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Abstract

L.E.G.O. is an interactive graphics system for creating, viewing and manipulating
two−dimensional geometric figures and three−dimensional objects. The fundamental
operations of the L.E.G.O. language form an electronic metaphor of geometric constructions
with a straightedge and compass. This is consistent with the primary application of L.E.G.O.,
i.e. computer−assisted instruction of geometry. L.E.G.O. is also useful when teaching or
studying other areas difficult to grasp without good visual aids, such as mechanics and
computer graphics. The system can be used both as an interactive environment for
experimenting with geometric constructions and as a tool for preparing illustrations.
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ABSTRACT
L.E.G.O. is an interactive graphics system for creating,
viewing and manipulating two-dimensional geometric figures
and three-dimensional objects. The fundamental operations
of the L.E.G.O. language form an electronic metaphor of
geometric constructions with a straightedge and compass.
This is consistent with the primary application of L.E.G.O.,
i.e. computer-assisted instruction of geometry. L.E.G.O. is
also useful when teaching or studying other areas difficult to
grasp without good visual aids, such as mechanics and com-
puter graphics. The system can be used both as an interac-
tive environment for experimenting with geometric construc-
tions and as a tool for preparing illustrations.

Keywords: Interactive graphics systems, geometric con-
structions, constraint-based systems, computer-assisted
instruction.

figures and three-dimensional objects using Euclidean
constructions, look at these objects from different
angles, and introduce modifications. Manipulations
reveal general properties of the constructions and pro-
vide empirical material for transfonning observations
into hypotheses.

Apart from the computer-assisted instruction of
geometry, constructions can be applied to illustrate selected
areas of mechanics (in particular, the theory of linkages) and
computer graphics (e.g. 3D modeling and projections).

L.E.G.O. was originally conceived as an interactive sys-
tem [9]. However, it also can be used to prepare illustra-
tions (plots, slides and prints) suitable for publication pur-
poses. In this case, the real-time interaction is sacrificed for
the sake of good quality of rendering.

Technically, L.E.G.O. is characterized by the following
features:
. Geometric figures can be referred to by names and used

as arguments or obtained as results of functions.
. Functions are defined interactively, by examples.

Before a geometric construction is started, selected
figures (points, lines, etc.) can be specified as argu-
ments. When the construction is finished, it can be
recalled using a different set of arguments.

. Function calls can be nested, allowing the user to easily
define recursive figures and objects.

. Three-dimensional objects can be defined, manipulated
and viewed.
The idea of using geometric constructions as a basis for

an interactive computer graphics system has received almost
no attention in the past. This is rather surprising, given the
fundamental role of constructions in Euclidean geometry.
Only recently has another construction-based system been
reported in the literature [2]. On the other hand, L.E.G.O.
shares some features and applications with constraint-based
graphics systems [3,12,14,15,17].

2. THE L.E.G.O. LANGUAGE
The L.E.G.O. language [8] is a graphical extension of

Franz USP [6,18] and it preserves the LISP syntax.
L.E.G.O. and LISP functions can be interleaved in the same
program. However, L.E.G.O. maintains its own symbol
table and therefore cannot be considered simply as a library

1. INTRODUCTION
In the classroom, simple two-dimensional illustra-

tions can usually be sketched with sufficient precision for
student understanding. However, it is difficult for even the
most talented instructor to sketch three-dimensional objects
and complex two-dimensional figures in real time, using a
chalkboard or transparencies, with enough precision to
enhance the learning process. The students' understanding
must therefore evolve totally from abstract symbolism
without an adequate visual model.

This paper describes a system called L.E.G.O.
(LISP-based Euclidean Geometry Operations). The funda-
mental concept of L.E.G.O. is to provide an electronic
metaphor for a straightedge and compass. Consequently,
L.E.G.O. is particularly suitable for computer-assisted
instruction of Euclidean geometry.

The educational applications of L.E.G.O. fall roughly
into two categories:
. The computer as a blackboard. L.E.G.O. is used by

the instructor to illustrate geometric objects and con-
structions. Such illustrations are more precise and visu-
ally more attractive than those drafted on a traditional
blackboard.

. The computer as a virtual laboratory. The students
interact with the system. They create two-dimensional
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Fig. 1. Bisecting a line in L.E.G.O.

A geometric construction can be specified as a function
using function definition functions define_function and
end_function. For example, in order to specify the con-
struction to bisect a line as a function, the statements:

(define_function bisect (A B) (P»

(end_function)
should have been typed after lines 2 and 7 of Program I,
respectively. The statements in lines 3-7 would then consti-
tute the function body. Parameters of the define_function
function indicate that the new function bisect shall be called
with two arguments referring to previously defined primi-
tives (A and B), and will create a new primitive P as a
result. Note that line L will become local to the function
bisect and therefore should not be referred to outside the
body of this function. The function bisect can be used, for
example, to construct the circumcircle of a given triangle
ABC (Program 2 and Fig. 2).

