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This paper evaluates the accuracy of quadratic approximate methods in the context of a simple 
real business cycle model. The level of accuracy is found to be very high. On the face of the results 
reported here we are confident that the different computation methods proposed to date in this 
literature can be employed interchangeably. 

1. Introduction 

It has been common practice in the recent Real Business Cycle (RBC) 
literature to approximate, quadratically, the return function about the steady 
state and then to use this approximate return function as the basis for 
generating the economy's equilibrium time series. This is done for well-known 
reasons of analytic and computational simplicity: with a quadratic return 
function the decision rules are linear and may be easily determined. To 
compute the optimal decision rules numerically via standard value iteration 
procedures is simply too intensive when the number of decision and state 
variables is large. Nevertheless, it is legitimate to question the extent to which 
accuracy is compromised using such approximate procedures. 

The answer to this question may very well be entirely model-specific. 
Indeed, if it were feasible to undertake such a comparative evaluation for all 
model contexts, there would be no need to resort to such approximations in 
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the first place. In this paper we undertake such a comparison for the basic 
one-good stochastic growth model as analyzed in Hansen (1985) (his 'divisible 
labor economy'). That is, we solve for the optimal decision rules and equilib- 
rium time series using both standard value iterative and quadratic approxima- 
tion techniques and compare results. Some familiarity with the basic method- 
ology is assumed. 

2. The basic model 

The model we investigate is a familiar one: 

1 0 

subject to 

c t + z t < f ( k t ,  N , ) X t ,  

k,+ 1 = z, + (1 - 12)k,, 

0_<N,_<I, 

k o given, 

(1) 

where ct, kt, Nt, and z t are, respectively, per capita consumption, capital 
stock, labor service supplied, and investment in period t, E is the expectations 
operator, fl the period discount factor, ~2 the depreciation factor, u(-) the 
representative agent's period utility function, f ( . )  the production function, 
and ~t the random period shock to technology. The precise functional forms 
employed here are the two preference orderings 

u ( c  t, 1 - N,) = ln(c,) + 21n(1 - Nt) , 

1 [c7(1 - /~ ~ l - ' t ' l  8 u . c t ,  l - N, = ) -z t" ] ' 

in conjunction with the technology 

f ( k t ,  N t ) = L [ k T N t l - a ]  ~ 
p 

For v = L = 1 and a = 0.36, the above technology specification is the same as 
Hansen (1985); the preference specifications are taken from, respectively, 
Hansen (1985) and Kydland and Prescott (1982). 

The choice of shock process requires a somewhat more extensive discussion. 
In Hansen's (1985) work, the shock to technology is described by a first-order 
Markov process of the form 

•,+1 = OAt "~ ~t' (2) 
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with p = 0.95 and ~t lognormally distributed with E~ t = 1 - p  = 0.05 and 
o, = 0.00712.1 While such a shock process is perfectly natural for the quadratic 
return, linear decision rule setting, it does not immediately translate into the 
standard value iterative context in which such approximations are not em- 
ployed. The reason for this is as follows: under the standard approach, it is 
first necessary to specify, precisely, the region in which the state variables will 
assume their values over the infinite horizon. For the problem under discus- 
sion, the state variables are capital stock and the shock to technology. With 
regard to the range of the technology shock, it is customary in much of this 
literature [see, e.g., Danthine and Donaldson (1981), Mehra and Prescott 
(1985), and Greenwood and Huffman (1986)] to enumerate a discrete set of M 
possible values of )~, the probability of relative occurrence of which is 
governed by a prespecified M-dimensional probability transition matrix. For 
Hansen's (1985) technology choice, the range of the feasible capital stock 
levels will then be bounded above by some kma x defined by f(kmax, 1)~ = kmax, 
where ~ is the maximum possible shock value. Thus, the state variables are 
known to assume values only in the domain [0, kmax] )< ()k 1 . . . . .  hM}. Since 
this set is compact, the sequence of approximating optimization problems 
(value iteration) is well defined. 

Compactness is lost under specification (2), however. In particular, Hansen's 
(1985) shock process is not uniformly bounded above over the infinite horizon 
and thus has no immediate representation in the transition matrix setting. This 
observation forces us to choose between these alternative shock structures. 
That is, either we choose an autoregressive process as per (2) - necessitating 
quadratic approximate solution techniques- or a discrete Markov process 
admitting standard value iterative procedures. In order to undertake our 
comparisons, we choose to specify a two-state Markov process on the shock to 
technology. Thus, for both the standard and quadratic approximate proce- 
dures we assume that the Markov process on the technology shock assumes 
values ), t ~ { )5, ~ ), )3_ < ~,, with transition density 

)~ t+l  = )~ ffk, 

X_[ ~ 1-~] 
X'=  x 1-Tr  7r " 

Here ~r and 1 - ~r denote the respective period-to-period transition probabili- 
ties. In what follows, the conditional distribution of next period's shock given 
today's shock of )~ will be represented as dF()~t; )~). 

