C:\jakarta-tomcat-4.1.24\webapps\guess\WEB-INR\lib\struts.jar
set cp=%cp%,;C:\jakarta-tomcat-4.1.24\common\lib\serviet.jar

set classpath=%classpath%;cp

javac -d ..\..\..\classes * .java

This creates, under C:\jakarta-tomcat-4.1.24\webapps\guess\WEB-INF\classes, the
directory named com. Under that directory, it creates directory named agiledeveloper and
places the three .classfilesinit.

Now gart (or restart) tomcat. Visit http://localhost:8080/guess and try the application.

4} Guessing Game - Microsoft Internet Explorer o =] S

File: Edit Wiew Favorikes Tools Help | 'j,"
) Back= €3 -~ [x] [2] & |) search ' Favorites W Medis £ | [v =
address I@ httpifflocalhost: 5080/ guessfindex. jsp ;I GEa | Links **

Guessing Game

Welcome to Guessing Game

Enter your guess: [

_;I
[&] oone T T [J Local intranet =
4} Guessing Game - Microsoft Internet Explorer =10] x|
Filz: Edit Yiew Favorites Tools. Help | ","'
£y Badlo= 3 = [« [2] | search ' Favorites W Media &9 | | - L =
Address I@ http:,I',I'|l:ll:a|hl:lst:BUSU,I'QLIESS,I'GLIESS.dDjjSESSiDI‘Iid=E\F‘.3|:|?4C35'I;| 3o | Links - **
=

Guessing Game

Number of Attempts 2
Aim lower!

Enter your guess: [=

[&] oone T T [J Local intranet =

a Guessing Game - Microsoft Internet Explorer ;[g|5|

File: Edit “iew Favorites Tools. Help | ﬂ."
L Batke =53 = [x] [Z] ;.l) Ssarch - Favoribes % Media &= | (0= o 0F - | 0P
Address I@ http: fflocalhost: G050/ quess | Guess. do LI G0 | Links **
i

Guessing Game

Number of Attempts 5
Congratulations!
Would you like to start a new game?

=
|.E| Done I_ I_ I_ |‘-J Local inkranet o

A look at the Struts classes used

The Action class (of the org.apache.struts package) is an adapter or a liaison between the
incoming HTTP request and the business logic (control code). An instance of another
class, ActionServlet, does the actual job of receiving the request, creating an instance of
Action class (if needed) and invoking the execute method. In Struts 1.1, the old perform
method has been deprecated and a new method named execute has been introduced.
Note that one instance of the Action class is shared for multiple requests. So, writeitina
thread safe manner and do not put any instance or static variables in your Action class
implementation.

The purpose of the ActionForm JavaBean is to encapsulate the data that goes from the
user input (form) to be processed by the execute method of the Action. Before the
execute method is actually invoked, the ActionForm bean’s validate method is invoked
by the framework, giving it an opportunity to validate the input.

ActionForward represents the destination to which the ActionServlet will transfer control
over to. The value for the ActionForward comes from one of several entries in the
configuration file as shown in the above example.

ActionMapping inherits from ActionConfig (as of Struts 1.1). It provides a mapping of
the request to an instance of an action class; and it provides access to the configuration
information for action mapping.

Concl usi on

In Part | of this article, we presented an example and discussed the Model | and Model |1
architecture. This article (Part I1), implemented that example using the Struts framework.
While we have merely scratched the surface of the framework, we hope this will wet your
appetite to delve into it.

Ref er ences

1. http://jakarta.apache.org/tomcat/index.html.
2. http://jakarta.apache.org/struts