Program 2.
I (bisect A C P)
2 (bisect B C Q)
3 (intersection P Q X)
4 (line X C R)
5 (circle X R Z)

~

of LISP functions. This symbol table contains ~ferences to
the primitive graphical objects: points, lines, circles. planes
and spheres. Associated with these primitives is a set of
predefined functions which make it possible to define new
objects in terms of the objects already specified. The follow-
ing functions are essential for developing two-dimensional
constructions:
(point x y new_name)

Creates a point given coordinates x and y. and calls it
new_name. (The term "c~ate" means to produce a
new graphic primitive by recording its features in the
L.E.G.O. symbol table and by drawing it on the
sc~en.)

(line point] point2 new_name)
Creates a line from a p~viously defined pointl to a
p~viously defined poinr2. and calls it new_name.

(circle center radius new_name)
Creates a circle given a p~viously defined point center.
with the radius equal to a previously defined line
radius. The circle is called new_name.

(intersection primitive] primitive2 new name][new_name2]) -

C~ates the points of intersection between twc>-
dimensional primitives: points, lines and circles. Inter-
sections with a point can be used to check whether it
coincides with another point. or whether it lies on a
line or a circle. The actual number of intersections is
~turned as the value of the function. The value of -1
is ~tumed when intersecting two identical lines or cir-
cles.
The operation of intersection requires particular atten-

tion. It may create two intersection points and the user must
know which point of intersection will be called new_name 1.
and which one - new_name2. In L.E.G.O. the points of
intersection are distinguished on the basis of the oriented
angles between the intersecting primitives. Consequently,
the correct selection of the points of intersection is p~served
when translating or rotating the construction.

In order to illustrate key featu~s of the L.E.G.O.
language, let us consider some simple programs. They can
be developed noninteractively (using a text editor) or
interactively. In the latter case. each statement entered to the
system is immediately executed to provide visual feedback.
The first program creates line L defined by points A and B,
and bisects L with line P perpendicular to L.

Program 1.
1 (point 400 370 A)
2 (point 600 470 B)
3 (line A B L)
4 (circle A L Cl)
5 (circle B L C2)
6 (intersection Cl C2 Xl X2)
7 (line Xl X2 P)

The construction described by this program is shown in Fig.
1. Fig. 2. Construction of the circumcircle of a triangle.
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(circle center radius plane new_name)
Creates a circle on a previously defined plane, given
the center and the radius of the circle. The circle will
be called new name.

(sphere center radius new_name )
Creates a sphere given a previously defined point
center, with the radius equal to the length of a previ-
ously defined line radius. The sphere is called
new name.

L.E.G.O. functions can be called recursively. Assume
that the user-defined function (midtriangle ABC D E F)
creates a biangle given vertices A,B,C, and returns the mid-
points of the edges: D,E,F. Using midtriangle, the
Sierpmski gasket [13) (Fig. 3) can be defined as follows:

Program 3.
1 (point 220 150 A)
2 (point 790 150 B)
3 (point 505 643 C)
4 (define_function gasket (A B C»
5 (midbiangle ABC D E F)
6 (write_function)
7 (if (> (distance A B) 40) then
8 (gasket A D F)
9 (gasket BED)
10 (gasket C FE»
11 (end_function)

Line 6 calls function write_function which temporarily
writes the function currently being defined. This is a neces-
sary statement before this function can call itself. Line 7
illustrates the mixing of USP and L.E.G.O. functions. A
predefined L.E.G.O. function distance is used in conjunction
with the USP macro if...then to control the termination of
the recursive calls.

An example of a three-dimensional construction is
given by Program 4. It creates a wire-frame model of a reg-
ular tetrahedron, given an equilateral triangle ABC (Fig. 4).

Program 4.
I (line A B R)
2 (sphere A R Spherel)
3 (sphere B R Sphere2)
4 (sphere C R Sphere3)
5 (intersection Spherel Sphere2 Circle)
6 (intersection Sphere3 Circle D)
7 (line A D 1.4)
8 (line B D LS)
9 (line C D L3)

0

L::::::::~,
Fig. 4. A regular tetrahedron. (The spheres used
for construction are not shown.)

c

B

Fig. 3. The Sierpifiski gasket

In order~velop tiire:e:dimensional constructions, the
functions point, line and intersection described before are
extended to operate on three-dimensional primitives. Addi-
tionally, the following functions are defined:

(pppJ>lane point] point2 pointJ new_name)
(plJ>lane point line new_name)
(1IJ>lane line] line2 new_name)

Each of these functions enters plane new_name to the
L.E.G.O. symbol table. The plane is specified by three
non-collinear points, a line and a point not on the line,
or two intersecting or parallel lines, respectively. The
plane is not displayed. (In order to present the plane
visually, the user must draw on it an appropriate two-
dimensional figure, for example a rectangle.)