1Kydland and Prescott (1982) employ a more complex shock structure. It remains closely 
related to the one presented here. See section 7. 
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We note that for ~ = 0.98, ?, = 1.02, and ~r = 0.97, the above process will 
have the same mean and variance as the process chosen by Hansen (1985). 2 

3. The standard solution 

3.1. Overall procedure 

The sequence of approximating value functions is described by the recursive 
equation 

max {u[ f (k ,N, )X-k ,+(1-1~)k , l -N,]  

+ f i e  V,-I(k,,Xt)dF(Xt; X) , (3) 
t= l  

subject to 

(1 - 12)k < k .  < f ( k ,  N.)X + (1 - ~2)k, 0 < N , < I ,  

where the subscript n denotes the nth iteration and F is the domain of the 
choice variables k n and N.. Certain aspects of this formulation merit discus- 
sion. 

3.1.1. The choice of 'grid' 
The state and decision variables are constrained to assume values in a 

discrete set or 'grid' which reasonably approximates their actual domain of 
definition. We denote this set by F. This F represents a partition of [0, kmax] 
× [0,1]. The fineness or 'norm' of the grid - the maximum distance between 
successive grid partition e lements -  was itself an object of choice. Further- 
more, different degrees of fineness could be chosen for the grid defining the 
domain of definition of k, and the grid defining the domain of N,. In general, 
the time-series statistics seemed less sensitive to the fineness of the N, grid. 
The choice of the grid norm reported in the tables to follow was such that finer 
partitions, which increased computational time, did not alter the reported 
statistics in the first and second decimal places. 

2This was accomplished using the method of moments. 
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3.1.2. The choice of optimizing variables 

Note that in the above formulation we optimize over next period's capital 
stock rather than investment as would be the case in the following: 

V~(k, X) = m a x  l u ( f ( k , N . ) X - z . , 1 - N . )  
(z., N.} r~ 

2 } 
+ # E  V, - , ( (1- I2)k+z , ,Xt )dF(Xt;h)  , 

t = l  

subject to 

O<z,<f (k ,N , )X ,  0 < N , < I .  

(4) 

By optimizing directly over next period's capital [as per (3)], we eliminate 
round-off problems that might occur if next period's capital choice is not a 
grid point: indeed, k, is chosen directly from the set of feasible values and 
investment z and consumption c are computed as residuals. If, as per (4), we 
optimize over z, there is no assurance that (1 - I~)k + z, will be a grid point. 
In all likelihood, it will have to be discretized (rounded up or down to the 
nearest grid value) and depending on how this is done, the results of the 
recursive computation can be very materially affected. We have found that 
optimizing over z is generally less precise than optimizing over k. 

3.1.3. The domain of optimization 

A simple serial search procedure for determining the optimal (k,*, N.*) by 
evaluating the above expression for all possible (k., N.) ~ F is computation- 
ally very slow. 3 Although this number of calculations can be substantially 
reduced by applying known theoretical properties of the decision variables 
(such as the fact that k. is increasing in k and h), in light of the hundred plus 
iterations that may be necessary for policy convergence, the total computation 
time is substantial. The constraint requirement that k.  > ( 1 -  ~2)k is one 
simple device for reducing the calculations. Since we know from theoretical 
analyses that 1I.(.) is increasing in k for any n, it will never be optimal to 
dispose of capital, and thus the solution to the recursive optimization will 
never be affected by the imposition of this constraint. 

3Assuming as many as 250 distinct possible values for the capital stock, two values of the 
technology shock and 100 possible levels of labor supply, each stage of the iterative process would 
require (250 × 2) x (250 x 100) (number of possible state variable combinations x number of 
possible pairs of decision levels) = 12,500,000 independent evaluations of the above expression to 
determine the maximum. 
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Another device for reducing these computations very substantially is to 
devise a simple and rapid procedure for determining directly the optimal N. 
associated with each possible choice of k n. To see why this is so, we observe 
that for any (k, h) and k.  the optimal associated N.* can be computed by 
maximizing 

u(f(k ,  N ) X - k . +  (1 - I2)k,1 - N )  

alone with respect to N as N does not appear as an argument of the V. 1(') 
function. This is a fairly straightforward exercise that can be designed to 
execute very rapidly. We employ this technique in our algorithm; a precise 
description of how it is done is found in appendix 1. The impact of this 
subroutine is to reduce, effectively, the number of evaluations by a factor 
equal to the number of grid points in the domain of N.. 

3.1.4. Convergence criterion 

The recursive routine defined by (3) must be terminated at some point and 
an important issue is to decide at what stage this should occur. We chose to 
terminate the routine whenever, simultaneously, 

sup [V.(k,X)- V,,_l(k,X)l<cllglr, 
(k,X)~F 

sup [N.(k, ~) -N .  ,(k, ?~)1_< cllKlt, 
(k,X)~F 

and 

sup [k.(k, X ) -  k._l(k, X)l< cllgll, 
( k , h ) ~ F  

where c is a constant of choice and [[K[[ denotes the norm of the capital stock 
partition. In the work to follow, c = 0.5. This latter value was chosen as a 
more restrictive criterion (c <0.5) did not appear to materially alter the 
time-series statistics while substantially increasing the computation time. 

3.1.5. Time-series properties 

Let n* denote the final iteration in the recursive routine; N,,.(k, h) and 
k..(k, X) thus represent our proxies for the optimal policy functions. The 
time-series output of the model was constructed by first generating a sequence 
of three thousand shocks to the technology with respect to the chosen 
transition matrix and then by allowing the economy to evolve from an 
arbitrarily determined initial state via repeated application of these optimal 
policy rules. 
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More specifically, let t i ~t=2999 denote the generated shock sequence. The ~ " t  Jt--O 
corresponding capital stock sequence ~ t~ -it-2999 i , x t l t _ o  was constructed via k 0 given 
and k t + x = k * ( k t, ~ t ). The corresponding labor (or 'hours') series ~t , , t J t~o f M ~t-2999 

was computed directly using N t = N n * ( k t ,  ~ t ) ,  while the output series { Yt )~2999 

was defined by Y ~ - - f ( k  t, N t ) ~  r Lastly, the consumption t -  "1tz2999 i c t ) t z o  and in- 
v e s t m e n t  (zt}t t  •2999 series, respectively, were defined according to c t =  

Yt - k * (  k , ,  ~ t )  + (1 - ~ ) k  t a n d  2 t = k * (  k t ,  ~ t )  - (1 - I 2 ) k  t. Output per hours 
worked f" ~ t = 2999 t wt )t-0 -- average productivity - followed from the definition w t = 

Y t / N r  It should also be noted that every time series was generated using 
exactly the same shock sequence. Means and variances were computed directly 
from the time series themselves (the data was not logged or otherwise trans- 
formed first). 

In order to be assured that the economy had entered the support of the 
steady-state capital stock distribution, the first one thousand elements were 
dropped from all series. The decision to compute statistics on the basis of two 
thousand data points was empirically based: the use of more data points only 
altered the values of the computed statistics in their fourth decimal place. 4 We 
have not subjected the data to any detrending procedure as we thought it 
worthwhile first to assess the model's direct output without the modifications a 
smoothing procedure would introduce. 5 

3.1.6.  M o d e l  in tegr i ty  check  

For our choice of model, it is a simple matter to compute the steady-state 
certainty (~,, = 1) levels of capital stock and employment. Specializing the 
steady-state formulations of Kydland and Prescott (1982) to our simplified 
setting yields the steady-state expressions 

where 

k ss= - 1 + I2 N ss, 

1 _o[ _1+3ol) -1 

A natural check on the program's integrity is to see if the recursive routine and 
time-series generation gives these steady-state levels when ~_ = ~, = 1. For all 

4It is also possible to compute the transition matrix on capital stock-shock pairs and from this 
compute the stationary distribution via matrix manipulation. We have found this to be more 
computationally intensive than the method employed here at no appreciable gain in accuracy. 

5Since the output data of this model does not, by construction, exhibit any trend, it is not 
entirely clear that such a procedure would be appropriate anyway. 
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Table 1 

fl = 0.96, a = 0.36, ~, = 0.33, I2 = 0.1, ~ = 1.02, h = 0.98, 8 = - 1, ~r = 0.97, L = 1. 

Norm of capital stock partition = 0.0025 (401 capital stock grid points on [0.5,1.5]). 

Norm of labor partition = 0.0025 (401 labor grid points on [0.0025,1.0025]). 

Technology: f ( k , ,  Nt) = Lk~N 1 ~ 

Preferences: Case A: u(ct,1 - Nt) = (1/8)[ct~(1 - Nt) 1 r]n, 

Case B: u(ct, 1 - Nt) = lnc t + 21n(1 - N,). 

Case A a Case B a 

(a) (b) (a) (b) 

Output 2.98 1.00 3.06 1.00 
Consumption 2.74 0.983 2.76 0.973 
Investment 4.13 0.930 4.56 0.909 
Capital stock 2.78 0.864 2.92 0.870 
Hours 0.41 0.500 0.52 0.495 
Productivity 2.79 0.991 2.84 0.986 

(average) 

a(a) standard deviation in percent, (b) correlation with output. 

rout ines  considered here, this was the case to at least two decimal points  
accuracy. 

We performed the above ment ioned  simulat ions for a wide variety of 
paramete r  values. Here we report the results of the exercise for Hansen ' s  
(1985) preferences and technology (case B) and parameter  values conforming 

to those of Kyd land  and Prescott (1982) with, once again, Hansen ' s  (1985) 
technology parameter  values (case A). 6 Limit ing ourselves to the summary  
statistics reported in Hansen  (1985), we find the time-series properties of this 

op t imal  economy summarized in table 1. 

3.2. N u m e r i c a l  resul ts  

We note that  for a state space of 401 possible capital stock levels and 401 
possible labor  supply levels, the entire computa t ional  procedure (each case 
above) required approximately 85 minutes  of VAX-11-780 CPU time. 