While programs 1 - 4 illustrate the essential features of
the L.E.G.O. language, they use but a small fraction of the
available functions. In total, L.E.G.O. has approximately
100 predefined functions [8], which can be grouped into nine
classes.
1. Object definition functions arc used to create L.E.G.O.

graphics primitives: points, lines, circles, planes and
spheres. Functions point, line, sphere, intersection,
etc. belong to this category. The object definition func-
tions arc the fundamental tools for modeling geometric
objects in L.E.G.O.

2. Query functions provide information about graphical
primitives. Two subclasses can be distinguished:
. Functions which retUrn a numerical value (e.g.

coordinate of a point, distance between points,
length of a line). They arc used primarily in condi-
tional statements.

. Functions which return a graphic primitive (e.g.
endpoint of a line, center of a sphere, plane con-
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taining a circle). They are useful when arguments
other than points are passed to functions.

Drawing functions are used to display simple figures
such as alphanumerical symbols, arcs of circles and
filled polygons. These are not considered as L.E.G.O.
primitives and, consequently, cannot be passed as argu-
ments to the function intersection.

Presentation definition functions are used to control
the appearance of graphical objects on the screen.
Examples of controlled features are listed below:

. Visibility of primitives. Auxiliary construction lines
may be removed from the final picture.

. Display of primitive names. In some applications,
such as the presentation of geometric constructions
for educational use, primitives should be labeled.
In other cases, such as the modeling of realistic
scenes, the display of names should be suppressed.

. Color, width and style of lines.

. Color, size and type offonts.

Function definition functions form a class which con-
tains define_function and end_function, already
described.

Viewing functions are used to divide the screen surface
into separate viewports, define parameters of the projec-
tion, rotate objects in space, etc.
Interaction supporting functions make it possible to
remove or modify previously defined primitives. These
functions are particularly useful when developing con-
structions interactively, since each statement entered to
the system is immediately executed and it cannot be
subsequently altered by editing.
System functions are used for file manipulation (such
as function loading), to configure the system for a par-
ticular type of graphics output device (such as a
plotter), etc.

Debugging functions provide information about primi-
tives stored in the symbol table, actual viewing parame-
ters, etc. 5 B

3. APPLICATIONS OF L.E.G.O.
Fig. 5. Yon Staudt's consttuction of a regular
pentagon.3.1. Computer assisted instruction of Euclidean geometry.

The fundamental concept of L.E.G.O., mimicry of con-
structions with straightedge and compass, obviously makes
the system suitable for presenting constructions of Euclidean
geometry. Due to the accuracy of computer calculations,
exact drawings can be easily obtained. This is in contrast to
the approximate drawings made at the chalkboard and some-
times found in publications. Additionally, the progress of a
construction in time can be shown. It can be studied
directly in front of the monitor, or presented as a sequence
of snapshots.

Example 1. Figure 5 illustrates von Staudt's construction of
the regular pentagon [I]. (a) Construct a square ABCD and
connect the midpoints of the opposite edges with lines EG
and FH. Inscribe circle M in ABCD. (b) Extend line AB,

and mark on it point S so that the distance IASI equals three
times distance 1AE1. Let line CS intenect circle M at points
P and Q. (c) Join P and Q to the point E, and let p', Q' be
the intenections of lines EP and EQ with line FH. (d) Then
the vertices of a regular pentagon are given by point F and
the intersections with the circle of the lines through P' and
Q' perpendicular to FH.

L.E.G.O. is particularly useful when illustrating three-
dimensional objects and constructions.
Example 2. Figure 6 shows a dodecahedron and illustrates
its construction. (a) Let r and R denote an edge and a diag-
onal of the regular pentagon ABCDE. Intenect three spheres
with centen at points A, B, C, and radiuses R, r and R,

CIPS Edmonton 1986





3.2. Applications of L.E.G.O. to computer graphics.
So far, two distinct applications of L.E.G.O. to com-

puter graphics have been identified. The first one is the
illustration of projections. Since the projection of a point
onto a plane is defined by the intersection of the projector
with the projection plane, projections can be easily con-
structed in L.E.G.O.
Example 8. Figure 14 presents two types of projections:
isometric and two-point perspective [7]. Figure 15 illustrates
construction of a shadow.

Another application of L.E.G.O. falls into the category
of geometric modeling. Repetitive (recursive or iterative)
geometric constructions can be used not only to approximate
curved lines (Example 5), but also curved surfaces.