4. A quadratic approximate solution 

4.1. N u m e r i c a l  p rocedure  

Our  procedure is similar to that of section 3 except that we under take a 
quadra t ic  approximat ion  of the return funct ion about  the economy's  certainty 

6 We chose to include the more general preference structure of Kydland and Prescott (1982) as it 
afforded the option of testing the sensitivity of results vis-a-vis preference parameters. 
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steady-state. As before, we first outline our iterative procedure and then 
present our comparative time-series results. 

Let the superscript ss denote the steady-state certainty (~, ---- 1) value of the 
relevant variable. 7 Following Kydland and Prescott (1982) and Hansen (1985), 
we approximate the agent's utility function about the steady-state by the 
following expression: 

where 

U*(k, N, h, z) = U+ BX+ X'QX, 

[x ]Ik-ks'l= ' 
x 2 N -  N ss~ 

X x3 ~ - Ass 1 '  

where 

B =  

bl 

bE 

63 

b, 

1 
[ fi(k" +a  k , m', x", z") - f i ( k " - a , ,  m', x,', z- ) ]  ~ 

[ fi( k'S, NSS + A s , ~SS, z s" ) - ~( kSS, NSS - A s , ?~'s, zs" ) ] 2 T  N 

1 
[ ~(k'S, N ' ,  X's + a .  z " )  - fi(kS', ms,  X~ - A .  z " ) l  ~-;~ 

I 
[f~(kSS, NSS, XSS, zSS + a , )  -f~(kSS, NS',?~SS, z ' S - A ~ ) ] T ~  

~(k, N, h, z) = u( f (k ,  N ) A -  z , 1 -  N), 

U=a(kSS, NSS, h~S, zSS), 

and Q is a 4 × 4 matrix with diagonal entries of the form 

q l l  = [ ~ ( k S S  + a k ,  NSS, Xss, z ss) - 2 ~ ( k S S ,  NSS, hSS, z ss) 

1 
+f~(kSS-A1,,NSS, hSS, zSS)] 2A ~ , 

q,~= [~(k'S, NSS,?~SS, zSS + A z ) -  2f,(kSS, NSS, hSS, zSS) 

1 
+ ~(kSS, ms,  Xss, zSS - A,)] 2a~, 

7These steady-state values were computed as in Kydland and Prescott (1982). 

(5) 

(6) 

, ( 7 )  

(8) 

(9) 
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and off-diagonal elements of the form, e.g., 

q13 = [t](kSS+ Ak, NS~,~SS+Ax, z S ~ ) - ~ ( k ~ - A k ,  N~S,~S~+ Ax, z ss) 

-~(k~+Ak, NS~,XSS-Ax, z ~) 

1 
+~(kSS-Ak, NSS,)~S-Ax, zSS)] (AkAx) s . (10) 

In the above expressions, the symbol A indicates the deviation from the 
steady-state, while U represents the certainty steady-state level of period 
utility. The deviations themselves were a parameter of choice. 

Turning to the iterative procedure itself, it is evident that for fixed (k, 2,), 
the associated period-zero value function VO(k, ~) can be expressed as 

VoO(k, X) = Constant + b2x 2 + ~ ( q z j  + qj2)xjx2 + q=x~, (11) 

where the constant has the value 

Constant = fi + ~ bix i + £ q,jx~xj 
i ~ 2  i ~ 2  

j ~ 2  

and (12) 

x . ,  = ( 1  - - z ' .  

The superscript Q indicates that the value function employs the quadratic 
approximation. We note also that the precise representations of the xi's, b[s, 
and q~j's have been suppressed for ease of presentation. 

Noting that eq. (11) is of the form V= F+ Ex z + Dx 2, where D, E, and F 
are appropriate constants, it is clear that the maximum with respect to x z, for 
fixed (k, 2,), will occur at 

E -(j~2 2qj2xj+b2) 

x2 = 2D 2q2 2 (13) 

from which the optimal N O = No(k, h) = N ss + x 2 is easily computed. It 
follows that 

Vfl(k,X)=u(f(k ,  No)•,l-No) forall  (k ,~,) .  (14) 
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More generally, 

V ~ ( k , X ) =  (k.,N.}~rmax {U*(k, Nn, h,k~) 
0<Nn<l 

2 

+fl E V~O-,(kn,~t)dF(X,; h) , 
t = l  

(1 - 12)k < k. < f (  k, N.)X - (1 - 12)k. 

(15) 

As in the routine of section 2, we optimize over next period's capital stock 
rather than this period's investment. This requires some modification of U*(.), 
but again seems substantially to reduce the consequences resulting from 
rounding off. 

The sequence of maximizations described by (15) was solved using a 
modified grid search procedure. The advantage of the quadratic approximation 
comes from the fact that at each stage of the recursion the optimal N, can be 
exhibited directly without the need of any additional subroutine. This is 
detailed in appendix 2. The resulting savings policy function is linear and is 
the same as if this expression had also been solved directly. 

4.2. Numerical results 

For the results reported in table 2, we chose deviations proportional to the 
steady-state values with proportionality constant A = 0.00001 (e.g., A k = 
0.00001kSS). All other parameters are the same as in table 1. We note that each 
of these cases required approximately 25 minutes of VAX-11-780 CPU time. 

Comparing the corresponding entries in tables 1 and 2, it is clear that the 
standard deviations and correlations are virtually identical for both cases. 
Although the statistics are not reported, mention should also be made that the 
levels (expected values) of all the series were, respectively, essentially identical 
under the standard or quadratic approximate procedures. Thus - and this is 
the central message of the paper - one may conclude that the precision of the 
approximation afforded using quadratic approximate methods appears re- 
markable. Of course, one cannot eliminate the possibility that our simple 
context overstates this precision; nevertheless, we have displayed two examples 
for which both methods are feasible and yield essentially the same results. 

One extra parameter that enters into the calculation when using quadratic 
approximate methods is the A. The calculations behind table 2 relied on 
equiproportionate deviations, though, in fact, we have no formal theory as to 
what these deviations should be. In the next section we examine the sensitivity 
of the approximation to varying choices of deviations. 
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Table 2 

fl = 0.96, a = 0.36, V = 0.33, I2 = 0.1, ~. = 1.02, ~ = 0.98, 8 = - 1, ~r = 0.97, A = 0.00001, L = 1. 

Norm of capital stock partition = 0.0025 (401 capital stock grid points on [0.5,1.5]). 

Norm of labor partition = 0.0025 (401 labor grid points on [0.0025,1.0025]). 

Technology: f(k, ,  Nr) = LkTN 1 ~. 

Preferences: Case A: u(c,, 1 - Nt) = (1/8)[ctV(1 - Nt) l -r]s, 

Case B: u(c t, 1 - Nt) = ln(ct) + 21n(1 - Nt). 

Case A a Case B ~ 

(a) (b) (a) (b) 

Output 3.03 1.000 3.05 1.000 
Consumption 2.74 0.982 2.77 0.973 
Investment 4.33 0.934 4.58 0.905 
Capital stock 2.95 0.868 2.93 0.874 
Hours 0.41 0.528 0.50 0.467 
Productivity 2.83 0.993 2.86 0.988 

(average) 

a(a) standard deviation in percent, (b) correlation with output. 

5. Choice of deviations 

Lacking a theory specifying the selection of deviations, any scheme must  
necessari ly be somewhat ad hoc. In  this section, we at tempt to assess the 
sensit ivi ty of the approximat ion 's  accuracy to the specification of deviations 
by  repl icat ing the exercise of tables (1) and (2) for a variety of other choices. 

Three  al ternatives were considered; they are detailed below: 

5.1. Kyd land  Prescott  (1982) deviations 

Reasoning  that our model is a special case of Kyd land  and Prescott 's (1982), 
we evaluated the approximat ion under  their specification: A k = 0.0001kSL 

AN = 0-0003N~S, ~x = 0.0003~s~, Az = 0-0008z~L 

5.2. Proport ional  absolute deviations 

In  this model ,  with 12 = 0.10, z ss will have a value one tenth kSL As table 1 
suggests, however, investment  will vary proport ional ly much more than capital 
stock. The equiproport ionate  deviat ion scheme reported in table 1 may not  
adequate ly  capture  the relative dispersion of the various series. As an at tempt  
to respond to this concern, we next evaluated the approximat ion for absolute 
deviat ions  that  were in the same ratio as the s tandard deviation per mean  of 
the counte rpar t  series under  the s tandard solution. Note  that this exercise is 
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for evaluative purposes only as there is no reason to consider the approxima- 
tion if the standard solution is computationally feasible, as must be the case 
for this scheme to be implemented. 

For  the specification of, e.g., case A in table 1, this resulted in the deviations 
A k = 0.0000278, A N = 0.0000041, A x = 0.000020 (for our shock process, the 
standard deviat ion/mean is 2.0), and A s = 0.0000413. Given that Ek = 1.28, 
E N = 0.2957, Ez = 0.128, and E)~ = 1.00 (E denotes expected values), the 
above deviations are of the same order of magnitude as those employed in 
table 2. 

5. 3. Equal absolute deviations 

For this final experiment we chose A x = A N =  A z = Zl k = 0.00001. The re- 
suits of this exercise are reported in table 3 for the functional forms and 
parameter values of table 1. The message of this exercise must be that the 
quadratic approximation retains its accuracy across a wide class of deviations 
schemes, provided that the absolute magnitude of the deviations is very 
small - not larger than the order of magnitude 0.0001. 8 Note also that the 
discrepancies noted in table 3 fall within the confidence intervals proposed by 
users of quadratic approximate methods. 

The one remaining evaluative issue concerns the robustness of these results 
to the choice of parameter values. This is considered in the next section. 

6. Sensitivity analysis 

In order to be assured that our results were not peculiar to the specific 
parameterizations already reported, we performed the exercise of tables 1, 2, 
and 3 for a wide range of parameter values. Restricting ourselves to the 
Kydland and Prescott (1982) preference specification, we considered various 
cases where/3 ~ {0.5,0.8,0.96}, , /~  {0.33,0.5,0.75}, 12 ~ {0.5,0.1,1}, and ~ 
{ - 2 , - 1 , 0 . 5 }  in conjunction with the four deviation schemes detailed in 
sections 3 and 4. 