. A hyperbole is a locus of points A such that the
difference of distances of A from tWo fixed foci is con-

stant.
Another concept involving repetitive constructions is

the recursive definition of geometric objects. A simple
example of a recursive construction in L.E.G.O. was shown
in Fig. 3. Two more complex examples are given below.
Example 6. (provided by Brad Longworth) Figure 12 illus-
trates the Apollonian gasket [13]. This figure is obtained by
recursively constructing the circle tangent to three given cir-
cles using the method described in [4].
Example 7. Figure 13 illustrates the Hilbert curve [II] and

its three-dimensional extension [16].
Once again, note that constructions shown in Figs. 12

and 13b would be difficult to obtain using a "real"

straightedge and compass.

/

Fig. 12. The Apollonian gasket

xl

Fig. 13. Two-dimensional and three-dimensional
Hilbert curves.

Fig. 14. Two examples of projections.

CIPS Edmonton 1986



Example 9. Fig. 16a illustra~ the L.E.G.O. construction of
a polygon mesh of a vase. The vertices of the mesh lie at
the intersections of four vertical planes with a sequence of
horizontal circles. The final mesh is shown in Fig. 16b.

The modeling of curved surfaces using geometric con-
structions is interesting not just from the educational point of
view. In some cases, the geometric construction of a surface
is simpler and more straightforward than other modeling
techniques. The concept of geometric modeling using con-
structions is new and requires a further study.

Fig. 15. Construction of a shadow.

a

b -r-

3.3. Modeling of mechanisms and kinematic analysis.

Mechanisms consist of movable elements (links) con-
nected together in kinematic pairs which put constraints on
the motion of the links. The essential problem of kinematic
analysis is to determine the relationship between the input
and the output motion of a mechanism. This relationship can
be very complex and difficult to grasp. Consequently, work-
ing models of mechanisms are often necessary to gain a full
understanding of the motion [10]. Alternatively, mechanisms
can be represented as computer models. The possibility of
modeling mechanisms using constraint-based graphics sys-
tems was recognized by Sutherland [17] and described as the
most interesting application of his Sketchpad. Various types
of mechanisms can also be modeled using L.E.G.O. They
can be interactively manipulated by the user, or put in
motion by a "virtual motor", i.e., a function which moves
the input links without user intervention.

Example 10. The mechanism shown in Fig. 17a is known
as James Watt's linkage [5]. If it is put in motion by rotating
the left link, the midpoint of the middle link traces a
Bernoulli's lemniscate. A "stroboscopic picture" of the link-
age (Fig. 18) reveals that the velocity of the midpoint of the
middle link varies while the left link rotates at a constant
speed. Another mechanism, called Peaucelier's linkage, is
shown in Figs. 17b and 19. It is interesting from the histori-
cal perspective, as it is the first exact solution to the
straight-line motion problem. (This problem consists of con-
verting a circular motion at the input into a linear motion at
the output of the linkage [5].)

Example 11. (provided by Wayne Hassman) Figure 20
presents a different mechanism - a simple pulley. The
"stroboscopic picture" shows consecutive positions of both
loads and reveals the non-linear path of the right load.

~

~:~~
~

:12
4. CONCLUSIONS

L.E.G.O. is an interactive graphics system implement-
ing an electronic metaphor of straightedge and compass.
Two-dimensional fig~s and three-dimensional objects are
created using geometric constructions and can be interac-
tively manipulated. L.E.G.O. extends the capabilities of a
"real" straightedge and compass in two directions:
. Three-dimensional, iterative and recursive constructions

can be performed easily and accurately.. Once a construction has been defined, it can be mani-

pulated by changing arbitrary arguments.Fig. 16. Construction of a polygon mesh of a vase.
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Fig. 17. Examples of linkages: (a) James Watt's linkage, (b) Peaucelier's linkage.

Fig. 18. A stroboscopic view of the James Watt's linkage.
Fig. 19. A stroboscopic view of the Peaucelier's linkage.

L.E.G.O. is particularly suited for computer-assisted
instruction of the Euclidean geometry. However, it also can
be used in less obvious applications, such as the modeling of
curved surfaces and the analysis of mechanisms. The range
of practical applications of the construction-based approach
require a further study.

Since the beginning of 1985, various versions of
L.E.G.O. have been available to computer graphics students
at the University of Regina. They found the system very
attractive, easy to use, and applicable to many practical
problems. Although these opinions were not formally sur-
veyed, they reinforce our conclusion that L.E.G.O. is a
viable educational tool with a wide range of applications.
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Fig. 7. A plant with small leaves approximated by flat polygons. Fig. 8. A plant with curved leaves.

Fig. 10. A plant with leaves and flowers
modeled using Bezier patches;

Fig. 9. A Bezier patch modeling a leaf.