A detailed reporting of the results of these many cases would be wearisome 
and unnecessary. Let it suffice to provide the following descriptive summary: 

(i) With regard to relative volatility [column (a)] the accuracy of the 
approximation was of the same general level as reported in tables 2 and 3 for 
all sets of parameter values considered. The greatest discrepancies were 
observed with the investment series. For the majority of cases, the approxima- 
tion was best when the deviations in some way accounted for the relative 
volatility of the different series. 

SFor significantly larger deviations (e.g., 0.01) the approximation loses its accuracy. 
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Table 3 

a = 0.36, fl = 0.96, ), = 0.33, 1~ = 0.1, ~ = 1.02, ~ = 0.98, 8 = - 1, ~r = 0.97, L = 1. 

Norm of capital stock partition = 0.0025 (401 capital stock grid points on [0.5,1.5]). 

Norm of labor partition = 0.0025 (401 labor grid points on [0.0025,1.0025]). 

Technology: f (  k t, Nt) = LkTNt 1 -'L 

Preferences: Case A: u(c ,  1 - Nt) = (1/8)[c7(1 - Nt) 1-7]8, 

Case B: u(c,,1 - Nt) = ln(ct) + 21n(1 - N~). 

(1) Kydland-Prescott  deviations, (2) proportional absolute deviations, 
(3) equal absolute deviations. 

Case A a 

(1) (2) (3) 

(a) (b) (a) (b) (a) (b) 

Output 3.01 1.000 3.05 1.000 2.97 1.000 
Consumption 2.76 0.981 2.75 0.982 2.72 0.982 
Investment 4.43 0.930 4.39 0.939 4.20 0.928 
Capital stock 3.00 0.870 2.98 0.871 2.81 0.868 
Hours 0.43 0.531 0.43 0.599 0.40 0.479 
Productivity 2.85 0.992 2.84 0.993 2.81 0.992 

(average) 

Case B a 

(1) (2) (3) 

(a) (b) (a) (b) (a) (b) 

Output 3.01 1.000 3.06 1.000 3.01 1.000 
Consumption 2.75 0.973 2.77 0.973 2.75 0.971 
Investment 4.45 0.902 4.59 0.908 4.46 0.899 
Capital stock 2.82 0.874 2.94 0.873 2.81 0.874 
Hours 0.49 0A41 0.51 0.479 0.51 0.439 
Productivity 2.82 0.988 2.85 0.988 2.82 0.987 

(average) 

a(a) standard deviation in percent, (b) correlation with output. 

(ii) In all cases, the relative volatility of the various series [column (a)] under 
the quadratic approximation (across all deviation schemes) was the same as 
under the standard solution; that is, consumption varied less than output, 
investment varied more than output, etc. 

(iii) All correlations with output [column (b)] under the standard and 
quadratic approximate procedures were closely similar, with the greatest 
discrepancy observed with the hours series. 

In summary, nothing was observed that would question the robustness of 
the approximation's accuracy to parameter changes. 
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Table 4 

Continuous state-space methodology. 

Technology: f ( k  t, Nt) = k t ( 1  - Nt) 1 '~. 

Preferences: u(ct, 1 - Nt) = I n ( q )  + 21n(1 - Nt), Xt+l  = 02% + ft. 

~t - log normal, Ef t = 1 - 0, %, = 0.00712. 

a = 0 . 3 6 ,  / ~ = 0 . 9 6 ,  $ 2 = 0 . 1 ,  p = 0 . 9 5 .  

Hansen model a 

(a) (b) 

Output 3.02 1.0000 
Consumption 2.70 0.973 
Investment 4.53 0 .920 
Capital stock 3.02 0 .867 
Hours 0.50 0 .544 
Productivity 2.78 0.988 

(average) 

a(a)  standard deviation in percent, (b) correlation with output. 

7. Further considerations 

Kydland and Prescott (1982) and Hansen (1985) employ a continuous 
state-space approach to model analysis: by making use of the quadratic 
properties, they derive the explicit linear decision rules appropriate to the 
(approximate) quadratic return function and then trace out the time path of 
the economy allowing the state variables to assume any value. Both computa- 
tion routines employed in this paper, however, use a grid search procedure. In 
particular, the optimal investment function is only defined for a discrete set of 
values (the optimal N as a function of k and ~ was solved for explicitly, 
however). 9 Employing essentially the same solution methodology across all 
comparisons enabled us thereby to isolate the precise effects of the approxima- 
tion alone. The issue remains as to how well the Hansen (1985) and 
Kydland-Prescott (1982) methods and the methods considered in this paper 
correspond. This is especially important as, for large numbers of state/deci- 
sion variables, the discrete state-space methods employed here become compu- 
tationally prohibitive. 

As an attempt to respond to this question, we compared the unfiltered 
output of Hansen's divisible labor continuous state-space model with that of 
our discrete analogue. Gary Hansen kindly provided the data in table 4. These 

9The  dramatic reduction in program execution time under the quadratic approximation can be 
attributed to the explicit solution of the optimal N t = N(k~, ht) function and to various numerical 
simplifications the approximation allowed. 
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Table 5 
Continuous state-space methodology'. 

Technology: f(k, ,  Nt) = k~(1 - N,) 1-~. 

Preferences: u(ct, 1 - Nt) = ln(ct) + 2 In(1 - Nt). 
Two-state shock process 

a = 0.36, fl = 0.96, I2 = 0.1, ~r = 0.97, ~ = 1.02, _h = 0.98 

Two-state shock process a 

(a) (b) 

Output 3.16 1.0000 
Consumption 2.81 0.974 
Investment 4.75 0.921 
Capital stock 3.14 0.874 
Hours 0.52 0.550 
Productivity 2.89 0.988 

(average) 

a(a) = standard deviation in percent, (b) = correlation with output. 

results are virtually identical to those of case B in tables 1 and 2. If the models 
underlying tables 1, case B, and 4 were identical in all respects, this coinci- 
dence would be sufficient to confirm the accuracy of the continuous state-space 
methods. The one difference, however, resides in the nature of the shock 
structure. [It is also the case that the data underlying table 4 has been logged, 
while tables 1 and 2 report statistics based on raw data. We assume this effect 
is minor  and ignore it.] 

To assess the impact of the different shock structures, we computed the time 
series and resultant statistics using Hansen's (1985) optimal decision rules 
(again provided by Gary Hansen in a private communication) in conjunction 
with our shock process. The idea was simply to see if the imposition of a 
two-state shock process would significantly alter the statistics reported in table 
4. The results of this exercise are reported in table 5. 

Tables 2 (case B), 4, and 5 together suggest that the decision rules underly- 
ing these reported statistics are relatively insensitive to the alternative shock 
structures considered in this paper per se. Indeed, the effect of imposing the 
two-state shock structure is to alter the statistics by less than 5% [comparing 
tables 4 and 5]. The fact that the statistics derived using continuous state-space 
decision rules [table 5] closely approximate the true statistics of table 1, case B, 
when the shock process is the same further confirms the legitimacy of the 
continuous state-space methodology. 

As a final test of the continous state-space methods we directly compared 
the decision rules underlying tables 2 (case B) and 4. For the continous 
methodology and the parameter values and functional forms of table 4, the 
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resultant decision rules are 

N t =  0.23161 + 0.13237~ t - 0.04946k t, (16) 

z t = -0 .18884 + 0.40372X t - 0.06668k t. (17) 

For  the discrete case, no such rules were immediately available as, in 
particular, the optimal investment function was defined only on a finite set of 
(k,  X) pairs. To obtain expressions analogous to (16) and (17) above, we thus 
regressed the optimal z = z ( k ,  ?~) and N = N ( k ,  2~) functions on k and X for 
all (k,  ?~) in their domain of definition. The results of this exercise for the 
parameter values of table 2, case B, and equiproportionate deviations (A x = 
0.00001x ss for x = k, z, N, X) are reported below: 

N t = 0.2304 + 0.12907% - 0.0493kt, (18) 

z t = -0 .1900  + 0 .3953~/ -  0.0663k t. (19) 

The variances of the residuals for (18) and (19) were, respectively, 0.00000136 
and 0.00000582, which indicate a very good linear fit. Clearly, both method- 
ologies generate essentially the same decision rules. In summary, both methods 
appear equally accurate with regard to decision rules derived and statistics 
thereby obtained. 

8. Concluding comments 

Our work suggests that quadratic approximate methods will provide a very 
good proxy for the conventional techniques whenever discrete state-space 
methods are used provided that the shocks are low and that the deviations 
which form the basis of the approximation are small. We have provided 
substantial evidence to support the accuracy of the continuous state-space 
quadratic methodology as well. On the face of our results, we are confident 
that these methods can be employed interchangeably as dictated by the 
feasibility requirements of each particular model context. 

Appendix 1 

We begin the detailed discussion of the procedure with the following 
observation" 

(i) Searching over the region of ordered pairs (k ,  Nn) for which 0 < N n _< 1 
and (1 - ~2)k <_ k ,  <_ f (k ,  N~) + (1 - ~ )k  is equivalent to searching over 
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the region (1 - t2)k <_ k .  < f ( k ,  N.)  + (1 - I2)k and N o < N. < 1, where 

[ u [ k , , -  ( l  - I2)k] ] 1/(1-'~)~ 
N o = No(k  . ,  k,  •) - -Lk-- ~ 

(ii) Maximizing U(.) + V._ x(" ) with respect to N. is equivalent to maximizing 
U(.) alone with respect to N., since V. 1(') is independent of N.. 

We can solve for the optimal N. associated with each (k., k, ~) triple by  
m a x i m i z i n g  

(aN~ (1-'~)~ - b )vs (1  - N. ) (a -v)ac  (20) 

with respect to N., where 

a = a ( k ,  ~)  = Lk~"~/v  > O, 

b = b ( k . ,  k )  = k . -  (1 - I2)k  > 0, 

c = 1 / 8 .  

Since eq. (20) is a concave function of N. we may differentiate and set the 
resultant expression equal to zero to determine the optimal N.. This yields, 
after some manipulation, the expression 

~,a(1 - a) t ,N.  O-~)~ 1 1 

aN~ 0 - ~ ) ~ -  b = (1 - y )  1 - N . "  (21) 

Rearranging terms this may be rewritten as 

ANn(1-a)~'_ BNn(1 ,~)~,-1 _ C = O, (22) 

where 

A = (1 - y ) a  + y a ( 1  - a ) p  > 0, 

B = 7 a ( 1  - a ) u  > 0, 

C =  ( 1 - v ) b .  

Rearranging eq. (22) again gives 

A N  n - B - CN~ -(1-~)" = 0 (23) 
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Y = ~ l - ( 1 - a ) ~  

I u 
1 

Fig. 1 

or 
B C 

N. = ~ + ~ N .  x-(1-~)~. (24) 

Eq. (24) is amendable to standard fixed-point procedures. Graphing each side 
of (24), as per fig. 1, it is apparent that the recursive iteration procedure, 
defined by 

N (0) ~- 1, 

B _c tN(O))l_(l_.). ' N(1) _ __ + 
A A ~ " 

B _c (N( 1))1-`1-")', N (2)  = - -  + 
A A ~ " 

(25) 

N~k) B C(N(k_l ) )~_( l_~) ,  ' 
A 

will approximate the solution. The remaining issue is to establish a conver- 
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gence criterion for the procedure. Suppose the solution to eq. (24) is N~ = 
B / A  + (C/A)N)-<I-")L Then, for an Nn (i), 

B C ( 1 -(1 -a )v  N('+ ') = --~ + N gi) ) 

B C 
= - - + - - ( N . )  t - < l - : ) ~ -  - 

A A 

C 
+ 7 ( 1  - (1 - a)v)N.O-'O~(N~(i)- N,,) 

C 
= N. + ~-(1 - (1 - a)v)N.  -(1 ">(N. (i) - N.).  (26) 

If we desire a solution for which N,} i) - N. < 0.511KII, where IIKII denotes the 
width of the partition of possible capital stock levels, then the convergence 
requirement becomes 

I N ( ' + 1 ' -  N(O] = + - ~ ( 1 - ( 1 - o t ) u ) N ' I - ' ~ ) ~ ( N ( i , - N , , ) - N  (i, 

= [ C ( l - ( 1 - o t ) v ) N . - < l - ' ~ ' ~ - l l ( N ( O - N , , )  

(0.51 < - (1 - ot)p)gn (1-a)v- 1 Igll), 

where C/A  and N,, can be estimated from the steady-state certainty levels of 
capital and labor; that is, 

C (a - v ) [kSS-  ( 1 -  ~)kSS]v 

A [(1 

AT. ~ 0.3 = N ss, 

and (1 - (1 - ~,)v) = 0.36 [in the case of Hansen's (1985) choice of parameters]. 
Given the determination of the optimal iV. = N.(k . ,  k, ~), the related optimal 
k .  was determined via a modified exhaustive search procedure. 
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Appendix 2 

An examination of the region defining the set of possible choices of the state 
variables allows us to express (15) equivalently as 

V~(k,  X) = k.,N.max(U*(k'N"'X'k") 

+ f l  E VnQ-I(k. ,  ~ t ) d f ( ~ k t ,  X)  , ( 2 7 )  
t = l  

subject to 

(1 - 12)k < k. < f(k,  N.) + (1 - 9)k,  

<_U.<_l, 

where No(k., k, X) is defined as in appendix 1. Substituting and rearranging 
terms gives 

VY(k, A) = max ( max C(k, A, k,) 
(1-12)k <kn~f(k,  Nn)+(1-I2)k ~ No(kn,k,h)<-Nn <-i 

+bzx2+ E (qj2+q2j)xjx2+q22x2}}, 
j . 2  

(28) 

where 

C(k,X,k.)=u(kS~,N~,h~S, zSS) + Y'. bixi+ Z qijxixj 
iv:2 i4:2 

j4,2 

2 

+fl E VnA-l(kn, Xt)dF(Jkt, ~k). (29) 
t = l  

As before the optimum N, does not depend on va_x(.) and can be 
computed directly by differentiating the expression of line (29). Since (29) is 
again of the form V = F + EX 2 + DX~, this yields 

z2qj2xj) 
E j .2 

. . . .  U s, (30)  X 2 = N n -  . 
2D 2q2 2 
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We note also that, if N, > 1, we then define Nn = 1; if N~ < No, we define 
N~ = N 0. Given this information, the computation of the optimal k~ reduces to 
solving 

I 
V~( k, X) = max ~ u*( k, N n, X, kn) 

(1-~2)k<k,<_f(k,1)+(1-12)k 

2 

+ f i e  VnQ-l(kn, X t ) d F ( X t ,  X) , (31) 
tffil 

where N n = Nn(k n, k, X) solves (30). 
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